Comparative Genomics in Euphorbiaceae

Chapter

Abstract

Euphorbiaceae is a family of economically important plants such as cassava, rubber tree, Jatropha curcas and castor bean that includes about 322 genera and 8,900 species endemic to diverse habitats extending from arid regions to humid tropics. The genome resources for the important members of this family are being developed. However, lack of significant understanding of the synteny and diversity of genes among members of Euphorbiaceae makes it difficult to design breeding strategies to manipulate genetic stocks. The comparative genomics of fatty acid biosynthesis in selected members of Euphorbiaceae not only would allow the development of candidate gene markers, but also would provide functional basis for selective breeding of oil accumulation and composition in oilseed members of this family. Interestingly, a high rate of EST-SSRs and SSRs transferability has been reported among different genera and comparative analysis between cassava and castor bean genomes has shown genome duplication and synteny among these two economically important species. Although, a number of genomic aspects of Euphorbiaceae have been explored, there is still a long way to unveil other approaches such as development of genetic and comparative maps to accelerate breeding efficiency and increase commercial outputs of economically important plants like Jatropha.

References

  1. Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice and maize genomes. Proc Natl Acad Sci USA 90:7980–7984CrossRefPubMedPubMedCentralGoogle Scholar
  2. Allan G, Williams A, Rabinowicz PD, Chan AP, Ravel J, Keim P (2008) Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet Resour Crop Evol 55:365–378CrossRefGoogle Scholar
  3. Allem AC (1994) The origin of Manihot esculenta Crantz (Euphorbiaceae). Genet Resour Crop Evol 41:133–150CrossRefGoogle Scholar
  4. Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros CF, Sadowski J (2003) Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana: complexity of the comparative map. Mol Genet Genomics 268:656–665PubMedGoogle Scholar
  5. Balakrishnan NP, Chakrabarty T (2007) The family Euphorbiaceae in India: a synopsis of its profile, taxonomy and bibliography. Bishen Singh Mahendra Pal Singh Publishers, Dehra DunGoogle Scholar
  6. Barbieri L, Battellia MG, Stirpe F (1993) Ribosome-inactivating proteins from plants. Biochim Biophys Acta 1154:237–282CrossRefPubMedGoogle Scholar
  7. Barbieri L, Polito L, Bolognesi A, Ciani M, Pelosi E, Farini V et al (2006) Ribosome-inactivating proteins in edible plants and purification and characterization of a new ribosome-inactivating protein from Cucurbita moschata. Biochim Biophys Acta 1760:783–792CrossRefPubMedGoogle Scholar
  8. Barnes S (2002) Comparing Arabidopsis to other flowering plants. Curr Opin Plant Biol 5:128–134CrossRefPubMedGoogle Scholar
  9. Beisson F, Koo AJK, Ruuska S, Schwender J, Pollard M, Thelen JJ et al (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132:681–697CrossRefPubMedPubMedCentralGoogle Scholar
  10. Berchmans HJ, Hirata S (2008) Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour Technol 99:1716–1721CrossRefPubMedGoogle Scholar
  11. Boivin KA, Acarkan RS, Mbulu O, Clarenz R, Schmidt R (2004) The Arabidopsis genome sequence as a tool for genome analysis in Brassicaceae: a comparison of the Arabidopsis and Capsella rubella genomes. Plant Physiol 135:735–744CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bory S, Silva DD, Risterucci AM, Grisoni M, Besse P, Duval MF (2008) Development of microsatellite markers in cultivated vanilla: polymorphism and transferability to other vanilla species. Sci Hortic 115:420–425CrossRefGoogle Scholar
  13. Boutin SR, Young ND, Olson T, Yu ZH, Vallejos CE, Shoemaker RC (1995) Genome conservation among three legume genera detected with DNA markers. Genome 38:928–937CrossRefPubMedGoogle Scholar
  14. Carvalho CR, Clarindo WR, Praça MM, Araújo FS, Carels N (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617CrossRefGoogle Scholar
  15. Ceballos H, Iglesias AC, Perez JC, Dixon A (2004) Cassava breeding: opportunities and challenges. Plant Mol Biol 56:506–516CrossRefGoogle Scholar
  16. Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–956CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cock JH (1985) Cassava: new potential for a neglected crop. Westview Press, BoulderGoogle Scholar
  18. Cordeiro GM, Casu R, McIntyre CL, Manners JM, Henry RJ (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci 160:1115–1123CrossRefPubMedGoogle Scholar
  19. da Silva Nde L, Maciel MR, Batistella CB, Maciel Filho R (2006) Optimization of biodiesel production from castor oil. Appl Biochem Biotechnol 129:405–414CrossRefPubMedGoogle Scholar
  20. Da Silva Ramos LC, Tango JS, Savi A, Leal NR (1984) Variability for oil and fatty acid composition in castorbean varieties. J Am Oil Chem Soc 61:1841–1843CrossRefGoogle Scholar
  21. Devos KM, Gale MD (1997) Comparative genetics in the grasses. Plant Mol Biol 35:3–15CrossRefPubMedGoogle Scholar
  22. Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD (2002) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711PubMedPubMedCentralGoogle Scholar
  23. Fairless D (2007) Biofuel: the little shrub that could – maybe. Nature 449:652–655CrossRefPubMedGoogle Scholar
  24. Feng SP, Li WG, Huang HS, Wang JY, Wu YT (2009) Development, characterization and cross species/genera transferability of EST-SSR markers for rubber tree (Hevea brasiliensis). Mol Breed 23:85–97CrossRefGoogle Scholar
  25. Feuillet C, Keller B (2002) Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Ann Bot 89:3–10CrossRefPubMedPubMedCentralGoogle Scholar
  26. Foster JT, Allan GJ, Chan AP, Rabinowicz PD, Ravel J, Jackson PJ et al (2010) Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis). BMC Plant Biol 10:1–11. doi:10.1186/1471-2229-10-13 CrossRefGoogle Scholar
  27. Fregene M, Angel F, Gomez R, Rodriguez F, Chavariaga P, Roca W et al (1997) A molecular genetic map of cassava. Theor Appl Genet 95:431–441CrossRefGoogle Scholar
  28. Govaerts R, Frodin DG, Radcliffe-Smith A (2000) World checklist and bibliography of Euphorbiaceae (with Pandaceae). Redwood Books, TrowbridgeGoogle Scholar
  29. Gubitz GM, Mittelbach M, Trabi M (1999) Exploitation of the tropical oil seed plant Jatropha curcas L. Bioresour Technol 67:73–82CrossRefGoogle Scholar
  30. Guimarães EP, Ruane J, Scherf BD, Sonnino A, Dargie JD (2007) Marker assisted selection: current status and future perspectives, in crops, livestock, forestry and fish. FAO, RomeGoogle Scholar
  31. Guo YL, Fitz A, Schneeberger K, Ossowski S, Cao J, Weigel D (2011) Genome-wide comparison of nucleotide-binding site-leucine-rich repeat-encoding genes in Arabidopsis. Plant Physiol 157:757–769CrossRefPubMedPubMedCentralGoogle Scholar
  32. Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270:315–323CrossRefPubMedGoogle Scholar
  33. Hall JC, Sytsma KJ, Iltis HH (2002) Phylogeny of Capparaceae and Brassicaceae based on chloroplast sequence data. Am J Bot 89:1826–1842CrossRefPubMedGoogle Scholar
  34. Hartley MR, Lord JM (2004) Genetics of ribosome inactivating proteins. Mini Rev Med Chem 4:487–492CrossRefPubMedGoogle Scholar
  35. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y et al (1998) A high-density rice genetic linkage map with 2275 markers using a single F2 population. Genetics 148: 479–494PubMedPubMedCentralGoogle Scholar
  36. Hayashi M, Miyahara A, Sato S, Kato T, Yoshikawa M, Taketa M et al (2001) Construction of a genetic linkage map of the model legume Lotus japonicus using an intraspecific F2 population. DNA Res 8:301–310CrossRefPubMedGoogle Scholar
  37. IITA (1992) Sustainable food production in sub-Saharan Africa. 1. IITA’s contribution. IITA, IbadanGoogle Scholar
  38. Jennings DL, Hershey CH (1985) Cassava breeding: a decade of progress from international programs. In: Ressel GE (ed) Progress in plant breeding. Butterworths, Boston, pp 89–116CrossRefGoogle Scholar
  39. Jha MM, Mukherjee P, Datta MM (2007) Somatic embryogenesis in Jatropha curcas L. an important biofuel plant. Plant Biotechnol Rep 1:135–140CrossRefGoogle Scholar
  40. Jos JS, Nair NG (1979) Pachytene pairing in relation to pollen fertility in five cultivars of cassava. Cytology (Tokyo) 44:813–820CrossRefGoogle Scholar
  41. Juan L, Fang Y, Lin T, Feng C (2003a) Antitumor effects of curcin from seeds of Jatropha curcas. Acta Pharmacol Sin 24:241–246Google Scholar
  42. Juan L, Yu C, Ying X, Lin T, Fang C (2003b) Cloning and expression of curcin, a ribosome-inactivating protein from the seeds of Jatropha curcas. Acta Bot Sin 45:858–863Google Scholar
  43. King AJ, He W, Cuevas JA, Freudenberger M, Ramiaramanana D, Graham IA (2009) Potential of Jatropha curcas as a source of renewable oil and animal feed. J Exp Bot 60:2897–2905CrossRefPubMedGoogle Scholar
  44. Kliebenstein DJ, Gershenzon J, Mitchell-Olds T (2001) Comparative quantitative trait loci mapping of aliphatic, indolic and benzylic glucosinolate production in Arabidopsis thaliana leaves and seeds. Genetics 159:359–370PubMedPubMedCentralGoogle Scholar
  45. Knight B (1979) Ricin: a potent homicidal poison. Br Med J 1:350–351PubMedGoogle Scholar
  46. Kuittinen H, de Haan AA, Vogl C, Oikarinen S, Leppala J, Koch M et al (2004) Comparing the linkage maps of the close relatives Arabidopsis lyrata and Arabidopsis thaliana. Genetics 168:1575–1584CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses: a review. Ind Crop Prod 28:1–10CrossRefGoogle Scholar
  48. Kunkeaw S, Yoocha T, Sraphet S, Boonchanawiwat A, Boonseng O, Lightfoot D et al (2011) Construction of a genetic linkage map using simple sequence repeat markers from expressed sequence tags for cassava (Manihot esculenta Crantz). Mol Breed 27:67–75CrossRefGoogle Scholar
  49. Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150: 1217–1228PubMedPubMedCentralGoogle Scholar
  50. Lagercrantz U, Lydiate D (1996) Comparative genome mapping in Brassica. Genetics 144: 1903–1910PubMedPubMedCentralGoogle Scholar
  51. Lan TH, DelMonte TA, Reischmann K, Hyman J, Kowalsk SP, McFerson J et al (2000) An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res 10:776–788CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lander ES, Green P, Abrahanson J, Barlow A, Daly MJ, Lincon SE et al (1987) MAPMAKER: an interactive computing package for constructing primary genetic linkages of experimental and natural populations. Genomics 1:174–181CrossRefPubMedGoogle Scholar
  53. Laurie DA, Devos KM (2002) Trends in comparative genetics and their potential impacts on wheat and barley research. Plant Mol Biol 48:729–740CrossRefPubMedGoogle Scholar
  54. Lebot V (2009) Tropical root and tuber crops cassava, sweet potato, yams and aroids, 17th edn. CABI, WallingfordGoogle Scholar
  55. Leitch AR, Lim KY, Leitch IJ, O’Neill M, Chye M, Low F (1998) Molecular cytogenetic studies in rubber, Hevea brasiliensis Muell. Arg. (Euphorbiaceae). Genome 41:464–467CrossRefGoogle Scholar
  56. Lespinasse D, Rodier-Goud M, Grivet L, Leconte A, Legnate H, Seguin M (2000) A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite and isozyme markers. Theor Appl Genet 100:127–138CrossRefGoogle Scholar
  57. Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224–5229CrossRefPubMedPubMedCentralGoogle Scholar
  58. Modi MK, Reddy JRC, Rao BVSK, Prasad RBN (2007) Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour Technol 98:1260–1264CrossRefPubMedGoogle Scholar
  59. Moore G, Foote T, Helentjaris T, Devos K, Kurata N, Gale M (1995) Was there a single ancestral cereal chromosome? Trends Genet 11:81–82CrossRefPubMedGoogle Scholar
  60. Motto M, Lupotto E (2004) The genetics and properties of cereal ribosome-inactivating proteins. Mini Rev Med Chem 4:493–503CrossRefPubMedGoogle Scholar
  61. Mun JH, Kwon SJ, Yang TJ, Seol YJ, Jin M, Kim JA et al (2009) Genome-wide comparative analysis of the Brassica rapa gene space reveals genome shrinkage and differential loss of duplicated genes after whole genome triplication. Genome Biol 10:R111. doi:10.1186/gb-2009-10-10-r111 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Okogbenin E, Marin J, Fregene M (2006) An SSR-based molecular genetic map of cassava. Euphytica 147:433–440CrossRefGoogle Scholar
  63. Olsnes S, Refsnes K, Pihl A (1974) Mechanism of action of the toxic lectins abrin and ricin. Nature 249:627–631CrossRefPubMedGoogle Scholar
  64. Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V et al (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC Genomics 9:1–19. doi:10.1186/1471-2164-9-113 CrossRefGoogle Scholar
  65. Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC et al (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781CrossRefPubMedPubMedCentralGoogle Scholar
  66. Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX et al (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1540CrossRefPubMedPubMedCentralGoogle Scholar
  67. Prochnik S, Marri PR, Desany B et al (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5:88–94CrossRefPubMedPubMedCentralGoogle Scholar
  68. Qin W, Ming-Xing H, Ying X, Xin-Shen Z, Fang C (2005) Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J Biosci 30:351–357CrossRefPubMedGoogle Scholar
  69. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100CrossRefPubMedGoogle Scholar
  70. Raji AA, Anderson JV, Kolade OA, Ugwu CD, Dixon AG, Ingelbrecht IL (2009) Gene-based microsatellites for cassava (Manihot esculenta Crantz): prevalence, polymorphisms, and cross-taxa utility. BMC Plant Biol 9:1–11. doi:10.1186/1471-2229-9-118 CrossRefGoogle Scholar
  71. Ren Y, Zhang Z, Liu J, Staub JE, Han Y, Cheng Z et al (2009) An integrated genetic and cytogenetic map of the cucumber genome. PLoS One 4:1–8. doi:10.1371/journal.pone.0005795, e5795CrossRefGoogle Scholar
  72. Rubin GM, Yandell MD, Wortman JR, Gabor Miklos GL, Nelson CR, Hariharan IK et al (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215CrossRefPubMedPubMedCentralGoogle Scholar
  73. Rutitzky M, Ghiglione HO, Cura JA, Casal JJ, Yanovsky MJ (2009) Comparative genomic analysis of light-regulated transcripts in the Solanaceae. BMC Genomics 10:60–73CrossRefPubMedPubMedCentralGoogle Scholar
  74. Sankoff D, Nadeau JH (2000) Comparative genomics: empirical and analytical approaches to gene order dynamics, map alignment and the evolution of gene families, vol 1, Computational biology series. Kluwer, DordrechtGoogle Scholar
  75. Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M et al (2011) Sequence analysis of the genome of an oil bearing tree, Jatropha curcas L. DNA Res 18:65–76CrossRefPubMedPubMedCentralGoogle Scholar
  76. Schranz EM, Lysak MA, Mitchell-olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542CrossRefPubMedGoogle Scholar
  77. Schultes RE (1990) A brief taxonomic view of the genus Hevea, vol 14, MRRDB monograph. Malaysian Rubber Research and Development Board, Kuala LumpurGoogle Scholar
  78. Sharma A, Chauhan RS (2011) Repertoire of SSRs in the castor bean genome and their utilization in genetic diversity analysis in Jatropha curcas. Comp Funct Genomics 286089:1–9. doi:10.1155/2011/286089 CrossRefGoogle Scholar
  79. Sharma A, Chauhan RS (2012) In silico identification and comparative genomics of candidate genes involved in biosynthesis and accumulation of seed oil in plants. Comp Funct Genomics 914843:1–14. doi:10.1155/2012/914843 CrossRefGoogle Scholar
  80. Snape JW, Laurie DA (1998) Comparative mapping of agronomic trait loci in crop species. In: Chopra VL, Singh RR, Varma A (eds) Crop productivity and sustainability-shaping the future. Proceedings of the international crop science congress, New Delhi, pp 759–771Google Scholar
  81. Souza LM, Mantello CC, Suzuki F, Gazaffi R, Garcia D, Le Guen V et al (2011) Development of a genetic linkage map of rubber tree (Hevea braziliensis) based on microsatellite markers. BMC Proc 5:1–2CrossRefGoogle Scholar
  82. Tangphatsornruang S, Sraphet S, Singh R, Okogbenin E, Fregene M, Triwitayakorn K (2008) Development of polymorphic markers from expressed sequence tags of Manihot esculenta Crantz. Mol Ecol Resour 8:682–685CrossRefPubMedGoogle Scholar
  83. Tarr DE, Alexander HM (2009) TIR–NBS–LRR genes are rare in monocots: evidence from diverse monocot orders. BMC Res Notes 2:1–10. doi:10.1186/1756-0500-2-197 CrossRefGoogle Scholar
  84. Thiel T, Michalek W, Varshney RK, Graner A (2003) Exploiting EST databases for the development of cDNA derived microsatellite markers in barley (Hordeum vulgare L.). Theor Appl Genet 106:411–422PubMedGoogle Scholar
  85. Triwitayakorn K, Chatkulkawin P, Kanjanawattanawong S, Sraphet S, Yoocha T, Sangsrakru D et al (2011) Transcriptome sequencing of Hevea brasiliensis for development of microsatellite markers and construction of a genetic linkage map. DNA Res 18:471–482Google Scholar
  86. Van Ooijen JW, Voorrips RE (2001) JoinMap® version 3.0: software for the calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  87. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG et al (2001) The sequence of the human genome. Science 291:1304–1351CrossRefPubMedGoogle Scholar
  88. Wang WYS, Barratt BJ, Clayton DG, Todd JA (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6:109–118CrossRefPubMedGoogle Scholar
  89. Wang Y, Diehl A, Wu F, Vrebalov J, Giovannoni J, Siepel A et al (2008) Sequencing and comparative analysis of a conserved syntenic segment in the Solanaceae. Genetics 180:391–408CrossRefPubMedPubMedCentralGoogle Scholar
  90. Wang CM, Liu P, Yi C, Gu K, Sun F, Li L et al (2011a) A first generation microsatellite- and SNP-based linkage map of Jatropha. PLoS One 6(8):e23632CrossRefPubMedPubMedCentralGoogle Scholar
  91. Wang Y, Sun S, Liu B, Wang H, Deng J, Liao Y et al (2011b) A sequence based genetic linkage map as a reference for Brassica rapa pseudochromosome assembly. BMC Genomics 12:1–9. doi:10.1186/1471-2164-12-239 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Ware D, Stein L (2003) Comparison of genes among cereals. Curr Opin Plant Biol 6:121–127CrossRefPubMedGoogle Scholar
  93. Ware DH, Jaiswal P, Ni J, Yap IV, Pan X, Clark KY et al (2002) Gramene, a tool for grass genomics. Plant Physiol 130:1606–1613CrossRefPubMedPubMedCentralGoogle Scholar
  94. Weiss EA (1971) Castor, sesame, and safflower. Leonard Hill, LondonGoogle Scholar
  95. Wen M, Wang H, Xia Z, Zou M, Lu C, Wang W (2010) Development of EST-SSR and genomic- SSR markers to assess genetic diversity in Jatropha curcas L. BMC Res Notes 3:1–8. doi:10.1186/1756-0500-3-42 CrossRefGoogle Scholar
  96. Whankaew S, Kanjanawattanawong S, Phumichai C, Smith DR, Narangajavana J, Triwitayakorn K (2011) Cross-genera transferability of (simple sequence repeat) SSR markers among cassava (Manihot esculenta Crantz), rubber tree (Hevea brasiliensis Muell. Arg.) and physic nut (Jatropha curcas L.). Afr J Biotechnol 10:1768–1776Google Scholar
  97. Windsor AJ, Mitchell-Olds T (2006) Comparative genomics as a tool for gene discovery. Curr Opin Biotechnol 17:161–167CrossRefPubMedGoogle Scholar
  98. Xia JH, Liu F, Zhu ZY, Fu J, Feng J, Li J et al (2010) A consensus linkage map of the grass carp (Ctenopharyngodon idella) based on microsatellites and SNPs. BMC Genomics 11:1–16. doi:10.1186/1471-2164-11-135 CrossRefGoogle Scholar
  99. Yan HH, Mudge J, Kim DJ, Larsen D, Shoemaker RC, Cook DR et al (2003) Estimates of conserved microsynteny among the genomes of Glycine max, Medicago truncatula and Arabidopsis thaliana. Theor Appl Genet 106:1256–1265PubMedGoogle Scholar
  100. Yang MF, Liu YJ, Liu Y, Chen H, Chen F, Shen SH (2009) Proteomic analysis of oil mobilization in seed germination and post germination development of Jatropha curcas. J Proteome Res 8:1441–1451CrossRefPubMedGoogle Scholar
  101. Zeng C, Wang W, Zheng Y, Chen X, Bo W, Song S et al (2009) Conservation and divergence of microRNAs and their functions in Euphorbiaceous plants. Nucl Acids Res 38:981–995CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biotechnology and BioinformaticsJaypee University of Information TechnologySolanIndia

Personalised recommendations