Skip to main content

Energy Storage System Design for Green-Energy Cyber Physical Systems

  • Chapter
  • First Online:
Design Technologies for Green and Sustainable Computing Systems
  • 849 Accesses

Abstract

Electric-drive transportation offers a wonderful new opportunity [1, 2] to address air-pollution issues and petroleum consumption problems around the world. Currently, the greenhouse gas emissions from conventional transportation account for 40% of air-pollution emissions from all energy-using sectors [3, 4]. Development of new electric-drive techniques, in the transportation sector, is both a new and ongoing endeavor. Hybrid electric vehicles (HEVs) have been quickly adopted and widely deployed over the past decade. Presently, plug-in hybrid electric vehicles (PHEVs), which use the electricity from the electric power grid along with petroleum to power the vehicle, have received considerable recent attention to significantly reduce petroleum consumption and greenhouse gas emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Markel T, Simpson A (2006) Cost-benefit analysis of plug-in hybrid electric vehicle technology. In: 22nd international electric vehicle symposium, Yokohama

    Google Scholar 

  2. Environmental assessment of plug-in hybrid electric vehicles, vol 1: nationwide greenhouse gas emissions. Electric Power Research Institute (EPRI), Palo Alto, CA, Tech. Rep. 1015325, July 2007

    Google Scholar 

  3. Samaras C, Meisterling K (2008) Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles: implications for policy. Environ Sci Technol 42(9):3170–3176

    Article  Google Scholar 

  4. Karplus V et al (2012) Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions constraint? Implications for energy and climate policy in the united states. Energy Econ 36: 322–333

    Article  Google Scholar 

  5. Miller JM (2009) Energy storage system technology challenges facing strong hybrid, plug-in and battery electric vehicles. In: IEEE vehicle power propulsion dsonference, Dearborn, pp 4–10

    Google Scholar 

  6. Pang C, Dutta P, Kezunovic M (2012) Bevs/phevs as dispersed energy storage for v2b uses in the smart grid. IEEE Trans Smart Grid 3(1):473–482

    Article  Google Scholar 

  7. Lahiri K, Raghunathan A, Dey S (2004) Efficient power profiling for battery-driven embedded system design. IEEE Trans Comput-Aided Des Integr Circuits Syst 23(6):919–932

    Article  Google Scholar 

  8. Rong P, Pedram M (2006) Battery-aware power management based on markovian decision processes. IEEE Trans Comput-Aided Des Integr Circuits Syst 25(7):1337–1349

    Article  Google Scholar 

  9. Li Y et al (2012) An energy efficient solution: Integrating plug-in hybrid electric vehicle in smart grid with renewable energy. In: IEEE conference on computer communications workshops (INFOCOM WKSHPS), Orlando, 2012. IEEE, pp 73–78

    Google Scholar 

  10. Baisden A, Emadi A (2004) Advisor-based model of a battery and an ultra-capacitor energy source for hybrid electric vehicles. IEEE Trans Veh Technol 53(1):199–205

    Article  Google Scholar 

  11. Lukic SM et al (2008) Energy storage systems for automotive applications. IEEE Trans Ind Electron 55(6):2258–2267

    Article  Google Scholar 

  12. Cao J, Emadi A (2012) A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles. IEEE Trans Power Electron 27(1):122–132

    Article  Google Scholar 

  13. Maksimovic D, Zane R, Erickson R (2009) Multi-cell battery systems. University of Colorado at Boulder (UCB), Invention Disclosure

    Google Scholar 

  14. US Advanced Battery Consortium. http://www.uscar.org/

  15. Pesaran A, National Renewable Energy Laboratory (U.S.) et al (2009) Battery requirements for plug-in hybrid electric vehicles–analysis and rationale. National Renewable Energy Laboratory, Golden

    Google Scholar 

  16. Vazquez S et al (2010) Energy storage systems for transport and grid applications. IEEE Trans Ind Electron 57(12):3881–3895

    Article  Google Scholar 

  17. Martin TL (1999). Balancing batteries, power, and performance: system issues in Cpu speed-setting for mobile computing. Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA, USA

    Google Scholar 

  18. Panigrahi D et al (2001) Battery life estimation of mobile embedded systems. In: Proceedings of the 14th IEEE/ACM international conference on VLSI design, San Diego

