Skip to main content

Nanomechanics of Proteins, Both Folded and Disordered

  • Chapter
  • First Online:
Single-molecule Studies of Proteins

Abstract

Single-molecule techniques have recently provided a versatile tool for imaging and manipulating protein molecules one at a time, enabling us to address important biological questions in key areas of cell biology (e.g., cell adhesion and signaling, neurodegeneration) and protein science (e.g., protein folding, protein structure and stability, catalysis, protein evolution, conformational polymorphism, and amyloidogenesis). One of these techniques, single-molecule force spectroscopy based on atomic force microscopy, combined with theoretical/computational approaches and protein engineering, has allowed unprecedented progress in characterizing and understanding at the molecular level the mechanical properties of biomolecules, particularly those of proteins, which has recently opened the new, exciting and fast-growing research field of protein nanomechanics. The aim of this review is to describe the principles of this methodology and to discuss the main achievements in this field, with special emphasis on its emerging application to the analysis of intrinsically disordered proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

Arc:

Arctic

Aβ:

Amyloid beta

CaM:

Calmodulin

D2 :

Disorder in disorder

DHF:

7,8-Dihydrofolate

DHFR:

Dihydrofolate reductase

DMSO:

Dimethyl sulfoxide

ELP:

Elastin-like-polypeptides

F U :

Unfolding force

GB1:

B1 immunoglobulin binding domain of streptococcal protein G

HD:

Huntington’s disease

hM:

Hyper-mechanostable

IDP:

Intrinsically disordered protein

Ig:

Immunoglobulin

L C :

Contour length

M:

Mechanostable

MBP:

Maltose binding protein

mtx:

Methotrexate

N A :

Avogadro’s number

NADPH:

Nicotinamide adenine dihydrogen phosphate

NM:

Non-mechanostable

NMR:

Nuclear magnetic resonance

p :

Persistence length

PC1:

Polycystin-1

pFS:

Plasmid for force spectroscopy

PKA:

Protein kinase A

PolyQ:

Polyglutamine

QBP1:

PolyQ binding peptide 1

RC:

Random coil

SMD:

Steered molecular dynamics

SMF:

Single-molecule fluorescence

SMFS:

Single-molecule force spectroscopy

SMT:

Single-molecule techniques

SPM:

Scanning probe microscopy

S–S:

Disulfide bond

STM:

Scanning tunneling microscope

THF:

5,6,7,8-Tetrahydrofolate

TNfn3:

Third fibronectin type III domain

TNXfn7:

Seventh FnIII domain of human tenascin-X

TS:

Transition state

WLC:

Worm-like chain

α-syn:

Alpha synuclein

ΔL C :

Contour length increase

References

  • Ainavarapu SRK, Li L, Badilla CL, Fernandez JM (2005) Ligand binding modulates the mechanical stability of dihydrofolate reductase. Biophys J 89:3337–3344

    PubMed  CAS  Google Scholar 

  • Ainavarapu SRK, Brujic J, Huang HH, Wiita AP, Lu H, Li L, Walther KA, Carrión-Vázquez M, Li H, Fernandez JM (2007) Contour length and refolding rate of a small protein controlled by engineering disulfide bonds. Biophys J 92:22–233

    Google Scholar 

  • Ainavarapu SRK, Wiita AP, Dougan L, Uggerud E, Fernandez JM (2008a) Single-molecule force spectroscopy measurements of bond elongation during a bimolecular reaction. J Am Chem Soc 130:6479–6487

    CAS  Google Scholar 

  • Ainavarapu SRK, Wiita AP, Huang HH, Fernandez JM (2008b) A single-molecule assay to directly identify solvent-accessible disulfide bonds and probe their effect on protein folding. J Am Chem Soc 130:436–437

    PubMed  CAS  Google Scholar 

  • Aioanei D, Lv S, Tessari I, Rampioni A, Bubacco L, Li H, Samorì B, Brucale M (2011a) Single-molecule-level evidence for the osmophobic effect. Angew Chem Int Ed 50:4394–4397

    CAS  Google Scholar 

  • Aioanei D, Tessari I, Bubacco L, Samorì B, Brucale M (2011b) Observing the osmophobic effect in action at the single molecule level. Proteins 79:2214–2223

    PubMed  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York, NY

    Google Scholar 

  • Alegre-Cebollada J, Kosuri P, Rivas-Pardo JA, Fernández JM (2011) Direct observation of disulfide isomerization in a single protein. Nat Chem 3:882–887

    PubMed  CAS  Google Scholar 

  • Arslan PE, Mulligan VK, Ho S, Chakrabartty A (2010) Conversion of Aβ42 into a folded soluble native-like protein using a semi-random library of amphipathic helices. J Mol Biol 396:1284–1294

