Querying Moving Objects Detected by Sensor Networks

  • Markus Bestehorn
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


Many sensor-network installations (SN) observe moving objects. For instance, scientists observe animal movement [14, 37, 43], or authorities monitor soldiers, pedestrians or vehicles [24, 34, 35]. In such applications, users are interested in object movements, i.e., the queries have spatio-temporal semantics.




  1. 1.
    Abadi, D.J., et al.: REED: Robust, efficient Filtering and Event Detection in Sensor Networks. In: VLDB (2005)Google Scholar
  2. 2.
    Advantaca, Inc.: TWR-ISM-002-I Radar: Hardware User’s Manual (2002)Google Scholar
  3. 3.
    Ahmed, N., et al.: The holes problem in wireless sensor networks: a survey. SIGMOBILE Mob. Comput. Commun. Rev. (2005)Google Scholar
  4. 4.
    de Almeida, V.T., Güting, R.H.: Supporting uncertainty in moving objects in network databases. In: GIS ’05 (2005)Google Scholar
  5. 5.
    Arora, A., et al.: A line in the sand: A wireless sensor network for target detection, classification, and tracking. Computer Networks (2004)Google Scholar
  6. 6.
    Bestehorn, M., et al.: The Karlsruhe Sensor Networking Project (KSN) (2007). URL http://www.ipd.kit.edu/KSN
  7. 7.
    Bestehorn, M., et al.: Deriving Spatio-temporal Query Results in Sensor Networks. In: SSDBM (2010)Google Scholar
  8. 8.
    Bestehorn, M., et al.: Energy-efficient processing of spatio-temporal queries in wireless sensor networks. In: ACM SIGSPATIAL GIS (2010)Google Scholar
  9. 9.
    Bonnet, P., et al.: Querying the Physical World. Personal Communications, IEEE (2000)Google Scholar
  10. 10.
    Bonnet, P., et al.: Towards sensor database systems. In: MDM ’01 (2001)Google Scholar
  11. 11.
    Braunling, R., et al.: Acoustic Target Detection, Tracking, Classification, and Location in a Multiple-Target Environment. In: SPIE (1997)Google Scholar
  12. 12.
    Buettner, M., et al.: X-mac: a short preamble mac protocol for duty-cycled wireless sensor networks. In: SenSys ’06 (2006)Google Scholar
  13. 13.
    Cao, H., et al.: Spatio-temporal data reduction with deterministic error bounds. VLDB J. 15 (2006)Google Scholar
  14. 14.
    Cerpa, A., et al.: Habitat monitoring: Application driver for wireless communications technology. SIGCOMM CCR (2001)Google Scholar
  15. 15.
    Chu, D., et al.: Approximate data collection in sensor networks using probabilistic models. In: ICDE ’06 (2006)Google Scholar
  16. 16.
    Ding, J., et al.: Signal Processing of Sensor Node Data for Vehicle Detection. In: IEEE ITSC (2004)Google Scholar
  17. 17.
    Dutta, P.K., et al.: Towards radar-enabled sensor networks. In: IPSN ’06 (2006)Google Scholar
  18. 18.
    Egenhofer, M.J., Franzosa, R.D.: Point set topological relations. IJGIS (1991)Google Scholar
  19. 19.
    Erwig, M., Schneider, M.: Spatio-temporal predicates. IEEE TKDE (2002)Google Scholar
  20. 20.
    Fonseca, R., et al.: The collection tree protocol (ctp) (2007). URL http://www.tinyos.net/tinyos-2.x/doc/html/tep123.html
  21. 21.
    Gaal, S.: Point set topology. Academic Press (1964)Google Scholar
  22. 22.
    Gamage, C., et al.: Security for the mythical air-dropped sensor network. In: ISCC (2006)Google Scholar
  23. 23.
    Gehrke, J., Madden, S.: Query processing in sensor networks. Pervasive Computing, IEEE (2004)Google Scholar
  24. 24.
    Grilo, A., et al.: A wireless sensor network architecture for homeland security application. In: ADHOC-NOW (2009)Google Scholar
  25. 25.
    Güting, R.H., et al.: A Foundation for Representing and Querying Moving Objects. ACM TODS (2000)Google Scholar
  26. 26.
    Güting, R.H., et al.: Modeling and querying moving objects in networks. VLDB J. (2006)Google Scholar
  27. 27.
    He, T., et al.: Energy-efficient surveillance system using wireless sensor networks. In: MobiSys ’04 (2004)Google Scholar
  28. 28.
    He, T., et al.: Vigilnet: An integrated sensor network system for energy-efficient surveillance. ACM Trans. Sen. Netw. 2 (2006)Google Scholar
  29. 29.
    Hergenröder, A., Wilke, J., Meier, D.: Distributed Energy Measurements in WSN Testbeds with a Sensor Node Management Device (SNMD) (2010)Google Scholar
  30. 30.
    Hill, J., et al.: System architecture directions for networked sensors. SIGPLAN Not. 35(11) (2000)Google Scholar
  31. 31.
    Klues, K., et al.: A component-based architecture for power-efficient media access control in wireless sensor networks. In: SenSys ’07 (2007)Google Scholar
  32. 32.
    Knuth, D.E., et al.: Fast Pattern Matching in Strings. SIAM Journal on Computing (1977)Google Scholar
  33. 33.
    Koenig, W., et al.: Detectability, Philopatry, and the Distribution of Dispersal Distances in Vertebrates. Trends in Ecology & Evolution (1996)Google Scholar
  34. 34.
    Kung, H., Vlah, D.: Efficient location tracking using sensor networks. IEEE WCNC (2003)Google Scholar
  35. 35.
    Langendorfer, P., et al.: A Wireless Sensor Network Reliable Architecture for Intrusion Detection. In: NGI (2008)Google Scholar
  36. 36.
    Li, D., et al.: Detection, Classification, and Tracking of Targets. Signal Processing Magazine, IEEE (2002)Google Scholar
  37. 37.
    Liu, N.H., et al.: Long-term animal observation by wireless sensor networks with sound recognition. In: WASA ’09 (2009)Google Scholar
  38. 38.
    Liu, T., et al.: Implementing Software on Resource-Constrained Mobile Sensors: Experiences with Impala and ZebraNet. In: MobiSys ’04 (2004)Google Scholar
  39. 39.
    Madden, S., et al.: Tag: a tiny aggregation service for ad-hoc sensor networks. SIGOPS OSDI (2002)Google Scholar
  40. 40.
    Madden, S., et al.: The design of an acquisitional query processor for sensor networks. In: SIGMOD ’03 (2003)Google Scholar
  41. 41.
    Madden, S., et al.: TinyDB: An Acquisitional Query Processing System for Sensor Networks. ACM TODS (2005)Google Scholar
  42. 42.
    Madden, S.R.: The design and evaluation of a query processing architecture for sensor networks. Ph.D. thesis, University of California at Berkeley, Berkeley, CA, USA (2003). Chair-Franklin, Michael J.Google Scholar
  43. 43.
    Mainwaring, A., et al.: Wireless sensor networks for habitat monitoring. In: WSNA (2002)Google Scholar
  44. 44.
    Metsaranta, J.M.: Assessing Factors Influencing the Space Use of a Woodland Caribou Rangifer Tarandus Caribou Population using an Individual-Based Model. Wildlife Biology (2008)Google Scholar
  45. 45.
    Perkins, C.E., et al.: Internet Connectivity for Ad Hoc Mobile Networks (2002)Google Scholar
  46. 46.
    Polastre, J., et al.: Versatile low power media access for wireless sensor networks. In: SenSys ’04 (2004)Google Scholar
  47. 47.
    Rettie, J.W., Messier, F.: Hierarchical Habitat Selection by Woodland Caribou: Its Relationship to Limiting Factors. Ecography (2000)Google Scholar
  48. 48.
    Shrivastava, N., et al.: Target tracking with binary proximity sensors: fundamental limits, minimal descriptions, and algorithms. In: SenSys ’06 (2006)Google Scholar
  49. 49.
    Succi, G.P., et al.: Acoustic target tracking and target identification: recent results. Unattended Ground Sensor Technologies and Applications (SPIE) (1999)Google Scholar
  50. 50.
    SUN Microsystems Inc.: Small Programmable Object Technology (SPOT) (2009)Google Scholar
  51. 51.
    Tilove, R.B.: Set Membership Classification: A Unified Approach to Geometric Intersection Problems. IEEE TC (1980)Google Scholar
  52. 52.
    Trajcevski, G., et al.: The geometry of uncertainty in moving objects databases. In: EDBT (2002)Google Scholar
  53. 53.
    Trajcevski, G., et al.: Managing uncertainty in moving objects databases. ACM TODS (2004)Google Scholar
  54. 54.
    Wolfson, O., et al.: Moving objects databases: Issues and solutions. SSDBM (1998)Google Scholar
  55. 55.
    XBow Technology Inc.: Wireless sensor networks (2009)Google Scholar
  56. 56.
    Yao, Y., Gehrke, J.: The Cougar Approach to In-Network Query Processing in Sensor Networks. SIGMOD Rec. (2002)Google Scholar
  57. 57.
    Zhang, W., Cao, G.: Optimizing tree reconfiguration for mobile target tracking in sensor networks. INFOCOM 2004 (2004)Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Markus Bestehorn
    • 1
  1. 1.Research and Development DepartmentLandis+GyrFehraltorfSwitzerland

Personalised recommendations