Skip to main content

Software Platform for Metabolic Network Reconstruction of Mycobacterium tuberculosis

  • Chapter
  • First Online:
Systems Biology of Tuberculosis

Abstract

Tuberculosis (TB) is one of the major infectious diseases still prevailing on this planet. Emergence of drug resistant strains and problems of current treatment ­regimen warrant need for new drugs for TB. At the same time, economic factor plays a significant role as most patients are in the lowest income bracket of the society. This implies new drugs have to be developed in an innovative manner that allows delivery of drugs at low cost. Drug discovery is in general an expensive and capital-intensive process. A new type of big science is emerging that involves knowledge integration of small sciences as well as coordinating community-based participation. Social dynamics plays critical role in making project successful because open collaboration involves participants with diverse motivations and interests. Thus, proper “social engineering” will play greater role in scientific project planning and management in future. Open Source Drug Discovery (OSDD), initiated by Council for Scientific and Industrial Research (CSIR) of India, is one of such projects aiming at the development of drugs for TB. The fact that drug discovery is a competitive space, bringing in ­openness and collaboration through e-community-based approach is a challenging task. This article describes the international collaboration among OSDD, the Systems Biology Institute (SBI: Japan), and Okinawa Institute of Science and Technology (OIST: Japan) for reconstruction of a comprehensive and high-precision map of ­metabolic network of Mycobacterium tuberculosis (mTB) through a virtual ­collaborative space. The fact that OSDD involved large number of non-experts guided by experts in the process further sets it apart from other existing ways of addressing scientific problems of this scale.

Samik Ghosh and Anshu Bhardwaj are Joint first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donald PR, van Helden PD (2009) The global burden of tuberculosis—combating drug resistance in difficult times. N Engl J Med 360:2393–2395

    Article  PubMed  CAS  Google Scholar 

  2. PricewaterhouseCoopers (2007b) Pharma 2020: Virtual R&D—which path will you take?

    Google Scholar 

  3. FDA (2004) Challenge and opportunity on the critical path to new medical products, http://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/ucm077262.htm

    Google Scholar 

  4. PricewaterhouseCoopers (2007a) Pharma 2020: the vision—which path will you take?

    Google Scholar 

  5. Apsel B, Blair JA, Gonzalez B, Nazif TM, Feldman ME, Aizenstein B, Hoffman R, Williams RL, Shokat KM, Knight ZA (2008) Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat Chem Biol 4:691–699

    Article  PubMed  CAS  Google Scholar 

  6. Borisy AA, Elliott PJ, Hurst NW, Lee MS, Lehar J, Price ER, Serbedzija G, Zimmermann GR, Foley MA, Stockwell BR et al (2003) Systematic discovery of multicomponent therapeutics. Proc Natl Acad Sci USA 100:7977–7982

    Article  PubMed  CAS  Google Scholar 

  7. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  PubMed  CAS  Google Scholar 

  8. Kitano H (2007) A robustness-based approach to systems-oriented drug design. Nat Rev Drug Discov 6:202–210

    Article  PubMed  CAS  Google Scholar 

  9. Kummar S, Chen HX, Wright J, Holbeck S, Millin MD, Tomaszewski J, Zweibel J, Collins J, Doroshow JH (2010) Utilizing targeted cancer therapeutic agents in combination: novel approaches and urgent requirements. Nat Rev Drug Discov 9:843–856

    Article  PubMed  CAS  Google Scholar 

  10. Lim J, Hao T, Shaw C, Patel AJ, Szabo G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE et al (2006) A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell 125:801–814

    Article  PubMed  CAS  Google Scholar 

  11. Taneja B, Yadav J, Chakraborty TK, Brahmachari SK (2009) An Indian effort towards affordable drugs: “generic to designer drugs”. Biotechnol J 4:348–360

    Article  PubMed  CAS  Google Scholar 

  12. Bauer-Mehren A, Furlong LI, Sanz F (2009) Pathway databases and tools for their exploitation: benefits, current limitations and challenges. Mol Syst Biol 5:290

    Article  PubMed  Google Scholar 

  13. Caron E, Ghosh S, Matsuoka Y, Ashton-Beaucage D, Therrien M, Lemieux S, Perreault C, Roux PP, Kitano H (2010) A comprehensive map of the mTOR signaling network. Mol Syst Biol 6:453

    Article  PubMed  Google Scholar 

  14. Oda K, Kitano H (2006) A comprehensive map of the toll-like receptor signaling network. Mol Syst Biol 2(2006):0015

    PubMed  Google Scholar 

  15. Bhardwaj A, Scaria V, Raghava GP, Lynn AM, Chandra N, Banerjee S, Raghunandanan MV, Pandey V, Taneja B, Yadav J et al (2011) Open source drug discovery—a new paradigm of collaborative research in tuberculosis drug development. Tuberculosis (Edinb) 91:479–486

    Google Scholar 

  16. Singh S (2008) India takes an open source approach to drug discovery. Cell 133:201–203

    Article  PubMed  CAS  Google Scholar 

  17. Kitano H, Ghosh S, Matsuoka Y (2011) Social engineering for virtual ‘big science’ in systems biology. Nat Chem Biol 7:323–326

    Article  PubMed  CAS  Google Scholar 

  18. Funahashi A, Matsuoka Y, Jouraku A, Morohashi M, Kikuchi N, Kitano H (2008) Cell Designer 3.5: a versatile modeling tool for biochemical networks. Proc IEEE 96:1254–1265

    Article  Google Scholar 

  19. Pico AR, Kelder T, van Iersel MP, Hanspers K, Conklin BR, et al (2008) WikiPathways: Pathway Editing for the People. PLoS Biol 6(7): e184.doi:10.1371/journal.pbio.0060184

    Article  Google Scholar 

  20. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D, Cornish-Bowden A et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531

    Article  PubMed  CAS  Google Scholar 

  21. Le Novere N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, Demir E, Wegner K, Aladjem MI, Wimalaratne SM et al (2009) The Systems Biology Graphical Notation. Nat Biotechnol 27:735–741

    Article  PubMed  Google Scholar 

  22. Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D’Eustachio P, Schaefer C, Luciano J et al (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28:935–942

    Article  PubMed  CAS  Google Scholar 

  23. Bhardwaj A, Bhartiya D, Kumar N, Scaria V (2009) TBrowse: an integrative genomics map of Mycobacterium tuberculosis. Tuberculosis (Edinb) 89:386–387

    Article  Google Scholar 

  24. Periwal V, Rajappan JK, Jaleel AU, Scaria V (2011) Predictive models for anti-tubercular molecules using machine learning on high-throughput biological screening datasets. BMC Res Note 4:504

    Article  CAS  Google Scholar 

  25. Hill C (2007) The post-scientific society, Issues in Science and Technology. Fall:78–84

    Google Scholar 

Download references

Acknowledgments

The Indian team is fully supported by CSIR/OSDD, India. The Japanese team is, in part, supported by funding from the HD-Physiology Project of the Japan Society for the Promotion of Science (JSPS) to the Okinawa Institute of Science and Technology (OIST), and the International Strategic Collaborative Research Program (BBSRC-JST) of the Japan Science and Technology Agency (JST), the Exploratory Research for Advanced Technology (ERATO) ­programme of JST to the Systems Biology Institute (SBI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroaki Kitano or Samir Brahmachari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ghosh, S. et al. (2013). Software Platform for Metabolic Network Reconstruction of Mycobacterium tuberculosis . In: McFadden, J., Beste, D., Kierzek, A. (eds) Systems Biology of Tuberculosis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4966-9_2

Download citation

Publish with us

Policies and ethics