AFM Visualization of Protein–DNA Interactions

  • Yuri L. Lyubchenko
Part of the Biophysics for the Life Sciences book series (BIOPHYS, volume 2)


This chapter outlines the advances in AFM technology in studies of various types of protein–DNA complexes. The sample preparation methods are briefly described and recommendations for the selection of the appropriate methodology are provided. Studies of sequence-specific and non-sequence-specific DNA-binding proteins are limited to a few examples with a focus on recent publications. The AFM studies of complexes of DNA with architectural proteins are limited to SSB protein and chromatin. Special attention is given to time-lapse AFM imaging in aqueous solutions that enables direct observation of protein–DNA dynamics and interactions. A few examples of the application of time-lapse high-speed AFM are provided as well.


Atomic Force Microscopy Atomic Force Microscopy Analysis Atomic Force Microscopy Study Architectural Protein Nucleosome Core Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I am grateful to Luda Shlyakhtenko for valuable comments and critical reading of the manuscript, and current and former members of the group for their contribution to works incorporated into the manuscript. The work was supported by grants from National Institutes of Health Grants (1P01GM091743-01A1 and 1 R01 GM096039-01A1), US Department of Energy (DE-FG02-08ER64579), National Science Foundation (EPS – 1004094), and Nebraska Research Initiative grant to Y.L.L.


  1. Ando T, Uchihashi T, Kodera N, Yamamoto D, Taniguchi M, Miyagi A, Yamashita H (2007) High-speed atomic force microscopy for observing dynamic biomolecular processes. J Mol Recognit 20:448–458PubMedCrossRefGoogle Scholar
  2. Bednar J, Dimitrov S (2011) Chromatin under mechanical stress: from single 30 nm fibers to single nucleosomes. FEBS J 278:2231–2243PubMedCrossRefGoogle Scholar
  3. Bochkarev A, Bochkareva E (2004) From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr Opin Struct Biol 14:36–42PubMedCrossRefGoogle Scholar
  4. Bussiek M, Mucke N, Langowski J (2003) Polylysine-coated mica can be used to observe systematic changes in the supercoiled DNA conformation by scanning force microscopy in solution. Nucleic Acids Res 31:e137PubMedCrossRefGoogle Scholar
  5. Bussiek M, Toth K, Brun N, Langowski J (2005) DNA-loop formation on nucleosomes shown by in situ scanning force microscopy of supercoiled DNA. J Mol Biol 345:695–706PubMedCrossRefGoogle Scholar
  6. Bussiek M, Muller G, Waldeck W, Diekmann S, Langowski J (2007) Organisation of nucleosomal arrays reconstituted with repetitive African green monkey alpha-satellite DNA as analysed by atomic force microscopy. Eur Biophys J 37:81–93PubMedCrossRefGoogle Scholar
  7. Bustamante C, Vesenka J, Tang CL, Rees W, Guthold M, Keller R (1992) Circular DNA molecules imaged in air by scanning force microscopy. Biochemistry 31:22–26PubMedCrossRefGoogle Scholar
  8. Bustamante C, Rivetti C (1996) Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. Annu Rev Biophys Biomol Struct 25:395–429PubMedCrossRefGoogle Scholar
  9. Bustamante C, Zuccheri G, Leuba SH, Yang G, Samori B (1997) Visualization and analysis of chromatin by scanning force microscopy. Methods 12:73–83PubMedCrossRefGoogle Scholar
