Advertisement

Pot-Honey pp 173-186 | Cite as

Microorganisms Associated with Stingless Bees

  • Paula B. Morais
  • Paula S. São Thiago Calaça
  • Carlos Augusto Rosa
Chapter

Abstract

The highly diversified group of stingless bees presents an associated microbiota that is suspected to be responsible for transforming pollen to bee bread or for the formation of honey. These microorganisms may also play a role on honey maturation and the biochemical modification of stored honey. Relatively few bacteria are found in the nest, probably due to antibiotic substances in the nest materials and inhibitors produced by the bees themselves to avoid competitors. Nevertheless, Bacillus meliponotrophicus is found associated with Trigona and Melipona, and the relationship between the bacterial species and the bee is obligatory since the use of antibiotics/streptomycin in the food led to disappearance of the colony. Also Streptomyces and Lactobacillus species occur in nests and bee guts of various species of Trigona. Few molds, probably saprophytes, are found in association with bees, although there are reports of fungal spore collection by some Apis, Trigona, and Partamona species. Various new yeast species, associated with bees and related habitats, were described that belong to the clade Starmerella. The role of these yeasts is still unclear; however, studies showed that transformation of pollen to bee bread occurs via a fermentative process brought about by yeasts and other microorganisms. Further studies may prove that the microbiota of bee and bee nests may act as mutualists and bring nutritional and other benefits to the stingless bees they are associated with.

Keywords

Debaryomyces Hansenii Brood Comb Beewolf Female Philanthus Triangulum Corbicular Pollen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was funded by Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq – Brazil) and Fundação do Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG).

References

  1. Anderson KE, Sheehan TH, Eckholm BJ, Mott BM, DeGrandi-Hoffman G. 2011. An emerging paradigm of colony health: microbial balance of the honey bee and hive (Apis mellifera). Insect Soc 58:431–444.CrossRefGoogle Scholar
  2. Aponte OIC. 1996. Arthropods associated with colonies of stingless bees (Apidae: Meliponinae). Pegone 4:3–6.Google Scholar
  3. Ba AS, Phillips SA. 1996. Yeast biota of the red imported fire ant. Mycological Research 100:740–746.CrossRefGoogle Scholar
  4. Batra LR, Batra SWT, Bohart GE. 1973. The mycoflora of domesticated and wild bees (Apoidae). Mycopathologia et Mycologia Applicata 49:13–44.CrossRefGoogle Scholar
  5. Betts AD. 1920. Nectar yeasts. The Bee World 1:252–253.Google Scholar
  6. Brysch-Heberg M. 2004. Ecology of yeasts in plant-bumblebee mutualism in Central Europe. FEMS Microbiology Ecology 50:87–100.CrossRefGoogle Scholar
  7. Calaça PSST. 2011. Aspectos da biologia de Melipona quinquefasciata Lepeletier (Mandaçaia do chão), características físico-químicas do mel, recursos alimentares e leveduras associadas. Dissertação de Mestrado, Universidade Federal de Ouro Preto; Minas Gerais, Brasil. 108 pp.Google Scholar
  8. Camargo JMF, Garcia MVB, Júnior ERQ, Castrillon A. 1992. Notas Prévias sobre a Bionomia de Ptilotrigona lurida (Hymenoptera, Apidae, Meliponinae): Associação em Pólen estocado. Boletim do Museu Paraense Emílio Goeldi, Série Zoológica 8:391–395.Google Scholar
  9. Chevtchik V. 1950. Mikrobiologie pylového kvaslení, Publication of the Faculty of Science of University Masaryk 323:103–130.Google Scholar
  10. Cruz-Landim C. 1996. Bacteria present in the intestinal tract of Melipona quadrifasciata anthioides Lepeletier (Hymenoptera, Apidae, Meliponinae). Journal of Hymenoptera Research 5:264–272.Google Scholar