    Google Scholar 

  19. Li K et al (2010) Large-scale battery system modeling and analysis for emerging electric-drive vehicles. In: ACM proceedings of the 2010 international symposium on low power electronics and design (ISLPED), Austin

    Google Scholar 

  20. Vetter J et al (2005) Ageing mechanisms in lithium-ion batteries. J Power Sources 147(1):269–281

    Article  Google Scholar 

  21. Toyota PHEV technologies. http://www.toyota.com

  22. Seo H et al (2010) Power quality control strategy for grid-connected renewable energy sources using pv array and supercapacitor. In: International conference on electrical machines and systems (ICEMS) 2010. IEEE, Incheon, Korea (South), pp 437–441

    Google Scholar 

  23. Rong P, Pedram M (2006) An analytical model for predicting the remaining battery capacity of lithium-ion batteries. IEEE Trans Very Larg Scale Integr Syst 14(5):441–451

    Article  Google Scholar 

  24. Hung S, Hopkins D, Mosling C (1993) Extension of battery life via charge equalization control. IEEE Trans Ind Electron 40(1):96–104

    Article  Google Scholar 

  25. Moawad A et al (2009) Impact of real world drive cycles on phev fuel efficiency and cost for different powertrain and battery characteristics. In: International battery, hybrid and fuel cell electric vehicle symposium, Stavanger

    Google Scholar 

  26. Shiau CSN et al (2009) Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles. Energy Policy 37(7):2653–2663

    Article  Google Scholar 

  27. Fuller T, Doyle M, Newman J (1994) Simulation and optimization of the dual lithium ion insertion cell. J Electrochem Soc 141(1):1–10

    Article  Google Scholar 

  28. Johnson VH (2002) Battery performance models in ADVISOR. J Power Sources 110: 321–329

    Article  Google Scholar 

  29. Rao V et al (2005) Battery model for embedded systems. In: 18th international conference on VLSI design, Kolkata, 2005. IEEE, pp 105–110

    Google Scholar 

  30. Rakhmatov D, Vrudhula S, Wallach D (2002) Battery lifetime prediction for energy-aware computing. In: ISLPED ’02: proceedings of the 2002 international symposium on Low power electronics and design, New York, pp 154–159

    Google Scholar 

  31. Lukic SM et al (2006) Power management of an ultra-capacitor/battery hybrid energy storage system in an HEV. In: IEEE vehicle power propulsion conference, Windsor, United Kingdom, pp 1–6

    Google Scholar 

  32. Pedram M et al (2010) Hybrid electrical energy storage systems. In: ACM/IEEE international symposium on low-power electronics and design (ISLPED), Austin, 2010. IEEE, pp 363–368

    Google Scholar 

  33. Du Pasquier A et al (2003) A comparative study of li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications. J Power Sources 115(1):171–178

    Article  Google Scholar 

  34. Lahiri K et al (2002) Battery-driven system design: a new frontier in low power design. In: Design automation conference, 2002. Proceedings of ASP-DAC 2002. 7th Asia and South Pacific and the 15th international conference on VLSI design, Bangalore

    Google Scholar 

  35. Khateeb SA et al (2006) Mechanical-electrochemical modeling of Li-ion battery designed for an electric scooter. J Power Sources 158(1):673–678

    Article  MathSciNet  Google Scholar 

  36. Ricketts B, Ton-That C (2000) Self-discharge of carbon-based supercapacitors with organic electrolytes. J Power Sources 89(1):64–69

    Article  Google Scholar 

  37. Conway B (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer, New York

    Book  Google Scholar 

  38. Diab Y et al (2009) Self-discharge characterization and modeling of electrochemical capacitor used for power electronics applications. IEEE Trans Power Electron 24(2):510–517

    Article  Google Scholar 

  39. Santhanagopalan S et al (2005) Review of models for predicting the cycling performance of lithium ion batteries. J Power Sources 156: 620–628

    Article  Google Scholar 

  40. Kazuo O et al (2003) Study on heat generation behavior of small lithium-ion secondary battery. J Electrochem Soc 150(3):A285–A291

    Article  Google Scholar 

  41. Newman JS (1999) FORTRAN programs for simulation of electrochemical systems. Available: http://www.cchem.berkeley.edu/~jsngrp/