  10. Chrysogelos S, Griffith J (1982) Escherichia coli single-strand binding protein organizes single-stranded DNA in nucleosome-like units. Proc Natl Acad Sci USA 79:5803–5807PubMedCrossRefGoogle Scholar
  11. Crampton N, Yokokawa M et al (2007) Fast-scan atomic force microscopy reveals that the type III restriction enzyme EcoP15I is capable of DNA translocation and looping. Proc Natl Acad Sci USA 104:12755–12760PubMedCrossRefGoogle Scholar
  12. Filenko NA, Palets DB, Lyubchenko YL (2012) Structure and dynamics of dinucleosomes assessed by atomic force microscopy. J Amino Acids 2012:650840PubMedGoogle Scholar
  13. Gilmore JL, Suzuki Y, Tamulaitis G, Siksnys V, Takeyasu K, Lyubchenko YL (2009) Single-molecule dynamics of the DNA-EcoRII protein complexes revealed with high-speed atomic force microscopy. Biochemistry 48:10492–10498PubMedCrossRefGoogle Scholar
  14. Gross L, Mohn F, Moll N, Meyer G, Ebel R, Abdel-Mageed WM, Jaspars M (2010) Organic structure determination using atomic resolution scanning probe microscopy. Nat Chem 2:821–825PubMedCrossRefGoogle Scholar
  15. Guthold M, Bezanilla M, Erie DA, Jenkins B, Hansma HG, Bustamante C (1994) Following the assembly of RNA polymerase-DNA complexes in aqueous solutions with the scanning force microscope. Proc Natl Acad Sci USA 91:12927–12931PubMedCrossRefGoogle Scholar
  16. Guthold M, Zhu X et al (1999) Direct observation of one-dimensional diffusion and transcription by Escherichia coli RNA polymerase. Biophys J 77:2284–2294PubMedCrossRefGoogle Scholar
  17. Hamon L, Pastre D, Dupaigne P, Le Breton C, Le Cam E, Pietrement O (2007) High-resolution AFM imaging of single-stranded DNA-binding (SSB) protein–DNA complexes. Nucleic Acids Res 35:e58PubMedCrossRefGoogle Scholar
  18. Jiang Y, Marszalek PE (2011) Atomic force microscopy captures MutS tetramers initiating DNA mismatch repair. EMBO J 30:2881–2893PubMedCrossRefGoogle Scholar
  19. Jiao Y, Cherny DI, Heim G, Jovin TM, Schaffer TE (2001) Dynamic interactions of p53 with DNA in solution by time-lapse atomic force microscopy. J Mol Biol 314:233–243PubMedCrossRefGoogle Scholar
  20. Kasas S, Thomson NH et al (1997) Escherichia coli RNA polymerase activity observed using atomic force microscopy. Biochemistry 36:461–468PubMedCrossRefGoogle Scholar
  21. Kobryn K, Watson MA, Allison RG, Chaconas G (2002) The Mu three-site synapse: a strained assembly platform in which delivery of the L1 transposase binding site triggers catalytic commitment. Mol Cell 10:659–669PubMedCrossRefGoogle Scholar
  22. Kur J, Olszewski M, Dlugolecka A, Filipkowski P (2005) Single-stranded DNA-binding proteins (SSBs) – sources and applications in molecular biology. Acta Biochim Pol 52:569–574PubMedGoogle Scholar
  23. Lohman TM, Ferrari ME (1994) Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu Rev Biochem 63:527–570PubMedCrossRefGoogle Scholar
  24. Lushnikov AY, Potaman VN, Lyubchenko YL (2006a) Site-specific labeling of supercoiled DNA. Nucleic Acids Res 34:e111PubMedCrossRefGoogle Scholar
  25. Lushnikov AY, Potaman VN, Oussatcheva EA, Sinden RR, Lyubchenko YL (2006b) DNA strand arrangement within the SfiI-DNA complex: atomic force microscopy analysis. Biochemistry 45:152–158PubMedCrossRefGoogle Scholar
  26. Lyubchenko YL, Gall AA, Shlyakhtenko LS, Harrington RE, Jacobs BL, Oden PI, Lindsay SM (1992a) Atomic force microscopy imaging of double stranded DNA and RNA. J Biomol Struct Dyn 10:589–606PubMedCrossRefGoogle Scholar
  27. Lyubchenko YL, Jacobs BL, Lindsay SM (1992b) Atomic force microscopy of reovirus dsRNA: a routine technique for length measurements. Nucleic Acids Res 20:3983–3986PubMedCrossRefGoogle Scholar
  28. Lyubchenko YL, Jacobs BL, Lindsay SM, Stasiak A (1995) Atomic force microscopy of nucleoprotein complexes. Scanning Microsc 9:705–724, discussion 724–707PubMedGoogle Scholar
  29. Lyubchenko YL (2004) DNA structure and dynamics: an atomic force microscopy study. Cell Biochem Biophys 41:75–98PubMedCrossRefGoogle Scholar
  30. Lyubchenko YL, Shlyakhtenko LS (2009) AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. Methods 47:206–213PubMedCrossRefGoogle Scholar
  31. Lyubchenko YL, Shlyakhtenko LS, Gall AA (2009) Atomic force microscopy imaging and probing of DNA, proteins, and protein DNA complexes: silatrane surface chemistry. Methods Mol Biol 543:337–351PubMedCrossRefGoogle Scholar
  32. Lyubchenko YL, Gall AA, Shlyakhtenko LS (2001) Atomic force microscopy of DNA and protein-DNA complexes using functionalized mica substrates. In: Moss T (ed) DNA-protein interactions; principles and protocols, vol 148, Methods in molecular biology. Humana, Totowa, NJ, pp 569–578Google Scholar
  33. Marsden MP, Laemmli UK (1979) Metaphase chromosome structure: evidence for a radial loop model. Cell 17:849–858PubMedCrossRefGoogle Scholar
  34. Menshikova I, Menshikov E, Filenko N, Lyubchenko YL (2011) Nucleosomes structure and dynamics: effect of CHAPS. Int J Biochem Mol Biol 2:129–137PubMedGoogle Scholar
  35. Merickel SK, Johnson RC (2004) Topological analysis of Hin-catalysed DNA recombination in vivo and in vitro. Mol Microbiol 51:1143–1154PubMedCrossRefGoogle Scholar
  36. Miyagi A, Ando T, Lyubchenko YL (2011) Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy. Biochemistry 50:7901–7908PubMedCrossRefGoogle Scholar
  37. Murphy PJ, Shannon M, Goertz J (2011) Visualization of recombinant DNA and protein complexes using atomic force microscopy. J Vis Exp: JoVE 53: pil: 3061. doi: 10.3791/3061
  38. Reuter M, Kupper D, Meisel A, Schroeder C, Kruger DH (1998) Cooperative binding properties of restriction endonuclease EcoRII with DNA recognition sites. J Biol Chem 273:8294–8300PubMedCrossRefGoogle Scholar
  39. Rybenkov VV, Vologodskii AV, Cozzarelli NR (1997) The effect of ionic conditions on the conformations of supercoiled DNA I. Sedimentation analysis. J Mol Biol 267:299–311PubMedCrossRefGoogle Scholar
  40. Ryzhikov M, Koroleva O, Postnov D, Tran A, Korolev S (2011) Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein. Nucleic Acids Res 39:6305–6314PubMedCrossRefGoogle Scholar
  41. Shereda RD, Kozlov AG, Lohman TM, Cox MM, Keck JL (2008) SSB as an organizer/mobilizer of genome maintenance complexes. Crit Rev Biochem Mol Biol 43:289–318PubMedCrossRefGoogle Scholar
  42. Shlyakhtenko LS, Hsieh P, Grigoriev M, Potaman VN, Sinden RR, Lyubchenko YL (2000) A cruciform structural transition provides a molecular switch for chromosome structure and dynamics. J Mol Biol 296:1169–1173PubMedCrossRefGoogle Scholar
  43. Shlyakhtenko LS, Gall AA, Filonov A, Cerovac Z, Lushnikov A, Lyubchenko YL (2003) Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy 97:279–287PubMedCrossRefGoogle Scholar
  44. Shlyakhtenko LS, Gilmore J, Portillo A, Tamulaitis G, Siksnys V, Lyubchenko YL (2007) Direct visualization of the EcoRII-DNA triple synaptic complex by atomic force microscopy. Biochemistry 46:11128–11136PubMedCrossRefGoogle Scholar
  45. Shlyakhtenko LS, Lushnikov AY, Lyubchenko YL (2009) Dynamics of nucleosomes revealed by time-lapse atomic force microscopy. Biochemistry 48:7842–7848PubMedCrossRefGoogle Scholar
  46. Shlyakhtenko LS, Lushnikov AY, Miyagi A, Lyubchenko YL (2012) Specificity of binding of the single stranded DNA binding protein to the target. Biochemistry 51(7):1500–1509PubMedCrossRefGoogle Scholar
  47. Suzuki Y, Higuchi Y, Hizume K, Yokokawa M, Yoshimura SH, Yoshikawa K, Takeyasu K (2010) Molecular dynamics of DNA and nucleosomes in solution studied by fast-scanning atomic force microscopy. Ultramicroscopy 110(6):682–688PubMedCrossRefGoogle Scholar
  48. Tamulaitis G, Sasnauskas G, Mucke M, Siksnys V (2006) Simultaneous binding of three recognition sites is necessary for a concerted plasmid DNA cleavage by EcoRII restriction endonuclease. J Mol Biol 358:406–419PubMedCrossRefGoogle Scholar
  49. Tessmer I, Yang Y, Zhai J, Du C, Hsieh P, Hingorani MM, Erie DA (2008) Mechanism of MutS searching for DNA mismatches and signaling repair. J Biol Chem 283:36646–36654PubMedCrossRefGoogle Scholar
  50. Thundat T, Allison DP, Warmack RJ, Brown GM, Jacobson KB, Schrick JJ, Ferrell TL (1992) Atomic force microscopy of DNA on mica and chemically modified mica. Scanning Microsc 6:911–918PubMedGoogle Scholar
  51. van Noort SJ, van der Werf KO, Eker AP, Wyman C, de Grooth BG, van Hulst NF, Greve J (1998) Direct visualization of dynamic protein-DNA interactions with a dedicated atomic force microscope. Biophys J 74:2840–2849PubMedCrossRefGoogle Scholar
  52. Vanamee ES, Viadiu H, Kucera R, Dorner L, Picone S, Schildkraut I, Aggarwal AK (2005) A view of consecutive binding events from structures of tetrameric endonuclease SfiI bound to DNA. EMBO J 24:4198–4208PubMedCrossRefGoogle Scholar
  53. Vesenka J, Guthold M, Tang CL, Keller D, Delaine E, Bustamante C (1992) Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. Ultramicroscopy 42–44:1243–1249PubMedCrossRefGoogle Scholar
  54. Wang H, Yang Y et al (2003) DNA bending and unbending by MutS govern mismatch recognition and specificity. Proc Natl Acad Sci USA 100:14822–14827PubMedCrossRefGoogle Scholar
  55. Watson JD (2008) Molecular biology of the gene. Pearson/Benjamin Cummings, San Francisco, CAGoogle Scholar
  56. Watson MA, Chaconas G (1996) Three-site synapsis during Mu DNA transposition: a critical intermediate preceding engagement of the active site. Cell 85:435–445PubMedCrossRefGoogle Scholar
  57. Widom J, Klug A (1985) Structure of the 300Å chromatin filament: X-ray diffraction from oriented samples. Cell 43:207–213PubMedCrossRefGoogle Scholar
  58. Winter RB, Berg OG, von Hippel PH (1981) Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor–operator interaction: kinetic measurements and conclusions. Biochemistry 20:6961–6977PubMedCrossRefGoogle Scholar
  59. Yang Y, Sass LE, Du C, Hsieh P, Erie DA (2005) Determination of protein-DNA binding constants and specificities from statistical analyses of single molecules: MutS-DNA interactions. Nucleic Acids Res 33:4322–4334PubMedCrossRefGoogle Scholar
  60. Zhong Q, Inniss D, Kjoller K, Elings VB (1993) Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surf Sci Lett 290:L688–L692CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations