Skip to main content
Book cover

Pot-Honey pp 173–186Cite as

Microorganisms Associated with Stingless Bees

Abstract

The highly diversified group of stingless bees presents an associated microbiota that is suspected to be responsible for transforming pollen to bee bread or for the formation of honey. These microorganisms may also play a role on honey maturation and the biochemical modification of stored honey. Relatively few bacteria are found in the nest, probably due to antibiotic substances in the nest materials and inhibitors produced by the bees themselves to avoid competitors. Nevertheless, Bacillus meliponotrophicus is found associated with Trigona and Melipona, and the relationship between the bacterial species and the bee is obligatory since the use of antibiotics/streptomycin in the food led to disappearance of the colony. Also Streptomyces and Lactobacillus species occur in nests and bee guts of various species of Trigona. Few molds, probably saprophytes, are found in association with bees, although there are reports of fungal spore collection by some Apis, Trigona, and Partamona species. Various new yeast species, associated with bees and related habitats, were described that belong to the clade Starmerella. The role of these yeasts is still unclear; however, studies showed that transformation of pollen to bee bread occurs via a fermentative process brought about by yeasts and other microorganisms. Further studies may prove that the microbiota of bee and bee nests may act as mutualists and bring nutritional and other benefits to the stingless bees they are associated with.

Keywords

  • Debaryomyces Hansenii
  • Brood Comb
  • Beewolf Female
  • Philanthus Triangulum
  • Corbicular Pollen

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-4960-7_11
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-4960-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)
Fig. 11.1
Fig. 11.2

References

  • Anderson KE, Sheehan TH, Eckholm BJ, Mott BM, DeGrandi-Hoffman G. 2011. An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera). Insect Soc 58:431–444.

    CrossRef  Google Scholar 

  • Aponte OIC. 1996. Arthropods associated with colonies of stingless bees (Apidae: Meliponinae). Pegone 4:3–6.

    Google Scholar 

  • Ba AS, Phillips SA. 1996. Yeast biota of the red imported fire ant. Mycological Research 100:740–746.

    CrossRef  Google Scholar 

  • Batra LR, Batra SWT, Bohart GE. 1973. The mycoflora of domesticated and wild bees (Apoidae). Mycopathologia et Mycologia Applicata 49:13–44.

    CrossRef  Google Scholar 

  • Betts AD. 1920. Nectar yeasts. The Bee World 1:252–253.

    Google Scholar 

  • Brysch-Heberg M. 2004. Ecology of yeasts in plant-bumblebee mutualism in Central Europe. FEMS Microbiology Ecology 50:87–100.

    CrossRef  Google Scholar 

  • Calaça PSST. 2011. Aspectos da biologia de Melipona quinquefasciata Lepeletier (Mandaçaia do chão), características físico-químicas do mel, recursos alimentares e leveduras associadas. Dissertação de Mestrado, Universidade Federal de Ouro Preto; Minas Gerais, Brasil. 108 pp.

    Google Scholar 

  • Camargo JMF, Garcia MVB, Júnior ERQ, Castrillon A. 1992. Notas Prévias sobre a Bionomia de Ptilotrigona lurida (Hymenoptera, Apidae, Meliponinae): Associação em Pólen estocado. Boletim do Museu Paraense Emílio Goeldi, Série Zoológica 8:391–395.

    Google Scholar 

  • Chevtchik V. 1950. Mikrobiologie pylového kvaslení, Publication of the Faculty of Science of University Masaryk 323:103–130.

    Google Scholar 

  • Cruz-Landim C. 1996. Bacteria present in the intestinal tract of Melipona quadrifasciata anthioides Lepeletier (Hymenoptera, Apidae, Meliponinae). Journal of Hymenoptera Research 5:264–272.

    Google Scholar 

  • Douglas AE. 1998. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology 43:17–37.

    PubMed  CrossRef  CAS  Google Scholar 

  • Egorova AI. 1971. Preservative microflora in stored pollen. Veterinariya 8:40–41.

    CAS  Google Scholar 

  • Eltz T, Brühl CA, Görke C. 2002. Collection of mold (Rhizopus sp.) spores in lieu of pollen by the stingless bee Trigona collina. Insects Sociaux 49:28–30.