    PubMed  CAS  Google Scholar 

  • Baldock C, Oberhauser AF, Ma L, Lammie D, Siegler V, Mithieux SM, Tu Y, Chow JY, Suleman F, Malfois M, Rogers S, Guo L, Irving TC, Wess TJ, Weiss AS (2011) Shape of tropoelastin, the highly extensible protein that controls human tissue elasticity. Proc Natl Acad Sci USA 108:4322–4327

    PubMed  CAS  Google Scholar 

  • Bell GI (1978) Models for the specific adhesion of cells to cells. Science 200:618–627

    PubMed  CAS  Google Scholar 

  • Bertz M, Rief M (2009) Ligand binding mechanics of maltose binding protein. J Mol Biol 393:1097–1105

    PubMed  CAS  Google Scholar 

  • Best RB, Hummer G (2005) Comment on “Force-clamp spectroscopy monitors the folding trajectory of a single protein”. Science 308:498b

    Google Scholar 

  • Bilsel O, Matthews CR (2006) Molecular dimensions and their distributions in early folding intermediates. Curr Opin Struct Biol 16:86–93

    PubMed  CAS  Google Scholar 

  • Binnig G, Rohrer H (1986) Scanning tunneling microscopy. IBM J Res Devel 30:355–369

    CAS  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    PubMed  Google Scholar 

  • Bornschlögl T, Rief M (2008) Single-Molecule dynamics of mechanical coiled-coil unzipping. Langmuir 24:1338–1342

    PubMed  Google Scholar 

  • Bornschlögl T, Gebhardt JCM, Rief M (2009a) Designing the folding mechanics of coiled coils. Chemphyschem 10:2800–2804

    PubMed  Google Scholar 

  • Bornschlögl T, Anstrom DM, Mey E, Dzubiella J, Rief M, Forest KT (2009b) Tightening the knot in phytochrome by single-molecule atomic force microscopy. Biophys J 96:1508–1514

    PubMed  Google Scholar 

  • Brandenburg B, Zhuang X (2007) Virus trafficking-learning from single-virus tracking. Nat Rev Microbiol 5:197–208

    PubMed  CAS  Google Scholar 

  • Brucale M, Sandal M, Di Maio S, Rampioni A, Tessari I, Tosatto L, Bisaglia M, Bubacco L, Samorì B (2009) Pathogenic mutations shift the equilibria of α-synuclein single molecules towards structured conformers. Chembiochem 10:176–183

    PubMed  CAS  Google Scholar 

  • Brujic J, Fernandez JM (2005) Response to comment on “Force-clamp spectroscopy monitors the folding trajectory of a single protein”. Science 308:498c

    Google Scholar 

  • Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21:167–195

    PubMed  CAS  Google Scholar 

  • Bullard B, Garcia T, Benes V, Leake MC, Linke WA, Oberhauser AF (2006) The molecular elasticity of the insect flight muscle proteins projectin and kettin. Proc Natl Acad Sci USA 103:4451–4456

    PubMed  CAS  Google Scholar 

  • Bustamante C, Chemla Y, Forde N, Izhaky D (2004) Mechanical processes in biochemistry. Annu Rev Biochem 73:705–748

    PubMed  CAS  Google Scholar 

  • Cao Y, Yoo T, Li H (2008a) Single molecule force spectroscopy reveals engineered metal chelation is a general approach to enhance mechanical stability of proteins. Proc Natl Acad Sci USA 105:11152–11157

    PubMed  CAS  Google Scholar 

  • Cao Y, Yoo T, Zhuang S, Li H (2008b) Protein–protein interaction regulates proteins mechanical stability. J Mol Biol 378:1132–1141

    PubMed  CAS  Google Scholar 

  • Cao Y, Er KS, Parhar R, Li H (2009) A force-spectroscopy-based single-molecule metal-binding assay. Chemphyschem 10:1450–1454

    PubMed  CAS  Google Scholar 

  • Carrión-Vázquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J, Fernandez JM (1999) Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci USA 96:3694–3699

    PubMed  Google Scholar 

  • Carrión-Vázquez M, Oberhauser AF, Fisher TE, Marszalek PE, Li H, Fernandez JM (2000) Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering. Prog Biophys Mol Biol 74:63–91

    PubMed  Google Scholar 

  • Carrión-Vázquez M, Li H, Lu H, Marszalek PE, Oberhauser AF, Fernandez JM (2003) The mechanical stability of ubiquitin is linkage dependent. Nat Struct Biol 10:738–743

    PubMed  Google Scholar 

  • Carrión-Vázquez M, Oberhauser AF, Díez H, Hervás R, Oroz J, Fernández J, Marínez-Martín D (2006) Protein nanomechanics—as studied by AFM single-molecule force spectroscopy. In: Arrondo JLR, Alonso A (eds) Advanced techniques in biophysics. Springer, Heidelberg, pp 163–245

    Google Scholar 

  • Carrión-Vázquez M, Cieplak M, Oberhauser AF (2009) Protein mechanics at the single-molecule level. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, New York, NY, pp 7026–7051