  42. Smith K, Rahn C, Wang C (2010) Model-based electrochemical estimation and constraint management for pulse operation of lithium ion batteries. IEEE Trans Control Syst Technol 18(3):654–663

    Article  Google Scholar 

  43. Doyle M, Fuller T, Newman J (1993) Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. J Electrochem Soc 140(6):1526–1533

    Article  Google Scholar 

  44. Rakhmatov D, Vrudhula S, Wallach D (2003) Model for battery lifetime analysis for organizing applications on a pocket computer. IEEE Trans Very Larg Scale Integr Syst 11(6):1019–1030

    Article  Google Scholar 

  45. Gao L, Liu S, Dougal R (2002) Dynamic lithium-ion battery model for system simulation. IEEE Trans Compon Packag Technol 25(3):495–505

    Article  Google Scholar 

  46. Hageman S (1993) Simple pspice models let you simulate common battery types. Edn-Boston Denver 38:117–117

    Google Scholar 

  47. Yann Liaw B et al (2004) Modeling of lithium ion cellsa simple equivalent-circuit model approach. Solid State Ion 175(1):835–839

    Article  Google Scholar 

  48. Lee S et al (2008) State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge. J Power Sources 185(2):1367–1373

    Article  Google Scholar 

  49. Chiasserinia C, Rao R (2000) Stochastic battery discharge in portable communication devices. IEEE Aerosp Electron Syst Mag 15(8):41–45

    Article  Google Scholar 

  50. Chiasserini C, Rao R (1999) A model for battery pulsed discharge with recovery effect. In: Wireless communications and networking conference (WCNC), 1999. IEEE, New Orleans, LA, pp 636–639

    Google Scholar 

  51. Chiasserini C, Rao R (2001) Improving battery performance by using traffic shaping techniques. IEEE J Sel Areas Commun 19(7):1385–1394

    Article  Google Scholar 

  52. Chiasserini C, Rao R (2001) Energy efficient battery management. IEEE J Sel Areas Commun 19(7):1235–1245

    Article  Google Scholar 

  53. Manwell J, McGowan J (1994) Extension of the kinetic battery model for wind/hybrid power systems. In: Proceedings of EWEC, Thessaloniki, Greece, pp 284–289

    Google Scholar 

  54. Nelson, Amine K (2007) Advanced lithium-ion batteries for plug-in hybrid-electric vehicles. In: 23rd international electric vehicle symposium (EVS23), Argonne National Laboratory, Lemont

    Google Scholar 

  55. A. N. Laboratory, PSAT (Powertrain Systems Analysis Toolkit). http://www.transportation.anl.gov/

  56. Kroeze R, Krein P (2008) Electrical battery model for use in dynamic electric vehicle simulations. In: Power electronics specialists conference (PESC), 2008. IEEE, Rhodes, Greece, pp 1336–1342

    Google Scholar 

  57. Wu J et al (2011) Large-scale battery system development and user-specific driving behavior analysis for emerging electric-drive vehicles. Energies 4:758–779

    Article  Google Scholar 

  58. Midlam-Mohler S et al (2009) Phev fleet data collection and analysis. In: Vehicle power and propulsion conference (VPPC’09), 2009. IEEE, Dearborn, MI, pp 1205–1210

    Google Scholar 

  59. Ericsson E (2001) Independent driving pattern factors and their influence on fuel-use and exhaust emission factors. Transp Res Part D: Transp Env 6(5):325–345

    Article  Google Scholar 

  60. Lin C et al (2002) Control of a hybrid electric truck based on driving pattern recognition. In: Proceedings of the 6th international symposium on advanced vehicle control, Hiroshima

    Google Scholar 

  61. Lin C et al (2004) Driving pattern recognition for control of hybrid electric trucks. Veh Syst Dyn 42(1–2):41–58

    Article  Google Scholar 

  62. Dembski N et al (2005) Development of refuse vehicle driving and duty cycles. SAE Trans 114(2):90–102

    Google Scholar 

  63. Ganji B, Kouzani A, Trinh H (2010) Drive cycle analysis of the performance of hybrid electric vehicles. In: Life system modeling and intelligent computing. Springer, New York, pp 434–444

    Google Scholar 

  64. Gong Q et al (2010) Statistical analysis of phev fleet data. In: Vehicle power and propulsion conference (VPPC), 2010. IEEE, pp 1–6