    CrossRef  Google Scholar 

  • Evans JD, Armstrong TN. 2006. Antagonistic interactions between honey bee bacterial symbionts and implications for disease. BMC Ecololgy as DOI:10.1186/1472–6785–6-4.

    Google Scholar 

  • Ferraz RE, Lima PM, Pereira DS, Alves ND, Feijó FMC. 2006. Microbiota fúngica de abelhas sem ferrão (Melipona subnitida) da região semi-árida do nordeste brasileiro. Agropecuária Científica no Semi-árido 2:44–47.

    Google Scholar 

  • Fletchmann CHW, Camargo CA. 1974. Acari associated with stingless bees (Meliponinae, Hymenoptera) from Brazil. pp. 315–319 In Piffl E, ed. Proceedings of the 4th International Congress of Acarology. Académiai Kiadó, Budapest.

    Google Scholar 

  • Fonseca A, Inácio J. 2006. Phylloplane yeasts. pp. 263–301. In Rosa CA, Péter G, eds. Biodiversity and Ecophysiology of Yeasts. Springer-Verlag; Berlin, Germany. 580 pp.

    Google Scholar 

  • Ganter PF. 2006. Yeast and invertebrate associations. pp. 303–370. In Rosa CA, Péter G, eds. Biodiversity and Ecophysiology of Yeasts. Springer-Verlag; Berlin, Germany. 580 pp.

    Google Scholar 

  • Gibson CM, Hunter MS. 2005. Reconsideration of the role of yeasts associated with Chrysoperla green lacewings. Biological Control 32:57–64.

    CrossRef  Google Scholar 

  • Gilliam M, Taber III S, Lorenz BJ, Prest DB. 1988. Factors affecting development of chalkbrood disease in colonies of honey bee, Apis mellifera, fed on pollen contaminated with Ascosphaera apis. Journal of Invertebrate Patholology 52:314–325.

    CrossRef  Google Scholar 

  • Gilliam M. 1979a. Microbiology of pollen and bee bread: the yeasts. Apidologie 10:43–53.

    CrossRef  Google Scholar 

  • Gilliam M. 1979b. Microbiology of pollen and bee bread: the genus Bacillus. Apidologie 10:269–274.

    CrossRef  Google Scholar 

  • Gilliam M. 1997. Identification and roles of non-pathogenic micro- flora associated with honey bees. FEMS Microbiology Letters 155:1–10.

    CrossRef  CAS  Google Scholar 

  • Gilliam M, Morton HL. 1978. Bacteria belonging to the genus Bacillus isolated from the honey bee, Apis mellifera, fed 2–4-D antibiotics. Apidologie 9:213–222.

    CrossRef  Google Scholar 

  • Gilliam M, Prest DB. 1987. Microbiology of the feces of the larval honey bee, Apis mellifera. Journal of Invertebrate Pathology 49:70–75.

    CrossRef  Google Scholar 

  • Gilliam M, Buchman SL, Lorenz BJ. 1984. Microbial flora of the larval provisions of the solitary bees Centris palida and Antophora sp. Apidologie 15:1–10.

    CrossRef  Google Scholar 

  • Gilliam M, Buchman SL, Lorenz BJ, Rubik DW. 1985. Microbiology of the larval provisions of the stingless bee Trigona hypogea, an obligate necrophage. Biotropica 17:28–31.

    CrossRef  Google Scholar 

  • Gilliam M, Buchman SL, Lorenz BJ, Schimalzel RJ. 1990a. Bacteria belonging to the genus Bacillus associated with three species of solitary bees. Apidologie 21:99–105.

    CrossRef  Google Scholar 

  • Gilliam M, Lorenz BJ, Prest DP. 1989. Microbes from apiarian sources: molds in frass from larvae of the greater wax moth, Galleria mellonella. Journal of Invertebrate Pathology 54:406–408.

    CrossRef  Google Scholar 

  • Gilliam M, Roubik DW, Lorenz BJ. 1990b. Microorganisms associated with pollen, honey, and brood provisions in the nest of a stingless bee, Melipona fasciata. Apidologie 21:89–97.

    CrossRef  Google Scholar 

  • Goerzen DW. 1991. Microflora associated with the alfalfa leafcutting bee, Megachile rotundata (Fab) (Hymenoptera: Megachilidae) in Saskatchewan, Canada. Apidologie (Celle) as DOI:10.1051/apido:19910508.