    Google Scholar 

  • Cieplak M, Szymczak P (2006) Protein folding in a force clamp. J Chem Phys 124:194901–194904

    PubMed  Google Scholar 

  • Cox BS (1965) [PSI+], a cytoplasmic suppressor of super-suppressors in yeast. Heredity 20:505–521

    Google Scholar 

  • Crick SL, Jayaraman M, Frieden C, Wetzel R, Pappu RV (2006) Fluorescence correlation spectroscopy shows that monomeric polyglutamine molecules form collapsed structures in aqueous solutions. Proc Natl Acad Sci USA 103:16764–16769

    PubMed  CAS  Google Scholar 

  • Cummings CJ, Zoghbi HY (2000) Trinucleotide repeats: mechanisms and pathophysiology. Annu Rev Genomics Hum Genet 1:281–328

    PubMed  CAS  Google Scholar 

  • Dembo M, Torney DC, Saxman K, Hammer D (1988) The reaction-limited kinetics of membrane-to-surface adhesion and detachment. Proc R Soc Lond B Biol Sci 234:55–83

    PubMed  CAS  Google Scholar 

  • Deniz AA, Laurence TA, Beligere GS, Dahan M, Martin AB, Chemla DS, Dawson PE, Schultz PG, Weiss S (2000) Single-molecule protein folding: diffusion fluorescence resonance energy transfer studies of the denaturation of chymotrypsin inhibitor 2. Proc Natl Acad Sci USA 97:5179–5184

    PubMed  CAS  Google Scholar 

  • Deniz AA, Laurence TA, Dahan M, Chemla DS, Schultz PG, Weiss S (2001) Ratiometric single-molecule studies of freely diffusing biomolecules. Annu Rev Phys Chem 52:233–253

    PubMed  CAS  Google Scholar 

  • Dougan L, Li J, Badilla CL, Berne BJ, Fernandez JM (2009) Single homopolypeptide chains collapse into mechanically rigid conformations. Proc Natl Acad Sci USA 106:12605–12610

    PubMed  CAS  Google Scholar 

  • Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2000a) Intrinsic disorder and protein function. Biochemistry 41:6573–6582

    Google Scholar 

  • Dunker AK, Obradovic Z, Romero P, Garner EC, Brown CJ (2000b) Intrinsic protein disorder in complete genomes. Genome Inform Ser Workshop Genome Inform 11:161–171

    PubMed  CAS  Google Scholar 

  • Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang CH, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59

    PubMed  CAS  Google Scholar 

  • Evans E, Ritchie K (1997) Dynamic strength of molecular adhesion bonds. Biophys J 72:1541–1555

    PubMed  CAS  Google Scholar 

  • Faux NG, Bottomley SP, Lesk AM, Irving JA, Morrison JR, de la Banda MG, Whisstock JC (2005) Functional insights from the distribution and role of homopeptide repeat-containing proteins. Genome Res 15:537–551

    PubMed  CAS  Google Scholar 

  • Fernandez JM, Li H (2004) Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303:1674–1678

    PubMed  CAS  Google Scholar 

  • Fernandez JM, Li H, Brujic J (2004) Response to comment on “Force-clamp spectroscopy monitors the folding trajectory of a single protein”. Science 306:411c

    Google Scholar 

  • Ferreon AC, Moran CR, Gambin Y, Deniz AA (2010) Single-molecule fluorescence studies of intrinsically disordered proteins. Methods Enzymol 472:179–204

    PubMed  CAS  Google Scholar 

  • Forman JR, Yew ZT, Qamar S, Sandford RN, Paci E, Clarke J (2009) Non-native interactions are critical for mechanical strength in PKD domains. Structure 17:1582–1590

    PubMed  CAS  Google Scholar 

  • Galera-Prat A, Gómez-Sicilia A, Oberhauser AF, Cieplak M, Carrión-Vázquez M (2010) Understanding biology by stretching proteins: recent progress. Curr Opin Struct Biol 20:63–69

    PubMed  CAS  Google Scholar 

  • Garcia-Manyes S, Dougan L, Badilla CL, Brujic J, Fernandez JM (2009a) Direct observation of an ensemble of stable collapsed states in the mechanical folding of ubiquitin. Proc Natl Acad Sci USA 106:10534–10539

    PubMed  CAS  Google Scholar 

  • Garcia-Manyes S, Liang J, Szoszkiewicz KTL, Fernández JM (2009b) Force-activated reactivity switch in a bimolecular chemical reaction. Nat Chem 1:236–242

    PubMed  CAS  Google Scholar 

  • Gebhardt JCM, Bornsclögl T, Rief M (2010) Full distance-resolved folding energy landscape of one single protein molecule. Proc Natl Acad Sci USA 107:2013–2018

    PubMed  CAS  Google Scholar 

  • Gräter F, Shen J, Jiang H, Gautel M, Grubmüller H (2005) Mechanicallyinduced titin kinase activation studied by force-probe molecular dynamicssimulations. Biophys J 88:790–804

    PubMed  Google Scholar 

  • Grützner A, Garcia-Manyes S, Kotter S, Badilla CL, Fernandez JM, Linke WA (2009) Modulation of titin-based stiffness by disulfide bonding in the cardiac titin N2-B unique sequence. Biophys J 97:825–834

    PubMed  Google Scholar 

  • Guzmán DL, Randall A, Baldi P, Guan Z (2010) Computational and single-molecule force studies of a macro domain protein reveal a key molecular determinant for mechanical stability. Proc Natl Acad Sci USA 107:1989–1994

    PubMed  Google Scholar 

  • Helmes M, Trombitás K, Centner T, Kellermayer M, Labeit S, Linke WA, Granzier H (1999) Mechanically driven contour-length adjustment in rat cardiac titin’s unique N2B sequence: titin is an adjustable spring. Circ Res 84:1339–1352

    PubMed  CAS  Google Scholar 

  • Hervás R, Oroz J, Galera-Prat A, Goñi O, Valbuena A, Vera AM, Gómez-Sicilia A, Losada-Urzáiz F, Uversky VN, Menéndez M, Laurents DV, Bruix M, Carrión-Vázquez M (2012) Common features at the start of the neurodegeneration cascade. PLoS Biol 10(5):e1001335. doi:10.1371/journal.pbio.10011335

    PubMed  Google Scholar 

  • Hirokawa N, Shiomura Y, Okabe S (1988) Tau proteins: the molecular structure and mode of binding on microtubules. J Cell Biol 107:1449–1459

    PubMed  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    PubMed  CAS  Google Scholar 

  • Ishijima A, Kojima H, Funatsu T, Tokunaga M, Higuchi H, Tanaka H, Yanagida T (1998) Simultaneous observation of individual ATPase and mechanical events by a single myosin molecule during interaction with actin. Cell 92:161–171

    PubMed  CAS  Google Scholar 

  • Jahn TR, Parker MJ, Homans SW, Radford SE (2006) Amyloid formation under physiological conditions proceeds via a native-like folding intermediate. Nat Struct Mol Biol 13:195–201

    PubMed  CAS  Google Scholar 

  • Johnson CP, Tang HY, Carag C, Speicher DW, Discher DE (2007) Forced unfolding of proteins within cells. Science 317:663–666

    PubMed  CAS  Google Scholar 

  • Jolleymore A, Li H (2010) Measuring “unmeasurable” folding kinetics of proteins by single-molecule force spectroscopy. J Mol Biol 402:610–617

    Google Scholar 

  • Junker JP, Rief M (2009) Single-molecule force spectroscopy distinguishes target binding modes of calmodulin. Proc Natl Acad Sci USA 106:14361–14366

    PubMed  CAS  Google Scholar 

  • Junker JP, Hell K, Schlierf M, Neupert W, Rief M (2005) Influence of substrate binding on the mechanical stability of mouse dihydrofolate reductase. Biophys J 89:45–48

    Google Scholar 

  • Junker JP, Ziegler F, Rief M (2009) Ligand-dependent equilibrium fluctuations of single calmodulin molecules. Science 323:633–637

    PubMed  CAS  Google Scholar 

  • Kazmierczak P, Müller U (2012) Sensing sound: molecules that orchestrate mechanotransduction by hair cells. Trends Neurosci 35:220–229

    PubMed  CAS  Google Scholar 

  • Khare SD, Ding F, Gwanmesia KN, Dokholyan NV (2005) Molecular origin of polyglutamine aggregation in neurodegenerative diseases. PLoS Comput Biol 1:230–235

    PubMed  CAS  Google Scholar 

  • Kidd M (1963) Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature 197:192–193

    PubMed  CAS  Google Scholar 

  • Kim HY, Heise H, Fernandez CO, Baldus M, Zweckstetter M (2007) Correlation of amyloid fibril β-structure with the unfolded state of α-synuclein. Chembiochem 8:1671–1674

    PubMed  CAS  Google Scholar 

  • King CY, Tittmann P, Gross H, Gebert R, Aebi M, Wüthrich K (1997) Prion-inducing domain 2–114 of yeast Sup35 protein transforms in vitro into amyloid-like filaments. Proc Natl Acad Sci USA 94:6618–6622

    PubMed  CAS  Google Scholar 

  • Lang MJ, Fordyce PM, Engh AM, Neuman KC, Block SM (2004) Simultaneous, coincident optical trapping and single-molecule fluorescence. Nat Methods 1:133–139

    PubMed  CAS  Google Scholar 

  • Leake MC, Grutzner A, Kruger M, Linke WA (2006) Mechanical properties of cardiac titin’s N2B-region by single-molecule atomic force spectroscopy. J Struct Biol 155:263–272

    PubMed  CAS  Google Scholar 

  • Lee JC, Langen R, Hummel PA, Gray HB, Winkler JR (2004) α-synuclein structures from fluorescence energy-transfer kinetics: implications for the role of the protein in Parkinson’s disease. Proc Natl Acad Sci USA 101:16466–16471

    PubMed  CAS  Google Scholar 

  • Li DY, Brooke B, Davis EC, Mecham RP, Sorensen LK, Boak BB, Eichwald E, Keating MT (1998) Elastin is an essential determinant of arterial morphogenesis. Nature 393:276–280

    PubMed  CAS  Google Scholar 

  • Li H, Oberhauser AF, Redick SD, Carrion-Vazquez M, Erickson HP, Fernandez JM (2001) Multiple conformations of PEVK proteins detected by single-molecule techniques. Proc Natl Acad Sci USA 98:10682–10686

    PubMed  CAS  Google Scholar 

  • Li H, Linke WA, Oberhauser AF, Carrion-Vazquez M, Kerkvliet JG, Lu H, Marszalek PE, Fernandez JM (2002) Reverse engineering of the giant muscle protein titin. Nature 418:998–1002

    PubMed  CAS  Google Scholar 

  • Li H, Wang H-C, Cao Y, Sharma D, Wang M (2008) Configurational entropy modulates the mechanical stability of protein GB1. J Mol Biol 379:871–880

    PubMed  CAS  Google Scholar 

  • Li J, Fernandez JM, Berne J (2010) Water’s role in the force-induced unfolding of ubiquitin. Proc Natl Acad Sci USA 107:19284–19289

    PubMed  CAS  Google Scholar 

  • Li PT, Bustamante C, Tinoco I Jr (2007) Real-time control of the energy landscape by force directs the folding of RNA molecules. Proc Natl Acad Sci USA 104:7039–7044

    PubMed  CAS  Google Scholar 

  • Liang J, Fernandez JM (2011) Kinetic measurements on single-molecule disulfide bond cleavage. J Am Chem Soc 133:3528–3534

    PubMed  CAS  Google Scholar 

  • Linke WA, Rudy DE, Centner T, Gautel M, Witt C, Labeit S, Gregorio CC (1999) I-band titin in cardiac muscle is a three-element molecular spring and is critical for maintaining thin filament structure. J Cell Biol 146:631–644

    PubMed  CAS  Google Scholar 

  • Lu H, Schulten K (1999) Steered molecular dynamics simulations of force-induced protein domain unfolding. Proteins 35:453–463

    PubMed  Google Scholar 

  • Lu H, Schulten K (2000) The key event in force-induced unfolding of titin’s inmunoglobulin domains. Biophys J 79:51–65

    PubMed  CAS  Google Scholar 

  • Lu H, Isralewitz B, Krammer A, Vogel V, Schulten K (1998) Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J 75:662–671

    PubMed  CAS  Google Scholar 

  • Ma L, Xu M, Oberhauser A (2010) Naturally occurring osmolytes modulate the nanomechanical properties of polycystic kidney disease domains. J Biol Chem 285:38438–38443

    PubMed  CAS  Google Scholar 

  • Marchut AJ, Hall CK (2006) Effects of chain length on the aggregation of model polyglutamine peptides: molecular dynamics simulations. Proteins 66:96–109

    Google Scholar 

  • Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C (2003) Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–193

    PubMed  CAS  Google Scholar 

  • Marszalek PE, Lu H, Li H, Carrion-Vazquez M, Oberhauser AF, Schulten K, Fernandez JM (1999) Mechanical unfolding intermediates in titin modules. Nature 402:100–103

    PubMed  CAS  Google Scholar 

  • Martin J (2002) Requirement for GroEL/GroES-dependent protein folding under nonpermissive conditions of macromolecular crowding. Biochemistry 41:5050–5055

    PubMed  CAS  Google Scholar 

  • Matsunaga Y, Komatsuzaki T (2004) Protein folding dynamics: ergodic behavior in principal component space. Aip Conf Proc 708:342–343

    CAS  Google Scholar 

  • Michalet X, Weiss S, Jager M (2006) Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem Rev 106:1785–1813

    PubMed  CAS  Google Scholar 

  • Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580

    PubMed  CAS  Google Scholar 

  • Nagai Y, Inui T, Popiel HA, Fujikake N, Hasegawa K, Urade Y, Goto Y, Naiki H, Toda T (2007) A toxic monomeric conformer of the polyglutamine protein. Nat Struct Biol 14:332–340

    CAS  Google Scholar 

  • Neuman KC, Nagy A (2008) Single-moleculeforcespectroscopy: optical tweezers, magnetictweezers and atomic force microscopy. Nat Methods 5:491–505

    PubMed  CAS  Google Scholar 

  • Ng SP, Rounsevell RWS, Steward A, Geierhaas CD, Williams PM, Paci E, Clarke J (2005) Mechanical unfolding of TNfn3: the unfolding pathway of a fnIII domain probed by protein engineering, AFM and MD simulation. J Mol Biol 350:776–789

    PubMed  CAS  Google Scholar 

  • Oberhauser AF, Marszalek PE, Carrión-Vázquez M, Fernandez JM (1999) Single protein misfolding events captured by atomic force microscopy. Nat Struct Biol 6:1025–1028

    PubMed  CAS  Google Scholar 

  • Oroz J, Valbuena A, Vera AM, Mendieta J, Gomez-Puertas P, Carrion-Vazquez M (2011) Nanomechanics of the cadherin ectodomain: canalization by Ca2+ binding results in a new mechanical element. J Biol Chem 286:9405–9418

    PubMed  CAS  Google Scholar 

  • Oroz J, Hervás R, Carrión-Vázquez M (2012) Unequivocal single-molecule force spectroscopy of proteins by AFM using pFS vectors. Biophys J 102:682–690

    PubMed  CAS  Google Scholar 

  • Peng Q, Li H (2008) Atomic force microscopy reveals parallel mechanical unfolding pathways of T4 lysozyme: evidence for a kinetic partitioning mechanism. Proc Natl Acad Sci USA 105:1885–1890

    PubMed  CAS  Google Scholar 

  • Perez-Jimenez R, Li J, Kosuri P, Sanchez-Romero I, Wiita AP, Rodriguez-Larrea D, Chueca A, Holmgren A, Miranda-Vizuete A, Becker K, Cho SH, Beckwith J, Gelhaye E, Jacquot JP, Gaucher EA, Sanchez-Ruiz JM, Berne BJ, Fernandez JM (2009) Diversity of chemical mechanisms in thioredoxin catalysis revealed by single-molecule force-spectroscopy. Nat Struct Mol Biol 16:890–897

    PubMed  CAS  Google Scholar 

  • Perez-Jimenez R, Inglés-Prieto A, Zhao ZM, Sanchez-Romero I, Alegre-Cebollada J, Kosuri P, Garcia-Manyes S, Kappock TJ, Tanokura M, Holmgren A, Sanchez-Ruiz JM, Gaucher EA, Fernandez JM (2011) Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nat Struct Mol Biol 18:592–596

    PubMed  CAS  Google Scholar 

  • Platt GW, McParland VJ, Kalverda AP, Homans SW, Radford SE (2005) Dynamics in the unfolded state of β 2-microglobulin studied by NMR. J Mol Biol 346:279–294

    PubMed  CAS  Google Scholar 

  • Popa I, Fernández LM, Garcia-Manyes S (2011) Direct quantification of the attempt frequency determining the mechanical unfolding of ubiquitin protein. J Biol Chem 286:31072–31079

    PubMed  CAS  Google Scholar 

  • Qian F, Wei W, Germino G, Oberhauser AF (2005) The nanomechanics of polycystin-1 extracellular region. J Biol Chem 280:40723–40730

    PubMed  CAS  Google Scholar 

  • Rief M, Gautel M, Oesterhelt M, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112

    PubMed  CAS  Google Scholar 

  • Rief M, Pascual J, Saraste M, Gaub HE (1999) Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol 286:553–561

    PubMed  CAS  Google Scholar 

  • Sandal M, Valle F, Tessari I, Mammi S, Bergantino E, Musiani F, Brucale M, Bubacco L, Samorì B (2008) Conformational equilibria in monomeric α-synuclein at the single-molecule level. PLoS Biol 6:99–108

    CAS  Google Scholar 

  • Sarkar A, Caamano S, Fernandez JM (2005) The elasticity of individual titin PEVK exons measured by single molecule atomic force microscopy. J Biol Chem 280:6261–6264

    PubMed  CAS  Google Scholar 

  • Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane HT, Madsen AØ, Riekel C, Eisenberg D (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447:453–457

    PubMed  CAS  Google Scholar 

  • Schlierf M, Rief M (2005) Temperature softening of a protein in single-molecule experiments. J Mol Biol 354:497–503

    PubMed  CAS  Google Scholar 

  • Schlierf M, Berkemeier F, Rief M (2007) Direct observation of active protein folding using lock-in force spectroscopy. Biophys J 93:3989–3998

    PubMed  CAS  Google Scholar 

  • Schuler B (2005) Single-molecule fluorescence spectroscopy of protein folding. Chem Phys Chem 6:1206–1220

    PubMed  CAS  Google Scholar 

  • Schuler B, Lipman EA, Eaton WA (2002) Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 419:743–747

    PubMed  CAS  Google Scholar 

  • Schwaiger I, Schleicher M, Noegel AA, Rief M (2005) The folding pathway of a fast-folding immunoglobulin domain revealed by single-molecule mechanical experiments. EMBO Rep 6:46–51

    PubMed  CAS  Google Scholar 

  • Sgourakis NG, Yan Y, McCallum SA, Wang C, Garcia AE (2007) The Alzheimer’s peptides Aβ40 and 42 adopt distinct conformations in water: a combined MD/NMR study. J Mol Biol 368:1448–1457

    PubMed  CAS  Google Scholar 

  • Serquera D, Lee W, Settanni G, Marszalek PE, Paci E, Itzhaki LS (2010) Mechanical unfolding of an ankyrin repeat protein. Biophys J 98:1294–1301

    PubMed  CAS  Google Scholar 

  • Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid β-protein dimers isolated directly from Alzheimer brains impair synaptic plasticity and memory. Nat Med 14:837–842

    PubMed  CAS  Google Scholar 

  • Sharma D, Feng G, Khor D, Genchev GZ, Lu H, Li H (2008) Stabilization provided by neighboring strands is critical for the mechanical stability of proteins. Biophys J 95:3935–3942

    PubMed  CAS  Google Scholar 

  • Sikora M, Cieplak M (2011) Mechanical stability of multidomain proteins and novel mechanical clamps. Proteins 79:1786–1799

    PubMed  CAS  Google Scholar 

  • Sikora M, Sulowska JI, Cieplak M (2009) Mechanical strength of 17134 model proteins and cystein slipknots. PLoS Comput Biol 5(10):e1000547. doi:10.1371/journal.pcbi.1000547

    PubMed  Google Scholar 

  • Sosnick TR (2004) Comment on “Force-clamp spectroscopy monitors the folding trajectory of a single protein”. Science 306:411b

    Google Scholar 

  • Sotomayor M, Schulten K (2007) Single-molecule experiments in vitro and in silico. Science 316:1144–1148

    PubMed  CAS  Google Scholar 

  • Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990) Semianalytical treatment of solvation for molecular mechanics and dynamics. J Am Chem Soc 112:6127–6129

    CAS  Google Scholar 

  • Terakawa T, Takada S (2011) Multiscale ensemble modeling of intrinsically disordered proteins: p53 N-terminal domain. Biophys J 101:1450–1458

    PubMed  CAS  Google Scholar 

  • Tycko R (2011) Solid-state NMR studies of amyloid fibril structure. Annu Rev Phys Chem 62:279–299

    PubMed  CAS  Google Scholar 

  • Tinnefeld P, Sauer M (2005) Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology. Angew Chem Int Ed 44:2642–2671

    CAS  Google Scholar 

  • Urry DW, Hugel T, Seitz M, Gaub HE, Sheiba L, Dea J, Xu J, Parker T (2002) Elastin: a representative ideal protein elastomer. Philos Trans R Soc Lond B Biol Sci 357:169–184

    PubMed  CAS  Google Scholar 

  • Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384

    PubMed  CAS  Google Scholar 

  • Uversky VN, Oldfield CJ, Dunker AK (2008) Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu Rev Biophys Biomol Struct 37:215–246

    CAS  Google Scholar 

  • Uversky VN, Oldfield CJ, Midic U, Xie H, Xue B, Vucetic S, Iakoucheva LM, Obradovic Z, Dunker AK (2009) Unfoldomics of human diseases: linking protein intrinsic disorder with diseases. BMC Genomics 10(Suppl 1):S7

    PubMed  Google Scholar 

  • Valbuena A, Oroz J, Hervás R, Vera AM, Rodríguez D, Menéndez M, Sulkowska JI, Cieplak M, Carrión-Vázquez M (2009) On the remarkable mechanostability of scaffoldins and the mechanical clamp motif. Proc Natl Acad Sci USA 106:13791–13796

    PubMed  CAS  Google Scholar 

  • Valiaev A, Lim DW, Schmidler S, Clark RL, Chilkoti A, Zauscher S (2008) Hydration and conformational mechanics of single, end-tethered elastin-like polypeptides. J Am Chem Soc 130:10939–10946

    PubMed  CAS  Google Scholar 

  • Vitalis A, Wang X, Pappu RV (2008a) Atomistic simulations of the effects of polyglutamine chain length and solvent quality on conformational equilibria and spontaneous homodimerization. J Mol Biol 384:279–297

    PubMed  CAS  Google Scholar 

  • Vitalis A, Wang X, Pappu RV (2008b) Quantitative characterization of intrinsic disorder in polyglutamine: insights from analysis based on polymer theories. Biophys J 93:1923–1937

    Google Scholar 

  • Vogel V, Sheetz MP (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7:265–275

    PubMed  CAS  Google Scholar 

  • Vogel V, Sheetz MP (2009) Mechanical forces matter in health and disease: from cancer to tissue engineering. In: Vogel V (ed) Nanomedicine. Wiley-VCH, Weinheim, pp 235–303

    Google Scholar 

  • Wallin S, Zeldovich KB, Shakhnovich EI (2007) Folding mechanics of a knotted protein. J Mol Biol 368:884–893

    PubMed  CAS  Google Scholar 

  • Walther KA, Gräter F, Dougan L, Badilla CL, Berne BJ, Fernandez JM (2007) Signatures of hydrophobic collapse in extended proteins captured with force spectroscopy. Proc Natl Acad Sci USA 104:7916–7921

    PubMed  CAS  Google Scholar 

  • Watanabe K, Muhle-Goll C, Kellermayer MS, Labeit S, Granzier H (2002) Molecular mechanics of cardiac titin’s PEVK and N2B spring elements. J Biol Chem 277:11549–11558

    PubMed  CAS  Google Scholar 

  • Wegmann S, Schöler J, Bippes CA, Mandelkow E, Muller DJ (2011) Competing interactions stabilize pro- and anti-aggregant conformations of human tau. J Biol Chem 286:20512–20524

    PubMed  CAS  Google Scholar 

  • Wiita AP, Ainavarapu SRK, Huang HH, Fernandez JM (2006) Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc Natl Acad Sci USA 103:7222–7227

    PubMed  CAS  Google Scholar 

  • Wiita AP, Perez-Jimenez R, Walther KA, Gräter F, Berne BJ, Holmgren A, Sanchez-Ruiz JM, Fernandez JM (2007) Probing the chemistry of thioredoxin catalysis with force. Nature 450:124–127

    PubMed  CAS  Google Scholar 

  • Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

    PubMed  CAS  Google Scholar 

  • Xia F, Thirumalai D, Gräter F (2011) Minimum energy compact structures in force-quench polyubiquitin folding are domain swapped. Proc Natl Acad Sci USA 108:6963–6968

    PubMed  CAS  Google Scholar 

  • Xie XS, Choi PJ, Li GW, Lee NK, Lia G (2008) Single-molecule approach to molecular biology in living bacterial cells. Annu Rev Biophys 37:417–444

    PubMed  CAS  Google Scholar 

  • Xiong K, Zwier MC, Myshakina NS, Burger VM, Asher SA, Chong LT (2011) Direct observations of conformational distributions of intrinsically disordered p53 peptides using UV Raman and explicit solvent simulations. J Phys Chem 115:9520–9527

    CAS  Google Scholar 

  • Yamasaki R, Wu Y, McNabb M, Greaser M, Labeit S, Granzier H (2002) Protein kinase A phosphorylates titin’s cardiac-specific N2B domain and reduces passive tension in rat cardiac myocytes. Circ Res 90:1181–1188

    PubMed  CAS  Google Scholar 

  • Yang M, Teplow D (2008) Amyloid β-protein monomer folding: free-energy surfaces reveal alloform-specific differences. J Mol Biol 384:450–464

    PubMed  CAS  Google Scholar 

  • Yuan J, Chyan C, Zhou H, Chung T, Peng H, Ping G, Yang G (2008) The effects of macromolecular crowding on the mechanical stability of protein molecules. Protein Sci 17:2156–2166

    PubMed  CAS  Google Scholar 

  • Zhang S, Iwata K, Lachenmann M, Peng J, Li S, Stimson ER, Lu Y, Felix AM, Maggio JE, Lee JP (2000) The Alzheimer’s peptide Aβ adopts a collapsed coil structure in water. J Struct Biol 130:130–141

    PubMed  CAS  Google Scholar 

  • Zheng P, Cao Y, Bu T, Straus SK, Li H (2011) Single molecule force spectroscopy reveals that electrostatic interactions affect the mechanical stability of proteins. Biophys J 100:1534–1541

    PubMed  CAS  Google Scholar 

  • Zhuang S, Linhananta A, Li H (2010) Phenotypic effects of Ehlers–Danlos syndrome-associated mutation on the FnIII domain of tenascin-X. Protein Sci 19:2231–2239

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Douglas Laurents (Instituto Química-Física Rocasolano, IQFR-CSIC), Andrés Oberhauser (University of Texas Medical Branch), Marek Cieplak (Polish Academy of Science), Javier Oroz (Centro de Investigaciones Biológicas, CIB-CSIC) and Andrés M. Vera (Instituto Cajal, IC-CSIC) for the critical reading of the manuscript. This work was funded by grants from the Ministerio de Ciencia e Innovación (MICINN-BIO2007-67116), the Consejería de Educación de la Comunidad de Madrid (S-0505/MAT/0283), and the Consejo Superior de Investigaciones Científicas (CSIC- 200620F00) to MCV. We apologize to all researchers whose pioneering work was not cited due to limitations of space.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Carrión-Vázquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hervás, R. et al. (2012). Nanomechanics of Proteins, Both Folded and Disordered. In: Oberhauser, A. (eds) Single-molecule Studies of Proteins. Biophysics for the Life Sciences, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4921-8_1

Download citation

Publish with us

Policies and ethics