Advertisement

Querying Moving Objects Detected by Sensor Networks

  • Markus Bestehorn
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

Many sensor-network installations (SN) observe moving objects. For instance, scientists observe animal movement [14, 37, 43], or authorities monitor soldiers, pedestrians or vehicles [24, 34, 35]. In such applications, users are interested in object movements, i.e., the queries have spatio-temporal semantics.

Keywords

Sensor Node Object Detection Detection Area Detection Mechanism Proactive Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abadi, D.J., et al.: REED: Robust, efficient Filtering and Event Detection in Sensor Networks. In: VLDB (2005)Google Scholar
  2. 2.
    Advantaca, Inc.: TWR-ISM-002-I Radar: Hardware User’s Manual (2002)Google Scholar
  3. 3.
    Ahmed, N., et al.: The holes problem in wireless sensor networks: a survey. SIGMOBILE Mob. Comput. Commun. Rev. (2005)Google Scholar
  4. 4.
    de Almeida, V.T., Güting, R.H.: Supporting uncertainty in moving objects in network databases. In: GIS ’05 (2005)Google Scholar
  5. 5.
    Arora, A., et al.: A line in the sand: A wireless sensor network for target detection, classification, and tracking. Computer Networks (2004)Google Scholar
  6. 6.
    Bestehorn, M., et al.: The Karlsruhe Sensor Networking Project (KSN) (2007). URL http://www.ipd.kit.edu/KSN
  7. 7.
    Bestehorn, M., et al.: Deriving Spatio-temporal Query Results in Sensor Networks. In: SSDBM (2010)Google Scholar
  8. 8.
    Bestehorn, M., et al.: Energy-efficient processing of spatio-temporal queries in wireless sensor networks. In: ACM SIGSPATIAL GIS (2010)Google Scholar
  9. 9.
    Bonnet, P., et al.: Querying the Physical World. Personal Communications, IEEE (2000)Google Scholar
  10. 10.
    Bonnet, P., et al.: Towards sensor database systems. In: MDM ’01 (2001)Google Scholar
  11. 11.
    Braunling, R., et al.: Acoustic Target Detection, Tracking, Classification, and Location in a Multiple-Target Environment. In: SPIE (1997)Google Scholar
  12. 12.
    Buettner, M., et al.: X-mac: a short preamble mac protocol for duty-cycled wireless sensor networks. In: SenSys ’06 (2006)Google Scholar
  13. 13.
    Cao, H., et al.: Spatio-temporal data reduction with deterministic error bounds. VLDB J. 15 (2006)Google Scholar
  14. 14.
    Cerpa, A., et al.: Habitat monitoring: Application driver for wireless communications technology. SIGCOMM CCR (2001)Google Scholar
  15. 15.
    Chu, D., et al.: Approximate data collection in sensor networks using probabilistic models. In: ICDE ’06 (2006)Google Scholar
  16. 16.
    Ding, J., et al.: Signal Processing of Sensor Node Data for Vehicle Detection. In: IEEE ITSC (2004)Google Scholar
  17. 17.
    Dutta, P.K., et al.: Towards radar-enabled sensor networks. In: IPSN ’06 (2006)Google Scholar
  18. 18.
    Egenhofer, M.J., Franzosa, R.D.: Point set topological relations. IJGIS (1991)Google Scholar
  19. 19.
    Erwig, M., Schneider, M.: Spatio-temporal predicates. IEEE TKDE (2002)Google Scholar
  20. 20.
    Fonseca, R., et al.: The collection tree protocol (ctp) (2007). URL http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html
  21. 21.
    Gaal, S.: Point set topology. Academic Press (1964)Google Scholar
  22. 22.
    Gamage, C., et al.: Security for the mythical air-dropped sensor network. In: ISCC (2006)Google Scholar
  23. 23.
    Gehrke, J., Madden, S.: Query processing in sensor networks. Pervasive Computing, IEEE (2004)Google Scholar
  24. 24.
    Grilo, A., et al.: A wireless sensor network architecture for homeland security application. In: ADHOC-NOW (2009)Google Scholar
  25. 25.
    Güting, R.H., et al.: A Foundation for Representing and Querying Moving Objects. ACM TODS (2000)Google Scholar
  26. 26.
    Güting, R.H., et al.: Modeling and querying moving objects in networks. VLDB J. (2006)Google Scholar
  27. 27.
    He, T., et al.: Energy-efficient surveillance system using wireless sensor networks. In: MobiSys ’04 (2004)Google Scholar
  28. 28.
    He, T., et al.: Vigilnet: An integrated sensor network system for energy-efficient surveillance. ACM Trans. Sen. Netw. 2 (2006)Google Scholar
  29. 29.
    Hergenröder, A., Wilke, J., Meier, D.: Distributed Energy Measurements in WSN Testbeds with a Sensor Node Management Device (SNMD) (2010)Google Scholar
  30. 30.
    Hill, J., et al.: System architecture directions for networked sensors. SIGPLAN Not. 35(11) (2000)Google Scholar
  31. 31.
    Klues, K., et al.: A component-based architecture for power-efficient media access control in wireless sensor networks. In: SenSys ’07 (2007)Google Scholar
  32. 32.
    Knuth, D.E., et al.: Fast Pattern Matching in Strings. SIAM Journal on Computing (1977)Google Scholar
  33. 33.
    Koenig, W., et al.: Detectability, Philopatry, and the Distribution of Dispersal Distances in Vertebrates. Trends in Ecology & Evolution (1996)Google Scholar
  34. 34.
    Kung, H., Vlah, D.: Efficient location tracking using sensor networks. IEEE WCNC (2003)Google Scholar
  35. 35.
    Langendorfer, P., et al.: A Wireless Sensor Network Reliable Architecture for Intrusion Detection. In: NGI (2008)Google Scholar
  36. 36.
    Li, D., et al.: Detection, Classification, and Tracking of Targets. Signal Processing Magazine, IEEE (2002)Google Scholar
  37. 37.
    Liu, N.H., et al.: Long-term animal observation by wireless sensor networks with sound recognition. In: WASA ’09 (2009)Google Scholar
  38. 38.
    Liu, T., et al.: Implementing Software on Resource-Constrained Mobile Sensors: Experiences with Impala and ZebraNet. In: MobiSys ’04 (2004)Google Scholar
  39. 39.
    Madden, S., et al.: Tag: a tiny aggregation service for ad-hoc sensor networks. SIGOPS OSDI (2002)Google Scholar
  40. 40.
    Madden, S., et al.: The design of an acquisitional query processor for sensor networks. In: SIGMOD ’03 (2003)Google Scholar
  41. 41.
    Madden, S., et al.: TinyDB: An Acquisitional Query Processing System for Sensor Networks. ACM TODS (2005)Google Scholar
  42. 42.
    Madden, S.R.: The design and evaluation of a query processing architecture for sensor networks. Ph.D. thesis, University of California at Berkeley, Berkeley, CA, USA (2003). Chair-Franklin, Michael J.Google Scholar
  43. 43.
    Mainwaring, A., et al.: Wireless sensor networks for habitat monitoring. In: WSNA (2002)Google Scholar
  44. 44.
    Metsaranta, J.M.: Assessing Factors Influencing the Space Use of a Woodland Caribou Rangifer Tarandus Caribou Population using an Individual-Based Model. Wildlife Biology (2008)Google Scholar
  45. 45.
    Perkins, C.E., et al.: Internet Connectivity for Ad Hoc Mobile Networks (2002)Google Scholar
  46. 46.
    Polastre, J., et al.: Versatile low power media access for wireless sensor networks. In: SenSys ’04 (2004)Google Scholar
  47. 47.
    Rettie, J.W., Messier, F.: Hierarchical Habitat Selection by Woodland Caribou: Its Relationship to Limiting Factors. Ecography (2000)Google Scholar
  48. 48.
    Shrivastava, N., et al.: Target tracking with binary proximity sensors: fundamental limits, minimal descriptions, and algorithms. In: SenSys ’06 (2006)Google Scholar
  49. 49.
    Succi, G.P., et al.: Acoustic target tracking and target identification: recent results. Unattended Ground Sensor Technologies and Applications (SPIE) (1999)Google Scholar
  50. 50.
    SUN Microsystems Inc.: Small Programmable Object Technology (SPOT) (2009)Google Scholar
  51. 51.
    Tilove, R.B.: Set Membership Classification: A Unified Approach to Geometric Intersection Problems. IEEE TC (1980)Google Scholar
  52. 52.
    Trajcevski, G., et al.: The geometry of uncertainty in moving objects databases. In: EDBT (2002)Google Scholar
  53. 53.
    Trajcevski, G., et al.: Managing uncertainty in moving objects databases. ACM TODS (2004)Google Scholar
  54. 54.
    Wolfson, O., et al.: Moving objects databases: Issues and solutions. SSDBM (1998)Google Scholar
  55. 55.
    XBow Technology Inc.: Wireless sensor networks (2009)Google Scholar
  56. 56.
    Yao, Y., Gehrke, J.: The Cougar Approach to In-Network Query Processing in Sensor Networks. SIGMOD Rec. (2002)Google Scholar
  57. 57.
    Zhang, W., Cao, G.: Optimizing tree reconfiguration for mobile target tracking in sensor networks. INFOCOM 2004 (2004)Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Markus Bestehorn
    • 1
  1. 1.Research and Development DepartmentLandis+GyrFehraltorfSwitzerland

Personalised recommendations