  • Guerrini A, Bruni R, Maietti S, Poli F, Rossi D, Paganetto G, Muzzoli M, Scalvenzi L, Sacchetti G. 2009. Ecuadorian stingless bee (Meliponinae) honey: A chemical and functional profile of an ancient health product. Food Chemistry 114:1413–1420.

    CrossRef  CAS  Google Scholar 

  • Hagen KS, Tassan RL, Sawall EF. 1970. Some ecophysiological relationships between certain Chrysopa honeydews and yeasts. Bolletin of Laboratory Entomology and Agricultural Portici 28:113–134.

    Google Scholar 

  • Haydak MH. 1958. Pollen-pollen substitutes-bee bread. American Bee Journal 98:145–146.

    Google Scholar 

  • Inglis GD, Sigler L, Goettel MS. 1993. Aerobic microorganisms associated with alfalfa leafcutter bees (Megachile rotundata). Microbiology Ecology 26:125–143.

    CrossRef  Google Scholar 

  • Jeyaprakash A, Hoy MA, Allsopp MH. 2003. Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. Journal Invertebrate Pathology 84:96–103.

    CrossRef  CAS  Google Scholar 

  • Kaltenpoth M, Goettler W, Herzner G, Strohm E. 2005. Symbiotic bacteria protect wasp larvae from fungal infestation. Current Biology 15:475–479.

    PubMed  CrossRef  CAS  Google Scholar 

  • Kerr WE, Carvalho GA, Nascimento VA. 1996. Abelha uruçú: biologia, manejo e conservação. Belo Horizonte: Fundação Acangaú; Paracatu, MG. 144 pp.

    Google Scholar 

  • Kerr WE, Sakagami SF, Zucchi R, Portugal-Araújo V, Camargo, JMF. 1967. Observações sobre a arquitetura dos ninhos e comportamento de algumas espécies de abelhas sem ferrão das vizinhanças de Manaus, Amazonas (Hymenoptera, Apoidea). Atas do Simpósio sobre a Biota Amazônica (Zoologia) 5:255–309.

    Google Scholar 

  • Killer K, Kopecny J, Mrazek J, Rada V, Benada O, Koppova I, Havli J, Straka J. 2009. Bifidobacterium bombi sp. Nov., from the bumblebee digestive tract. 2009. International Journal of Systematic and Evolutionary Microbiology 59:2020–2024.

    Google Scholar 

  • Kikuchi Y. 2009. Endosymbiotic bacteria in insects: their diversity and culturability. Microbes and Environments 24:195–204

    CrossRef  Google Scholar 

  • Kistner DH. 1982. The social insects’ bestiary. pp 1–244. In Hermann HR, ed. Social Insects. Vol. III, Academic Press; New York, USA. 437 pp.

    Google Scholar 

  • Klepzig KD, Adams AS, Handelsman J, Raffa KF. 2009. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environmental Entomology as DOI:10.1603/022.038.0109.

  • Klungness LM, Peng Y. 1983. A scanning electron microscopic study of pollen loads collected and stored by honeybees. Journal of Apicultural Research 22:264–271.

    Google Scholar 

  • Kurtzman CP. 2011a. Hyphopichia von Arx & van der Walt (1976). pp. 435–438. In Kurtzman CP, Fell JW, Boeukhout T., eds. The Yeasts, a Taxonomic Study. Elsevier Science; Amsterdam, The Netherlands. 2354 pp.

    Google Scholar 

  • Kurtzman CP. 2011b. Priceomyces M. Suzuki & Kurtzman (2010). pp. 719–724. In Kurtzman CP, Fell JW, Boeukhout T., eds. The Yeasts, a Taxonomic Study. Elsevier Science; Amsterdam, The Netherlands. 2354 pp.

    Google Scholar 

  • Lachance MA. 2011. Starmerella Rosa and Lachance (1998). pp. 811–815. In Kurtzman CP, Fell JW, Boeukhout T, eds. The Yeasts, a Taxonomic Study. Elsevier Science; Amsterdam, The Netherlands. 2354 pp.

    Google Scholar 

  • Lachance MA, Bowles JM. 2002. Metschnikowia arizonensis and Metschnikowia dekortorum, two new large-spored yeast species associated with floricolous beetles. FEMS Yeast Research 2:81–86.

    PubMed  CAS  Google Scholar 

  • Lachance MA, Bowles JM, Chavarria Diaz MM, Janzen DH. 2001a. Candida cleridarum, Candida tilneyi, and Candida powellii, three new yeast species isolated from insects associated with flowers. International Journal of Systematics and Evolutionary Microbiology 51:1201–1207.

    CrossRef  CAS  Google Scholar 

  • Lachance MA, Starmer WT, Rosa CA, Bowles JM, Barker JSF, Janzen DH. 2001b. Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Research 1:1–8.

    PubMed  CAS  Google Scholar 

  • Lachance MA, Bowles JM, Starmer WT. 2003. Metschnikowia santaceciliae, Candida hawaiiana, and Candida kipukae, three new yeast species associated with insects of tropical morning glory. FEMS Yeast Research 3:97–103.

    PubMed  CAS  Google Scholar 

  • Lachance MA, Wijayanayaka TM, Bundus JD, Wijayanayaka DN. 2011. Ribosomal DNA sequence polymorphism and the delineation of two ascosporic yeast species: Metschnikowia agaves and Starmerella bombicola. FEMS Yeast Research 11:324–333.

    PubMed  CrossRef  CAS  Google Scholar 

  • Lebeck L. 1989. Extracellular symbiosis of a yeast-like microorganism within Comperia merceti (Hymenoptera: Encyrtidae). Symbiosis 7:51–66.

    Google Scholar 

  • Loper GM, Standifer LN, Thompson MG, Gilliam M. 1980. Biochemistry and microbiology of bee-collected almond (Prunus dulcis) pollen and bee-bread. I. Fatty acids, sterols, vitamins and minerals. Apidologie 11:63–73.

    CrossRef  CAS  Google Scholar 

  • Machado JO. 1971. Simbiose entre abelhas sociais brasileiras (Meliponinae, Apidae) e uma espécie de bactéria. Ciência e Cultura 23:625–633.

    Google Scholar 

  • Melo GAR. 1996. Notes on the nesting biology of Melipona capixaba (Hymenoptera, Apidae). Journal of the Kansas Entomological Society 69:207–210.

    Google Scholar 

  • Mendes GM, Antonini Y. 2008. The traditional knowledge on stingless bees (Apidae: Meliponina) used by the Enawene-Nawe tribe in western Brazil. Journal of Ethnobiology and Ethnomedicine as DOI:10.1186/1746-4269-4-19.

  • Michener CD. 1974. The social behavior of the bees. Belknap Press; Cambridge. 404 pp.

    Google Scholar 

  • Middeldorf J, Ruthmann A. 1984. Yeast-like endosymbionts in an ichneumonid wasp. Zeitschrift für Naturforschung 39c:322–326.

    Google Scholar 

  • Mohr KI, Tabbe CC. 2006. Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environmental 8, 258–272.

    CAS  Google Scholar 

  • Morais PB, Rosa CA. 2000. Interações entre Drosophila e leveduras em ambientes tropicais. pp. 321–336.In Martins RP,Klaczko LB, Barbeitos MS. Ecologia e comportamento de Insetos. Série Oeologia Brasiliensis v VIII.PPGE-UFRJ, Rio de Janeiro, Brasil.

    Google Scholar 

  • Morais PB, Martins MB, Klaczko LB, Mendonça-Hagler LC, Hagler NA. 1995a. Yeast succession in the Amazon fruit Parahancornia amapa as resource partitioning among Drosophila species. Applied and Environmental Microbiology 61:4251–4257.

    PubMed  CAS  Google Scholar 

  • Morais PB, Rosa CA, Meyer SA, Mendonça-Hagler LC, Hagler AN. 1995b. Candida amapae, a new amino acidrequiring yeast from Amazonian fruit, Parahancornia amapa. Journal of Industrial Microbiology 14:531–535.

    CrossRef  CAS  Google Scholar 

  • Nogueira-Neto P. 1970. A Criação de abelhas indígenas sem ferrão. editora Tecnapis; São Paulo, Brasil. 365 pp.

    Google Scholar 

  • Nogueira-Neto P. 1997. Vida e criação de abelhas indígenas sem ferrão. Editora Nogueirapis; São Paulo, Brasil. 446 pp.

    Google Scholar 

  • Olofsson TC, Vásquez A. 2008. Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Current Microbiology 57:356–363.

    PubMed  CrossRef  CAS  Google Scholar 

  • Pain J, Maugnet J. 1966. Recherches biochemique et physiologiques sur le pollen emmagasiné par les abeilles. Annals of Abeille 9:209–236.

    CrossRef  Google Scholar 

  • Peruquetti RC. 2000. Contribuição ao estudo dos microrganismos e artrópodes associados a abelhas sem ferrão (Hymenoptera: Apidae). Available at: ftp://www.ufv.br/DBG/Apiario/inquilinos.pdf

  • Piccini C, Antunez K, Zunino P. 2004. An approach to the characterization of the honey bee hive bacterial flora. Journal of Apicultural Research 43:101–104.

    Google Scholar 

  • Pimentel M, Antonini Y, Martins RP, Lachance MA, Rosa CA. 2005. Candida riodocensis and Candida cellae, two new yeast species from the Starmerella clade associated with solitary bees in the Atlantic Rain Forest of Brazil. FEMS Yeast Research 5:875–879.

    PubMed  CrossRef  CAS  Google Scholar 

  • Promnuan Y, Takuji K, Chantawannakul P. 2009. Actinomycetes isolated from beehives in Thailand. World Journal of Microbiology & Biotechnology 25:1685–1689.

    CrossRef  Google Scholar 

  • Purcell AH. 1982. Insect vector relationships with procaryotic plant pathogens. Annual Review of Phytopathology 20:397–417.

    CrossRef  Google Scholar 

  • Rada V, Máchová M, Huk J, Marounek M., Dušková D. 1997. Microflora in the honeybee digestive tract: count, characteristics and sensitivity to veterinary drugs. Apidologie as DOI:10.1051/apido:19970603.

  • Redak R, Purcell AH, Lopes JRS, Blua MJ, Mizell III, RZ Andersen, PC. 2004. The biology of xylem fluid–feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annual Review of Entomology 49:243–270.

    PubMed  CrossRef  CAS  Google Scholar 

  • Rosa CA, Lachance MA, Silva JOC, Teixeira ACP, Marino MM, Antonini Y, Martins RP. 2003. Yeast communities associated with stingless bees. FEMS Yeast Research 4:271–275.

    PubMed  CrossRef  CAS  Google Scholar 

  • Rosa CA, Lachance MA. 2005. Zygosaccharomyces machadoi sp. n., a yeast species isolated from a nest of stingless bee Tetragonisca angustula. Lundiana 6(supplement):27–29.

    Google Scholar 

  • Rosa CA, Viana EM, Martins RP, Antonini Y, Lachance MA. 1999. Candida batistae, a new yeast species associated with solitary digger nesting bees in Brazil. Mycologia 91:428–433.

    CrossRef  Google Scholar 

  • Roubik DW. 1983. Nest and colony characteristics of stingless bees from Panama (Hymenoptera: Apidae). Journal of the Kansas Entomological Society 56:327–355.

    Google Scholar 

  • Roubik DW. 2006. Stingless bee nesting biology. Apidologie 37:124–143.

    CrossRef  Google Scholar 

  • Roubik DW, Wheeler QD. 1982. Flightless beetles and stingless bees: phoresy of scotocryptine beetles (Leiodidae) on their meliponine hosts (Apidae). Journal of the Kansas Entomological Society 55:125–135.

    Google Scholar 

  • Roubik, DW. 1989. Ecology and Natural History of Tropical Bees. Cambridge University Press; New York, USA. 514 pp.

    Google Scholar 

  • Sakagami, SF. 1982. Stingless bees. pp. 361–423. In Hermann HR, ed. Social Insects. Academic Press; New York, USA. 417 pp.

    Google Scholar 

  • Salt, G. 1929. A contribuition to the ethology of the Meliponinae. Transactions of the Entomological Society of London 77:431–470.

    CrossRef  Google Scholar 

  • Silveira FA, Melo GAR, Almeida EAB. 2002. Abelhas brasileiras. Sistemática e identificação. Fundação Araucária; Belo Horizonte, Brasil. 253 pp.

    Google Scholar 

  • Snowdon JA, Cliver D. 1996. Microorganisms in honey. International Journal of Food Microbiology 31:1–26.

    PubMed  CrossRef  CAS  Google Scholar 

  • Spencer JFT, Spencer DM. 1997. Ecology: where yeasts live. pp. 33–67. In Spencer JFT, Spencer DM, eds. Yeasts in Natural and Artificial Habitats. Springer-Verlag; Berlin, Germany. 381 pp.

    Google Scholar 

  • Standifer LN, McCaughey WF, Dixon SE, Gilliam M, Loper GM. 1980. Biochemistry and microbiology of pollen collected by honey bees (Apis mellifera) from almond (Prunus dulcis). II. Protein, aminoacids and enzymes. Apidologie 11:163–171.

    CrossRef  CAS  Google Scholar 

  • Starmer WT, Heed WB, Miranda M, Miller MW, Phaff HJ. 1976. The ecology of Yeast flora associated with Cactiphilic. Drosophila and their host plants in the Sonoran Desert. Microbial Ecology 3:11–30.

    Google Scholar 

  • Starmer WT, Lachance MA. 2011. Yeast ecology. pp. 33–67. In Kurtzman CP, Fell JW, Boeukhout T, eds. The Yeasts, a Taxonomic Study. Elsevier Science; Amsterdam, The Netherlands. 2354 pp.

    Google Scholar 

  • Stratford M, Bond CJ, James SA, Roberts IN, Steels H. 2002. Candida davenportii sp. nov., a potential soft-drinks spoilage yeast isolated from a wasp. International Journal of Systematic and Evolutionary Microbiology 52:1369–1375.

    PubMed  CrossRef  CAS  Google Scholar 

  • Saksinchai S, Suzuki M, Chantawannakul P, Ohkuma M, Lumyong S. 2011. A novel ascosporogenous yeast species, Zygosaccharomyces siamensis, and the sugar tolerant yeasts associated with raw honey collected in Thailand. 2012. Fungal Diversity 52:123–139

    CrossRef  Google Scholar 

  • Teixeira ACP, Marini MM, Nicoli JR, Antonini Y, Martins RP, Lachance MA, Rosa CA. 2003. Starmerella meliponinorum sp. nov., a novel ascomycetous yeast species associated with stingless bees. International Journal of Systematic and Evolutionary Microbiology 53:339–343.

    PubMed  CrossRef  Google Scholar 

  • Trindade RC, Resende MA, Silva CM, Rosa CA. 2002. Yeasts associated with fresh and frozen pulps of Brazilian tropical fruits. Systematic and Applied Microbiology 25:294–300.

    PubMed  CrossRef  CAS  Google Scholar 

  • Vishniac HS, Johnson DT. 1990. Development of a yeast flora in the adult green June beetle (Cotinis nitida, Scarabaeidae). Mycologia 82:471–479.

    CrossRef  Google Scholar 

  • Vit P, Medina M, Enríquez ME. 2004. Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee World 85:2–5.

    Google Scholar 

  • Vit P, Persano Oddo L, Marano ML, Mejias, ES. 1998. Venezuelan stingless bee honeys characterized by multivariate analysis of physicochemical properties. Apidologie 29:377–389.

    CrossRef  CAS  Google Scholar 

  • Wasmann E. 1904. Contribuição para o estudo dos hóspedes de abelhas brasileiras. Revista do Museu Paulista 6:482–487.

    Google Scholar 

  • Wille A, Michener CD. 1973. The nest architecture of stingless bees with special reference to those of Costa Rica. Revista de Biologia Tropical 21:1–278.

    Google Scholar 

  • Wilson EO. 1971. The Insect Societies. Harvard University Press; Massachusetts. 548 pp.

    Google Scholar 

  • Yoshiyama M, Kimura K. 2009. Bacteria in the gut of Japanese honeybee Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. Journal of Invertebrate Pathology 102:91–96.

    PubMed  CrossRef  Google Scholar 

Download references

Acknowledgements

This work was funded by Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq – Brazil) and Fundação do Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Augusto Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morais, P.B., Calaça, P.S.S.T., Rosa, C.A. (2013). Microorganisms Associated with Stingless Bees. In: Vit, P., Pedro, S., Roubik, D. (eds) Pot-Honey. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4960-7_11

Download citation