  11. Douglas AE. 1998. Nutritional interactions in insect-microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology 43:17–37.PubMedCrossRefGoogle Scholar
  12. Egorova AI. 1971. Preservative microflora in stored pollen. Veterinariya 8:40–41.Google Scholar
  13. Eltz T, Brühl CA, Görke C. 2002. Collection of mold (Rhizopus sp.) spores in lieu of pollen by the stingless bee Trigona collina. Insects Sociaux 49:28–30.CrossRefGoogle Scholar
  14. Evans JD, Armstrong TN. 2006. Antagonistic interactions between honey bee bacterial symbionts and implications for disease. BMC Ecololgy as DOI:10.1186/1472–6785–6-4.Google Scholar
  15. Ferraz RE, Lima PM, Pereira DS, Alves ND, Feijó FMC. 2006. Microbiota fúngica de abelhas sem ferrão (Melipona subnitida) da região semi-árida do nordeste brasileiro. Agropecuária Científica no Semi-árido 2:44–47.Google Scholar
  16. Fletchmann CHW, Camargo CA. 1974. Acari associated with stingless bees (Meliponinae, Hymenoptera) from Brazil. pp. 315–319 In Piffl E, ed. Proceedings of the 4th International Congress of Acarology. Académiai Kiadó, Budapest.Google Scholar
  17. Fonseca A, Inácio J. 2006. Phylloplane yeasts. pp. 263–301. In Rosa CA, Péter G, eds. Biodiversity and Ecophysiology of Yeasts. Springer-Verlag; Berlin, Germany. 580 pp.Google Scholar
  18. Ganter PF. 2006. Yeast and invertebrate associations. pp. 303–370. In Rosa CA, Péter G, eds. Biodiversity and Ecophysiology of Yeasts. Springer-Verlag; Berlin, Germany. 580 pp.Google Scholar
  19. Gibson CM, Hunter MS. 2005. Reconsideration of the role of yeasts associated with Chrysoperla green lacewings. Biological Control 32:57–64.CrossRefGoogle Scholar
  20. Gilliam M, Taber III S, Lorenz BJ, Prest DB. 1988. Factors affecting development of chalkbrood disease in colonies of honey bee, Apis mellifera, fed on pollen contaminated with Ascosphaera apis. Journal of Invertebrate Patholology 52:314–325.CrossRefGoogle Scholar
  21. Gilliam M. 1979a. Microbiology of pollen and bee bread: the yeasts. Apidologie 10:43–53.CrossRefGoogle Scholar
  22. Gilliam M. 1979b. Microbiology of pollen and bee bread: the genus Bacillus. Apidologie 10:269–274.CrossRefGoogle Scholar
  23. Gilliam M. 1997. Identification and roles of non-pathogenic micro- flora associated with honey bees. FEMS Microbiology Letters 155:1–10.CrossRefGoogle Scholar
  24. Gilliam M, Morton HL. 1978. Bacteria belonging to the genus Bacillus isolated from the honey bee, Apis mellifera, fed 2–4-D antibiotics. Apidologie 9:213–222.CrossRefGoogle Scholar
  25. Gilliam M, Prest DB. 1987. Microbiology of the feces of the larval honey bee, Apis mellifera. Journal of Invertebrate Pathology 49:70–75.CrossRefGoogle Scholar
  26. Gilliam M, Buchman SL, Lorenz BJ. 1984. Microbial flora of the larval provisions of the solitary bees Centris palida and Antophora sp. Apidologie 15:1–10.CrossRefGoogle Scholar
  27. Gilliam M, Buchman SL, Lorenz BJ, Rubik DW. 1985. Microbiology of the larval provisions of the stingless bee Trigona hypogea, an obligate necrophage. Biotropica 17:28–31.CrossRefGoogle Scholar
  28. Gilliam M, Buchman SL, Lorenz BJ, Schimalzel RJ. 1990a. Bacteria belonging to the genus Bacillus associated with three species of solitary bees. Apidologie 21:99–105.CrossRefGoogle Scholar
  29. Gilliam M, Lorenz BJ, Prest DP. 1989. Microbes from apiarian sources: molds in frass from larvae of the greater wax moth, Galleria mellonella. Journal of Invertebrate Pathology 54:406–408.CrossRefGoogle Scholar
  30. Gilliam M, Roubik DW, Lorenz BJ. 1990b. Microorganisms associated with pollen, honey, and brood provisions in the nest of a stingless bee, Melipona fasciata. Apidologie 21:89–97.CrossRefGoogle Scholar
  31. Goerzen DW. 1991. Microflora associated with the alfalfa leafcutting bee, Megachile rotundata (Fab) (Hymenoptera: Megachilidae) in Saskatchewan, Canada. Apidologie (Celle) as DOI: 10.1051/apido:19910508.
  32. Guerrini A, Bruni R, Maietti S, Poli F, Rossi D, Paganetto G, Muzzoli M, Scalvenzi L, Sacchetti G. 2009. Ecuadorian stingless bee (Meliponinae) honey: A chemical and functional profile of an ancient health product. Food Chemistry 114:1413–1420.CrossRefGoogle Scholar
  33. Hagen KS, Tassan RL, Sawall EF. 1970. Some ecophysiological relationships between certain Chrysopa honeydews and yeasts. Bolletin of Laboratory Entomology and Agricultural Portici 28:113–134.Google Scholar
  34. Haydak MH. 1958. Pollen-pollen substitutes-bee bread. American Bee Journal 98:145–146.Google Scholar
  35. Inglis GD, Sigler L, Goettel MS. 1993. Aerobic microorganisms associated with alfalfa leafcutter bees (Megachile rotundata). Microbiology Ecology 26:125–143.CrossRefGoogle Scholar
  36. Jeyaprakash A, Hoy MA, Allsopp MH. 2003. Bacterial diversity in worker adults of Apis mellifera capensis and Apis mellifera scutellata (Insecta: Hymenoptera) assessed using 16S rRNA sequences. Journal Invertebrate Pathology 84:96–103.CrossRefGoogle Scholar
  37. Kaltenpoth M, Goettler W, Herzner G, Strohm E. 2005. Symbiotic bacteria protect wasp larvae from fungal infestation. Current Biology 15:475–479.PubMedCrossRefGoogle Scholar
  38. Kerr WE, Carvalho GA, Nascimento VA. 1996. Abelha uruçú: biologia, manejo e conservação. Belo Horizonte: Fundação Acangaú; Paracatu, MG. 144 pp.Google Scholar
  39. Kerr WE, Sakagami SF, Zucchi R, Portugal-Araújo V, Camargo, JMF. 1967. Observações sobre a arquitetura dos ninhos e comportamento de algumas espécies de abelhas sem ferrão das vizinhanças de Manaus, Amazonas (Hymenoptera, Apoidea). Atas do Simpósio sobre a Biota Amazônica (Zoologia) 5:255–309.Google Scholar
  40. Killer K, Kopecny J, Mrazek J, Rada V, Benada O, Koppova I, Havli J, Straka J. 2009. Bifidobacterium bombi sp. Nov., from the bumblebee digestive tract. 2009. International Journal of Systematic and Evolutionary Microbiology 59:2020–2024.Google Scholar
  41. Kikuchi Y. 2009. Endosymbiotic bacteria in insects: their diversity and culturability. Microbes and Environments 24:195–204CrossRefGoogle Scholar
  42. Kistner DH. 1982. The social insects’ bestiary. pp 1–244. In Hermann HR, ed. Social Insects. Vol. III, Academic Press; New York, USA. 437 pp.Google Scholar
  43. Klepzig KD, Adams AS, Handelsman J, Raffa KF. 2009. Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environmental Entomology as DOI: 10.1603/022.038.0109.
  44. Klungness LM, Peng Y. 1983. A scanning electron microscopic study of pollen loads collected and stored by honeybees. Journal of Apicultural Research 22:264–271.Google Scholar
  45. Kurtzman CP. 2011a. Hyphopichia von Arx & van der Walt (1976). pp. 435–438. In Kurtzman CP, Fell JW, Boeukhout T., eds. The Yeasts, a Taxonomic Study. Elsevier Science; Amsterdam, The Netherlands. 2354 pp.Google Scholar
  46. Kurtzman CP. 2011b. Priceomyces M. Suzuki & Kurtzman (2010). pp. 719–724. In Kurtzman CP, Fell JW, Boeukhout T., eds. The Yeasts, a Taxonomic Study. Elsevier Science; Amsterdam, The Netherlands. 2354 pp.Google Scholar
  47. Lachance MA. 2011. Starmerella Rosa and Lachance (1998). pp. 811–815. In Kurtzman CP, Fell JW, Boeukhout T, eds. The Yeasts, a Taxonomic Study. Elsevier Science; Amsterdam, The Netherlands. 2354 pp.Google Scholar
  48. Lachance MA, Bowles JM. 2002. Metschnikowia arizonensis and Metschnikowia dekortorum, two new large-spored yeast species associated with floricolous beetles. FEMS Yeast Research 2:81–86.PubMedGoogle Scholar
  49. Lachance MA, Bowles JM, Chavarria Diaz MM, Janzen DH. 2001a. Candida cleridarum, Candida tilneyi, and Candida powellii, three new yeast species isolated from insects associated with flowers. International Journal of Systematics and Evolutionary Microbiology 51:1201–1207.CrossRefGoogle Scholar
  50. Lachance MA, Starmer WT, Rosa CA, Bowles JM, Barker JSF, Janzen DH. 2001b. Biogeography of the yeasts of ephemeral flowers and their insects. FEMS Yeast Research 1:1–8.PubMedGoogle Scholar
  51. Lachance MA, Bowles JM, Starmer WT. 2003. Metschnikowia santaceciliae, Candida hawaiiana, and Candida kipukae, three new yeast species associated with insects of tropical morning glory. FEMS Yeast Research 3:97–103.PubMedGoogle Scholar
  52. Lachance MA, Wijayanayaka TM, Bundus JD, Wijayanayaka DN. 2011. Ribosomal DNA sequence polymorphism and the delineation of two ascosporic yeast species: Metschnikowia agaves and Starmerella bombicola. FEMS Yeast Research 11:324–333.PubMedCrossRefGoogle Scholar
  53. Lebeck L. 1989. Extracellular symbiosis of a yeast-like microorganism within Comperia merceti (Hymenoptera: Encyrtidae). Symbiosis 7:51–66.Google Scholar
  54. Loper GM, Standifer LN, Thompson MG, Gilliam M. 1980. Biochemistry and microbiology of bee-collected almond (Prunus dulcis) pollen and bee-bread. I. Fatty acids, sterols, vitamins and minerals. Apidologie 11:63–73.CrossRefGoogle Scholar
  55. Machado JO. 1971. Simbiose entre abelhas sociais brasileiras (Meliponinae, Apidae) e uma espécie de bactéria. Ciência e Cultura 23:625–633.Google Scholar
  56. Melo GAR. 1996. Notes on the nesting biology of Melipona capixaba (Hymenoptera, Apidae). Journal of the Kansas Entomological Society 69:207–210.Google Scholar
  57. Mendes GM, Antonini Y. 2008. The traditional knowledge on stingless bees (Apidae: Meliponina) used by the Enawene-Nawe tribe in western Brazil. Journal of Ethnobiology and Ethnomedicine as DOI: 10.1186/1746-4269-4-19.
  58. Michener CD. 1974. The social behavior of the bees. Belknap Press; Cambridge. 404 pp.Google Scholar
  59. Middeldorf J, Ruthmann A. 1984. Yeast-like endosymbionts in an ichneumonid wasp. Zeitschrift für Naturforschung 39c:322–326.Google Scholar
  60. Mohr KI, Tabbe CC. 2006. Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environmental 8, 258–272.Google Scholar
  61. Morais PB, Rosa CA. 2000. Interações entre Drosophila e leveduras em ambientes tropicais. pp. 321–336.In Martins RP,Klaczko LB, Barbeitos MS. Ecologia e comportamento de Insetos. Série Oeologia Brasiliensis v VIII.PPGE-UFRJ, Rio de Janeiro, Brasil.Google Scholar
  62. Morais PB, Martins MB, Klaczko LB, Mendonça-Hagler LC, Hagler NA. 1995a. Yeast succession in the Amazon fruit Parahancornia amapa as resource partitioning among Drosophila species. Applied and Environmental Microbiology 61:4251–4257.PubMedGoogle Scholar
  63. Morais PB, Rosa CA, Meyer SA, Mendonça-Hagler LC, Hagler AN. 1995b. Candida amapae, a new amino acidrequiring yeast from Amazonian fruit, Parahancornia amapa. Journal of Industrial Microbiology 14:531–535.CrossRefGoogle Scholar
  64. Nogueira-Neto P. 1970. A Criação de abelhas indígenas sem ferrão. editora Tecnapis; São Paulo, Brasil. 365 pp.Google Scholar
  65. Nogueira-Neto P. 1997. Vida e criação de abelhas indígenas sem ferrão. Editora Nogueirapis; São Paulo, Brasil. 446 pp.Google Scholar
  66. Olofsson TC, Vásquez A. 2008. Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Current Microbiology 57:356–363.PubMedCrossRefGoogle Scholar
  67. Pain J, Maugnet J. 1966. Recherches biochemique et physiologiques sur le pollen emmagasiné par les abeilles. Annals of Abeille 9:209–236.CrossRefGoogle Scholar
  68. Peruquetti RC. 2000. Contribuição ao estudo dos microrganismos e artrópodes associados a abelhas sem ferrão (Hymenoptera: Apidae). Available at: ftp://www.ufv.br/DBG/Apiario/inquilinos.pdf
  69. Piccini C, Antunez K, Zunino P. 2004. An approach to the characterization of the honey bee hive bacterial flora. Journal of Apicultural Research 43:101–104.Google Scholar
  70. Pimentel M, Antonini Y, Martins RP, Lachance MA, Rosa CA. 2005. Candida riodocensis and Candida cellae, two new yeast species from the Starmerella clade associated with solitary bees in the Atlantic Rain Forest of Brazil. FEMS Yeast Research 5:875–879.PubMedCrossRefGoogle Scholar
  71. Promnuan Y, Takuji K, Chantawannakul P. 2009. Actinomycetes isolated from beehives in Thailand. World Journal of Microbiology & Biotechnology 25:1685–1689.CrossRefGoogle Scholar
  72. Purcell AH. 1982. Insect vector relationships with procaryotic plant pathogens. Annual Review of Phytopathology 20:397–417.CrossRefGoogle Scholar
  73. Rada V, Máchová M, Huk J, Marounek M., Dušková D. 1997. Microflora in the honeybee digestive tract: count, characteristics and sensitivity to veterinary drugs. Apidologie as DOI: 10.1051/apido:19970603.
  74. Redak R, Purcell AH, Lopes JRS, Blua MJ, Mizell III, RZ Andersen, PC. 2004. The biology of xylem fluid–feeding insect vectors of Xylella fastidiosa and their relation to disease epidemiology. Annual Review of Entomology 49:243–270.PubMedCrossRefGoogle Scholar
  75. Rosa CA, Lachance MA, Silva JOC, Teixeira ACP, Marino MM, Antonini Y, Martins RP. 2003. Yeast communities associated with stingless bees. FEMS Yeast Research 4:271–275.PubMedCrossRefGoogle Scholar
  76. Rosa CA, Lachance MA. 2005. Zygosaccharomyces machadoi sp. n., a yeast species isolated from a nest of stingless bee Tetragonisca angustula. Lundiana 6(supplement):27–29.Google Scholar
  77. Rosa CA, Viana EM, Martins RP, Antonini Y, Lachance MA. 1999. Candida batistae, a new yeast species associated with solitary digger nesting bees in Brazil. Mycologia 91:428–433.CrossRefGoogle Scholar
  78. Roubik DW. 1983. Nest and colony characteristics of stingless bees from Panama (Hymenoptera: Apidae). Journal of the Kansas Entomological Society 56:327–355.Google Scholar
  79. Roubik DW. 2006. Stingless bee nesting biology. Apidologie 37:124–143.CrossRefGoogle Scholar
  80. Roubik DW, Wheeler QD. 1982. Flightless beetles and stingless bees: phoresy of scotocryptine beetles (Leiodidae) on their meliponine hosts (Apidae). Journal of the Kansas Entomological Society 55:125–135.Google Scholar
  81. Roubik, DW. 1989. Ecology and Natural History of Tropical Bees. Cambridge University Press; New York, USA. 514 pp.Google Scholar
  82. Sakagami, SF. 1982. Stingless bees. pp. 361–423. In Hermann HR, ed. Social Insects. Academic Press; New York, USA. 417 pp.Google Scholar
  83. Salt, G. 1929. A contribuition to the ethology of the Meliponinae. Transactions of the Entomological Society of London 77:431–470.CrossRefGoogle Scholar
  84. Silveira FA, Melo GAR, Almeida EAB. 2002. Abelhas brasileiras. Sistemática e identificação. Fundação Araucária; Belo Horizonte, Brasil. 253 pp.Google Scholar
  85. Snowdon JA, Cliver D. 1996. Microorganisms in honey. International Journal of Food Microbiology 31:1–26.PubMedCrossRefGoogle Scholar
  86. Spencer JFT, Spencer DM. 1997. Ecology: where yeasts live. pp. 33–67. In Spencer JFT, Spencer DM, eds. Yeasts in Natural and Artificial Habitats. Springer-Verlag; Berlin, Germany. 381 pp.Google Scholar
  87. Standifer LN, McCaughey WF, Dixon SE, Gilliam M, Loper GM. 1980. Biochemistry and microbiology of pollen collected by honey bees (Apis mellifera) from almond (Prunus dulcis). II. Protein, aminoacids and enzymes. Apidologie 11:163–171.CrossRefGoogle Scholar
  88. Starmer WT, Heed WB, Miranda M, Miller MW, Phaff HJ. 1976. The ecology of Yeast flora associated with Cactiphilic. Drosophila and their host plants in the Sonoran Desert. Microbial Ecology 3:11–30.Google Scholar
  89. Starmer WT, Lachance MA. 2011. Yeast ecology. pp. 33–67. In Kurtzman CP, Fell JW, Boeukhout T, eds. The Yeasts, a Taxonomic Study. Elsevier Science; Amsterdam, The Netherlands. 2354 pp.Google Scholar
  90. Stratford M, Bond CJ, James SA, Roberts IN, Steels H. 2002. Candida davenportii sp. nov., a potential soft-drinks spoilage yeast isolated from a wasp. International Journal of Systematic and Evolutionary Microbiology 52:1369–1375.PubMedCrossRefGoogle Scholar
  91. Saksinchai S, Suzuki M, Chantawannakul P, Ohkuma M, Lumyong S. 2011. A novel ascosporogenous yeast species, Zygosaccharomyces siamensis, and the sugar tolerant yeasts associated with raw honey collected in Thailand. 2012. Fungal Diversity 52:123–139CrossRefGoogle Scholar
  92. Teixeira ACP, Marini MM, Nicoli JR, Antonini Y, Martins RP, Lachance MA, Rosa CA. 2003. Starmerella meliponinorum sp. nov., a novel ascomycetous yeast species associated with stingless bees. International Journal of Systematic and Evolutionary Microbiology 53:339–343.PubMedCrossRefGoogle Scholar
  93. Trindade RC, Resende MA, Silva CM, Rosa CA. 2002. Yeasts associated with fresh and frozen pulps of Brazilian tropical fruits. Systematic and Applied Microbiology 25:294–300.PubMedCrossRefGoogle Scholar
  94. Vishniac HS, Johnson DT. 1990. Development of a yeast flora in the adult green June beetle (Cotinis nitida, Scarabaeidae). Mycologia 82:471–479.CrossRefGoogle Scholar
  95. Vit P, Medina M, Enríquez ME. 2004. Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee World 85:2–5.Google Scholar
  96. Vit P, Persano Oddo L, Marano ML, Mejias, ES. 1998. Venezuelan stingless bee honeys characterized by multivariate analysis of physicochemical properties. Apidologie 29:377–389.CrossRefGoogle Scholar
  97. Wasmann E. 1904. Contribuição para o estudo dos hóspedes de abelhas brasileiras. Revista do Museu Paulista 6:482–487.Google Scholar
  98. Wille A, Michener CD. 1973. The nest architecture of stingless bees with special reference to those of Costa Rica. Revista de Biologia Tropical 21:1–278.Google Scholar
  99. Wilson EO. 1971. The Insect Societies. Harvard University Press; Massachusetts. 548 pp.Google Scholar
  100. Yoshiyama M, Kimura K. 2009. Bacteria in the gut of Japanese honeybee Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. Journal of Invertebrate Pathology 102:91–96.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Paula B. Morais
    • 1
  • Paula S. São Thiago Calaça
    • 2
  • Carlos Augusto Rosa
    • 3
  1. 1.Laboratório de Microbiologia Ambiental e BiotecnologiaCampus Universitário de Palmas, Universidade Federal do TocantinsPalmasBrazil
  2. 2.Fundação Ezequiel Dias (FUNED)Gameleira, Belo HorizonteBrazil
  3. 3.Departamento de Microbiologia, ICB, CP 486Universidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations