Advertisement

Genome Structure of Jatropha curcas L.

  • Shusei Sato
  • Hideki Hirakawa
  • Suguru Tsuchimoto
  • Hiroe Sakai
  • Nakako Shibagaki
  • Sachihiro Matsunaga
  • Kiichi Fukui
  • Satoshi Tabata
Chapter

Abstract

The recent progress in DNA sequencing technology has allowed us to acquire information on the structures of whole genomes of various agronomically important plants in a relatively short period of time. In order to understand the genetic systems carried by Jatropha curcas and to accelerate the process of molecular breeding, comprehensive analyses of genes and the genome of this plant have been conducted using both conventional and advanced technologies, and a large quantity of sequence data has been accumulated. The latest draft sequence of the genome of J. curcas is 297 Mb long, and is presumed to cover 99 % of the gene space, with an average GC content of 33.8 %. By combining with the transcriptome information, a total of 30,203 protein-encoding genes, in addition to the 17,575 transposon-related genes and 2,124 putative pseudogenes, were assigned to the genome. Information on the genomic sequences and genes is available at http://www.kazusa.or.jp/jatropha/.

Keywords

Predicted Amino Acid Sequence Short Vegetative Phase Tentative Consensus Sequence Subterminal Region Hexamer Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful to Kazusa DNA Research Institute Foundation. PBBL is contributed by SEI CSR Foundation, Japan.

References

  1. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y et al (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056CrossRefPubMedGoogle Scholar
  2. Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R et al (2008) Jatropha bio-diesel production and use. Biomass Bioenergy 32:1063–1084CrossRefGoogle Scholar
  3. Alvarez-Buylla ER, Pelaz S, Liljegren SJ, Gold SE, Burgeff C, Ditta GS et al (2000) An ancestral MADS-box duplication occurred before the divergence of plants and animals. Proc Natl Acad Sci USA 97:5328–5333CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  5. Bairoch A, Apweiler R (1996) The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucl Acids Res 24:21–25CrossRefPubMedPubMedCentralGoogle Scholar
  6. Carvalho CR, Clarindoa WR, Praça MM, Araújoa FS, Carels N (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617CrossRefGoogle Scholar
  7. Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen MS, Wang GJ, Wang RL, Wang J, Song SQ, Xu ZF (2011) Analysis of expressed sequence tags from biodiesel plant Jatropha curcas embryos at different developmental stages. Plant Sci 181:696–700CrossRefPubMedGoogle Scholar
  9. Costa GG, Cardoso KC, Del Bem LE, Lima AC, Cunha MA, de Campos-Leite L et al (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genomics 11:462. doi:10.1186/1471-2164-11-462CrossRefPubMedPubMedCentralGoogle Scholar
  10. Devappa RK, Makkar HP, Becker K (2010) Jatropha toxicity–a review. J Toxicol Environ Health B Crit Rev 13:476–507CrossRefPubMedGoogle Scholar
  11. Drews GN, Bowman JL, Meyerowitz EM (1991) Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product. Cell 65:991–1002CrossRefPubMedGoogle Scholar
  12. Eitas TK, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners, and pathways. Curr Opin Plant Biol 13:472–477CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fujino K, Matsuda Y, Sekiguchi H (2009) Transcriptional activity of rice autonomous transposable element Dart. J Plant Physiol 166:1537–1543CrossRefPubMedGoogle Scholar
  14. Gomes KA, Almeida TC, Gesteira AS, Lôbo IP, Guimarães ACR, de Miranda AB et al (2010) ESTs from seeds to assist the selective breeding of Jatropha curcas L. for oil and active compounds. Genomics Insights 3:29–56PubMedPubMedCentralGoogle Scholar
  15. Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560CrossRefPubMedGoogle Scholar
  16. Gu K, Chiam H, Tian D, Yin Z (2011) Molecular cloning and expression of heteromeric ACCase subunit genes from Jatropha curcas. Plant Sci 180:642–649CrossRefPubMedGoogle Scholar
  17. Haas W, Sterk H, Mittelbach M (2002) Novel 12-deoxy-16-hydroxy phorbol diesters isolated from the seed oil of J. curcas. J Nat Prod 65:1434–1440CrossRefPubMedGoogle Scholar
  18. Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu SH (2008) Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol 148:993–1003CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hartmann U, Höhmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21:351–360CrossRefPubMedGoogle Scholar
  20. Hirakawa H, Tsuchimoto S, Sakai H, Nakayama S, Fujishiro T, Kishida Y et al (2012) Upgraded genomic information of Jatropha curcas L. Plant Biotechnol 129:123–130Google Scholar
  21. Huang MX, Hou P, Wei Q, Xu Y, Chen F (2008) A ribosome-inactivating protein (curcin 2) induced from Jatropha curcas can reduce viral and fungal infection in transgenic tobacco. Plant Growth Regul 54:115–123CrossRefGoogle Scholar
  22. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  23. Itoh Y, Hasebe M, Davies E, Takeda J, Ozeki Y (2003) Survival of Tdc transposable elements of the En/Spm superfamily in the carrot genome. Mol Genet Genomics 269:49–59PubMedGoogle Scholar
  24. Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 16:2006–2020CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683–697CrossRefPubMedGoogle Scholar
  26. Jiang N, Bao Z, Temnykh S, Cheng Z, Jiang J, Wing RA et al (2002) Dasheng: a recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice. Genetics 161:1293–1305PubMedPubMedCentralGoogle Scholar
  27. Joshi C, Mathur P, Khare SK (2011) Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. Bioresour Technol 102:4815–4819CrossRefPubMedGoogle Scholar
  28. King AJ, Li Y, Graham IA (2011) Profiling the developing Jatropha curcas L. seed transcriptome by pyrosequencing. Bioenerg Res 4:211–221CrossRefGoogle Scholar
  29. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962CrossRefPubMedGoogle Scholar
  30. Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T et al (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105CrossRefPubMedGoogle Scholar
  31. Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev 21:397–402CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lee S, Choi SC, An G (2008) Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses. Plant J 54:93–105CrossRefPubMedGoogle Scholar
  33. Leseberg CH, Li A, Kang H, Duvall M, Mao L (2006) Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 378:84–94CrossRefPubMedGoogle Scholar
  34. Li CY, Devappa RK, Liu JX, Makkar HPS, Becker K (2010) Toxicity of Jatropha curcas phorbol esters in mice. Food Chem Toxicol 48:620–625CrossRefPubMedGoogle Scholar
  35. Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z et al (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci USA 103:6398–6403CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lin J, Yan F, Tang L, Chen F (2003) Antitumor effects of curcin from seeds of Jatropha curcas. Acta Pharmacol Sin 24:241–246PubMedGoogle Scholar
  37. Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60:3311–3336CrossRefPubMedGoogle Scholar
  38. Lin J, Jin YJ, Zhou X, Wang JY (2010) Molecular cloning and functional analysis of the gene encoding geranylgeranyl diphosphate synthase from J. curcas. Afr J Biotechnol 9:3342–3351Google Scholar
  39. Luo M, Dennis ES, Berger F, Peacock WJ, Chaudhury A (2005) MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) kinase gene, are regulators of seed size in Arabidopsis. Proc Natl Acad Sci USA 102:17531–17536CrossRefPubMedPubMedCentralGoogle Scholar
  40. Luo MJ, Yang XY, Liu WX, Xu Y, Huang P, Yan F et al (2006) Expression, purification and anti-tumor activity of curcin. Acta Biochim Biophys Sin 38:663–668CrossRefPubMedGoogle Scholar
  41. Natarajan P, Parani M (2011) De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L using GS FLX titanium platform of 454 pyrosequencing. BMC Genomics 12:191, 10.1186/1471-2164-12-191CrossRefPubMedPubMedCentralGoogle Scholar
  42. Natarajan P, Kanagasabapathy D, Gunadayalan G, Panchalingam J, Shree N, Sugantham PA et al (2010) Gene discovery from Jatropha curcas by sequencing of ESTs from normalized and full-length enriched cDNA library from developing seeds. BMC Genomics 11:606. doi:10.1186/1471-2164-11-606CrossRefPubMedPubMedCentralGoogle Scholar
  43. Noma K, Ohtsubo H, Ohtsubo E (2000) ATLN elements, LINEs from Arabidopsis thaliana: identification and characterization. DNA Res 7:291–303CrossRefPubMedGoogle Scholar
  44. Pradhan S, Naik SN, Khan MA, Sahoo P (2011) Experimental assessment of toxic phytochemicals in Jatropha curcas: oil, cake, bio-diesel and glycerol. J Sci Food Agric 92:511–519. doi:10.1002/jsfa.4599CrossRefPubMedGoogle Scholar
  45. Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857CrossRefPubMedGoogle Scholar
  46. Qin W, Ming XH, Ying X, Xin SZ, Fang C (2005) Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J Biosci 30:351–357CrossRefPubMedGoogle Scholar
  47. Qin X, Zheng X, Shao C, Gao J, Jiang L, Zhu X (2009) Stress-induced curcin-L promoter in leaves of Jatropha curcas L. and characterization in transgenic tobacco. Planta 230:387–395CrossRefPubMedGoogle Scholar
  48. Saha S, Enugutti B, Rajakumari S, Rajasekharan R (2006) Cytosolic triacylglycerol biosynthetic pathway in oilseeds. Molecular cloning and expression of peanut cytosolic diacylglycerol acyltransferase. Plant Physiol 141:1533–1543CrossRefPubMedPubMedCentralGoogle Scholar
  49. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF et al (2000) Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613–1616CrossRefPubMedGoogle Scholar
  50. Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M et al (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76CrossRefPubMedPubMedCentralGoogle Scholar
  52. Stanke M, Steinkamp R, Waack S, Morgenstern B (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res. 32(Web Server issue):W309-312CrossRefPubMedPubMedCentralGoogle Scholar
  53. Stripe F, Pession-Brizzi A, Lorenzoni E, Strocchi P, Montanaro L, Sperti S (1976) Studies on the proteins from the seeds of Croton tiglium and of Jatropha curcas. Toxic properties and inhibition of protein synthesis in vitro. Biochem J 156:1–6CrossRefGoogle Scholar
  54. The French–Italian Public Consortium for Grapevine Genome Characterization (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467CrossRefGoogle Scholar
  55. Tong L, Shu MP, Wu YD, Dan WM, Ying X, Meng X et al (2006) Characterization of a new stearoyl-acyl carrier protein desaturase gene from Jatropha curcas. Biotechnol Lett 28:657–662CrossRefPubMedGoogle Scholar
  56. Tränkner C, Lehmann S, Hoenicka H, Hanke MV, Fladung M, Lenhardt D et al (2010) Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta 232:1309–1324CrossRefGoogle Scholar
  57. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr & Gray). Science 15:1596–1604CrossRefGoogle Scholar
  58. Wang BB, Brendel V (2004) The ASRG database: identification and survey of Arabidopsis thaliana genes involved in pre-mRNA splicing. Genome Biol 5:R102CrossRefPubMedPubMedCentralGoogle Scholar
  59. Wang CM, Liu P, Yi C, Gu K, Sun F, Li L et al (2011) A first generation microsatellite- and SNP-based linkage map of Jatropha. PLoS One 6(8):e23632, 10.1371/journal.pone.0023632CrossRefPubMedPubMedCentralGoogle Scholar
  60. Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859CrossRefPubMedGoogle Scholar
  61. Xiao J, Zhang H, Niu L, Wang X, Lu X (2011) Evaluation of detoxification methods on toxic and antinutritional composition and nutritional quality of proteins in Jatropha curcas meal. J Agric Food Chem 59:4040–4044CrossRefPubMedGoogle Scholar
  62. Yadav HK, Ranjan A, Asif MH, Mantri S, Sawant SV, Tuli R (2011) EST-derived SSR markers in Jatropha curcas L.: development, characterization, polymorphism, and transferability across the species/genera. Tree Genet Genom 7:207–219CrossRefGoogle Scholar
  63. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M et al (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ye J, Qu J, Bui HTN, Chua NH (2009) Rapid analysis of Jatropha curcas gene functions by virus-induced gene silencing. Plant Biotechnol J 7:964–976CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shusei Sato
    • 1
  • Hideki Hirakawa
    • 1
  • Suguru Tsuchimoto
    • 2
  • Hiroe Sakai
    • 2
  • Nakako Shibagaki
    • 3
  • Sachihiro Matsunaga
    • 4
    • 5
  • Kiichi Fukui
    • 2
    • 6
  • Satoshi Tabata
    • 1
  1. 1.Kazusa DNA Research InstituteKisarazuJapan
  2. 2.Plant Bioengineering for Bioenergy Laboratory, Graduate School of EngineeringOsaka UniversitySuitaJapan
  3. 3.Bioengineering for the Interest of Environmental Sustainability (Sumitomo Electric Industries), Graduate School of EngineeringOsaka UniversitySuitaJapan
  4. 4.Faculty of Science and Technology Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan
  5. 5.Department of Applied Biological ScienceTokyo University of ScienceNodaJapan
  6. 6.Department of Biotechnology, Graduate School of EngineeringOsaka UniversitySuitaJapan

Personalised recommendations