    Google Scholar 

  65. Li K et al (2012) Personalized driving behavior monitoring and analysis for emerging hybrid vehicles. In: Pervasive computing. Springer, New York, pp 1–19

    Google Scholar 

  66. Bergveld H, Kruijt W, Notten P (2002) Battery management systems: design by modelling, vol 1. Springer, Boston

    Book  Google Scholar 

  67. Stuart T et al (2002) A modular battery management system for hevs. In: Proceedings of the SAE future car congress (Paper number 2002-01-1918), Arlington

    Google Scholar 

  68. Kim Y et al (2010) Balanced reconfiguration of storage banks in a hybrid electrical energy storage system. In: Proceedings of the international conference on computer-aided design. IEEE, San Jose, CA, pp 624–631

    Google Scholar 

  69. Shin D et al (2011) Constant-current regulator-based battery-supercapacitor hybrid architecture for high-rate pulsed load applications. J Power Sources 205:516–524

    Article  Google Scholar 

  70. Wang Y et al (2011) Charge migration efficiency optimization in hybrid electrical energy storage (hees) systems. In: ISLPED’11, Fukuoka, pp 103–108

    Google Scholar 

  71. Xie Q et al (2011) Charge allocation for hybrid electrical energy storage systems. In: Proceedings of the 9th international conference on hardware/software codesign and system synthesis (CODES+ISSS), Taipei, 2011. IEEE, pp 277–284

    Google Scholar 

  72. Xie Q et al (2012) Charge replacement in hybrid electrical energy storage systems. In: 17th Asia and South Pacific design automation conference (ASP-DAC), Sydney, 2012. IEEE, pp 627–632

    Google Scholar 

  73. Mirhoseini A, Koushanfar F (2011) Hypoenergy hybrid supercapacitor-battery power-supply optimization for energy efficiency. In: Design, automation & test in Europe conference & exhibition (DATE), Grenoble, 2011. IEEE, pp 1–4

    Google Scholar 

  74. Mirhoseini A, Koushanfar F (2011) Learning to manage combined energy supply systems. In: International symposium on low power electronics and design (ISLPED) 2011. IEEE, Fukuoka, pp 229–234

    Google Scholar 

  75. Rousseau A et al (2007) Research on phev battery requirements and evaluation of early prototypes. In: 7th advanced automotive battery conference. Long Beach, CA

    Google Scholar 

  76. Roman Dumitrescu CR, Gausemeier J (2009) Design methodology of a combined battery-ultracapacitor energy storage unit for vehicle power management. In: 10th international workshop on research and education in mechatronics. Glasgow, UK

    Google Scholar 

  77. Smith R (2004) Fuel cells and ultracapacitors. In: Advanced capacitor world summit 2004. Washington, DC

    Google Scholar 

  78. Burke AF (2007) Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. Proc IEEE 95(4):806–820

    Article  MathSciNet  Google Scholar 

  79. Cooper et al A (2009) The ultrabattery–a new battery design for a new beginning in hybrid electric vehicle energy storage. J Power Sources 188(2):642–649

    Google Scholar 

  80. Lukic et al S (2008) Energy storage systems for automotive applications. IEEE Trans Ind Electron 55(6):2258–2267

    Google Scholar 

  81. Garcia F, Ferreira A, Pomilio J (2009) Control strategy for battery-ultracapacitor hybrid energy storage system. In: Twenty-fourth annual IEEE applied power electronics conference and exposition (APEC), 2009. IEEE, Washington, DC, pp 826–832

    Google Scholar 

  82. Zhou Z et al (2011) Power management of passive multi-source hybrid electric vehicle. In: Vehicle power and propulsion conference (VPPC), 2011. IEEE, Chicago, IL, pp. 1–4

    Google Scholar 

  83. Wu J et al (2012) Large-scale energy storage system design and optimization for emerging electric-drive vehicles. IEEE Trans Comput-Aided Des Integr Circuit Syst 32:325–338

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wu, J., Williamson, J., Shang, L. (2013). Energy Storage System Design for Green-Energy Cyber Physical Systems. In: Pande, P., Ganguly, A., Chakrabarty, K. (eds) Design Technologies for Green and Sustainable Computing Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4975-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4975-1_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4974-4

  • Online ISBN: 978-1-4614-4975-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics