Towards the Domestication of Jatropha: The Integration of Sciences



Renewable sources of energy are now necessary in view of the depleting fossil fuel reserves. Biodiesel is an attractive alternative to fossil oil. However, this type of energy is largely based on three industrial food crops for its worldwide supply and will remain marginal in the long term if sources are not diversified. Because of this need, the international community is now searching for second and third generation biofuels. Among the possible sources for such fuels, the oil of Jatropha curcas offers interesting characteristics, but it is a semi-wild species that will require selective breeding to become an industrial crop. There is a strong need for physiological and genetic benchmark descriptors to avoid unproductive agriculture. The purpose of this review is to present essential information about the state of the art biotechnology methods that could be applied to J. curcas to expedite selective breeding and bring it to the level of an industrial crop as rapidly as possible, which is a status that it deserves.


Female Flower Selective Breeding Vegetative Storage Protein Floral Integrator Constitutive Triple Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



N. Carels is grateful to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação Oswaldo Cruz (FIOCRUZ) for providing a research fellowship from the Centro de Desenvolvimento Tecnológico em Saúde (CDTS). This work received financial support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil (no. 471214/2006-0).


  1. Abdelgadir HA, Johnson SD, Van Staden J (2008) Approaches to improve seed production of Jatropha curcas L. S Afr J Bot 74:359CrossRefGoogle Scholar
  2. Abe I, Tanaka H, Abe T, Noguchi H (2007) Enzymatic formation of unnatural cytokinin analogs by adenylate isopentenyltransferase from mulberry. Biochem Biophys Res Commun 355:795–800PubMedCrossRefGoogle Scholar
  3. Achten WMJ, Nielsen LR, Aerts R, Lengkeek AG, Kjær ED, Trabucco A et al (2010) Towards domestication of Jatropha curcas. Biofuels 1:91–107CrossRefGoogle Scholar
  4. Adams-Phillips L, Barry C, Giovannoni J (2004) Signal transduction systems regulating fruit ripening. Trends Plant Sci 9:331–338PubMedCrossRefGoogle Scholar
  5. Adebowale KO, Adedire CO (2006) Chemical composition and insecticidal properties of the underutilized Jatropha curcas seed oil. Afr J Biotechnol 5:901–906Google Scholar
  6. Alexandre C, Moller-Steinbach Y, Schonrock N, Gruissem W, Hennig L (2009) Arabidopsis MSI1 is required for negative regulation of the response to drought stress. Mol Plant 2:675–687PubMedCrossRefGoogle Scholar
  7. Allan G, Williams A, Rabinowicz PD, Chan AP, Ravel J, Keim P (2008) Worldwide genotyping of castor bean germplasm (Ricinus communis L.) using AFLPs and SSRs. Genet Resour Crop Evol 55:365–378CrossRefGoogle Scholar
  8. Alonso JM, Ecker JR (2006) Moving forward in reverse: genetic technologies to enable genome-wide phenomic screens in Arabidopsis. Nat Rev Genet 7:524–536PubMedCrossRefGoogle Scholar
  9. Ambrosi DG, Galla G, Collani S, Barcaccia G (2010a) Cloning and bioinformatic characterization of genes controlling key steps of the fatty acid biosynthesis and lipid breakdown in seeds of Jatropha curcas L. J Biotechnol 150S:19. doi: 10.1016/j.jbiotec.2010.08.061, Special abstractsCrossRefGoogle Scholar
  10. Ambrosi DG, Galla G, Purelli M, Barbi T, Fabbri A, Lucretti S et al (2010b) DNA markers and FCSS analyses shed light on the genetic diversity and reproductive strategy of Jatropha curcas L. Diversity 2:810–836CrossRefGoogle Scholar
  11. Annarao S, Sidhu OP, Roy R, Tuli R, Khetrapal CL (2008) Lipid profiling of developing Jatropha curcas L. seeds using 1H NMR spectroscopy. Bioresour Technol 99:9032–9035PubMedCrossRefGoogle Scholar
  12. Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A et al (2005) Cytokinin oxidase regulates rice grain production. Science 309:741–745PubMedCrossRefGoogle Scholar
  13. Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183PubMedCrossRefGoogle Scholar
  14. Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110CrossRefGoogle Scholar
  15. Atwell S, Huang YS, Vilhjálmsson BJ, Willems G, Horton M, Li Y et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631PubMedPubMedCentralCrossRefGoogle Scholar
  16. Babu RC, Zhang J, Blum A, Ho THD, Wu R, Nguyen HT (2004) HVA, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862CrossRefGoogle Scholar
  17. Barabási AL, Oltvai Z (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113PubMedCrossRefGoogle Scholar
  18. Barkley NA, Wang ML (2008) Application of TILLING and EcoTILLING as reverse genetic approaches to elucidate the function of genes in plants and animals. Curr Genomics 9:212–226PubMedPubMedCentralCrossRefGoogle Scholar
  19. Baroux C, Blanvillain R, Betts H, Batoko H, Craft J, Martinez A et al (2005) Predictable activation of tissuespecific expression from a single gene locus using the pOp/LhG4 transactivation system in Arabidopsis. Plant Biotechnol J 3:91–101PubMedCrossRefGoogle Scholar
  20. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  21. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58CrossRefGoogle Scholar
  22. Basha SD, Sujatha M (2007) Inter and intra-population variability of Jatropha curcas (L.) characterized by RAPD and ISSR markers and development of population-specific SCAR markers. Euphytica 156:375–386CrossRefGoogle Scholar
  23. Baurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664PubMedCrossRefGoogle Scholar
  24. Beló A, Zheng P, Luck S, Shen B, Meyer DJ, Li B et al (2008) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics 279:1–10PubMedCrossRefGoogle Scholar
  25. Berger F (2003) Endosperm: the crossroad of seed development. Curr Opin Plant Biol 6:42–50PubMedCrossRefGoogle Scholar
  26. Berry EW (1929) An eogene tropical forest in the Peruvian desert. Proc Natl Acad Sci USA 15:345–346PubMedPubMedCentralCrossRefGoogle Scholar
  27. Bhatnagar-Mathur P, Reddy DS, Lavanya M, Yamaguchi-Shinozaki K, Sharma KK (2007) Stress inducible expression of Arabidopsis thaliana DREB1A in transgenic peanut (Arachis hypogaea L.) increases transpiration efficiency under water-limiting conditions. Plant Cell Rep 26:2071–2082PubMedCrossRefGoogle Scholar
  28. Bhattacharya A, Datta K, Datta SK (2005) Floral biology, floral resource constraints and pollination limitation in Jatropha curcas L. Pak J Biol Sci 8:456–460CrossRefGoogle Scholar
  29. Blumberg PM (1988) Protein kinase C as the receptor for the phorbol ester tumor promoters: sixth Rhoads memorial award lecture. Cancer Res 48:1–8PubMedGoogle Scholar
  30. Böhlenius H, Huang T, Charbonnel-Campaa L, Brunner AM, Jansson S, Strauss SH et al (2006) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043PubMedCrossRefGoogle Scholar
  31. Bornholdt S (2005) Less is more in modelling large genetic networks. Science 310:450–451CrossRefGoogle Scholar
  32. Bottley A, Xia GM, Koebner RMD (2006) Homoeologous gene silencing in hexaploid wheat. Plant J 47:897–906PubMedCrossRefGoogle Scholar
  33. Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang L et al (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749PubMedPubMedCentralCrossRefGoogle Scholar
  34. Brand L, Horler M, Nuesch E, Vassalli S, Barrell P, Yang W et al (2006) A versatile and reliable two component system for tissue-specific gene induction in Arabidopsis. Plant Physiol 141:1194–1204PubMedPubMedCentralCrossRefGoogle Scholar
  35. Bruner AC, Jung S, Abbott AG, Powell GL (2001) The naturally occurring high oleate oil character in some peanut varieties results from reduced oleoyl-PC desaturase activity from mutation of aspartate 150 to asparagine. Crop Sci 41:522–526CrossRefGoogle Scholar
  36. Cai Y, Sun D, Wu G, Peng J (2010) ISSR-based genetic diversity of Jatropha curcas germplasm in China. Biomass Bioenergy 34:1739–1750CrossRefGoogle Scholar
  37. Carels N (2009) Jatropha curcas: a review. In: Kader J-C, Delseny M (eds) Advances in botanical research. Elsevier, Amsterdam, pp 39–86CrossRefGoogle Scholar
  38. Carels N (2011) The challenge of bioenergies: an overview. In: dos Santos Bernardes MA (ed) Biofuel’s engineering process technology, 1st edn. InTech, Rijeka, pp 23–64Google Scholar
  39. Carvalho CR, Clarindo WR, Praça MM, Araújo FS, Carels N (2008) Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci 174:613–617CrossRefGoogle Scholar
  40. Cato SA, Gardner RC, Kent J, Richardson TE (2001) A rapid PCR-based method for genetically mapping ESTs. Theor Appl Genet 102:296–306CrossRefGoogle Scholar
  41. Chai G, Bai Z, Wei F, King GJ, Wang C, Shi L et al (2010) Brassica GLABRA2 genes: analysis of function related to seed oil content and development of functional markers. Theor Appl Genet 120:1597–1610PubMedCrossRefGoogle Scholar
  42. Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D et al (2010) Draft genome sequence of the oilseed species Ricinus communis. Nat Biotechnol 28:951–959PubMedPubMedCentralCrossRefGoogle Scholar
  43. Chapman SC, Hammer GL, Podlich DW, Cooper M (2002) Linking biophysical and genetic models to integrate physiology, molecular biology and plant breeding. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CABI, New York/Wallingford, pp 167–187Google Scholar
  44. Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nat Rev Genet 10: 783–796PubMedCrossRefGoogle Scholar
  45. Chaturvedi CP, Lodhi N, Ansari SA, Tiwari S, Srivastava R, Sawant SV et al (2007) Mutated TATA-box/TATA binding protein complementation system for regulated transgene expression in tobacco. Plant J 50:917–925PubMedCrossRefGoogle Scholar
  46. Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406PubMedPubMedCentralCrossRefGoogle Scholar
  47. Chen ZJ (2010) Molecular mechanisms of polyploidy and hybrid vigour. Trends Plant Sci 15:57–71PubMedPubMedCentralCrossRefGoogle Scholar
  48. Chen Y, Lübberstedt T (2010) Molecular basis of trait correlations. Trends Plant Sci 15:454–461PubMedCrossRefGoogle Scholar
  49. Chen J, Li WX, Xie DX, Peng JR, Ding SW (2004) Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microRNA in host gene expression. Plant Cell 16:1302–1313PubMedPubMedCentralCrossRefGoogle Scholar
  50. Chen M, Wang QY, Cheng XG, Xu ZS, Li LC, Ye XG et al (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305PubMedCrossRefGoogle Scholar
  51. Cheng Z, Targolli J, Huang X, Wu R (2002) Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Mol Breed 10:71–82CrossRefGoogle Scholar
  52. Chevalier F, Perazza D, Laporte F, Le Hénanff G, Hornitschek P, Bonneville J-M et al (2008) GeBP and GeBP-like proteins are noncanonical leucine-zipper transcription factors that regulate cytokinin response in Arabidopsis. Plant Physiol 146:1142–1154PubMedPubMedCentralCrossRefGoogle Scholar
  53. Chow K-S, Wan K-L, Isa MNM, Bahari A, Tan S-H, Harikrishna K et al (2007) Insights into rubber biosynthesis from transcriptome analysis of Hevea brasiliensis latex. J Exp Bot 58:2429–2440PubMedCrossRefGoogle Scholar
  54. Chuck G, Candela H, Hake S (2009) Big impacts by small RNAs in plant development. Curr Opin Plant Biol 12:81–86PubMedCrossRefGoogle Scholar
  55. Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486PubMedPubMedCentralCrossRefGoogle Scholar
  56. Cooper M, Podlich DW, Micallef KP, Smith OS, Jensen NM, Chapman SC et al (2002) Complexity, quantitative traits and plant breeding: a role for simulation modelling in the genetic improvement of crops. In: Kang MS (ed) Quantitative genetics, genomics and plant breeding. CABI, New York/Wallingford, pp 143–166Google Scholar
  57. Cooper M, van Eeuwijk FA, Hammer GL, Podlich DW, Messina C (2009) Modeling QTL for complex traits: detection and context for plant breeding. Curr Opin Plant Biol 12:231–240PubMedCrossRefGoogle Scholar
  58. Corrado G, Karali M (2009) Inducible gene expression systems and plant biotechnology. Biotechnol Adv 27:733–743PubMedCrossRefGoogle Scholar
  59. Costa GGL, Cardoso KC, Del Bem LEV, Lima AC, Cunha MAS et al (2010) Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. BMC Genomics 11:462PubMedPubMedCentralCrossRefGoogle Scholar
  60. Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381PubMedCrossRefGoogle Scholar
  61. Czapski J, Saniewski M (1992) Stimulation of ethylene production and ethylene-forming enzyme in fruits of the non-ripening nor and rin tomato mutants by methyl jasmonate. J Plant Physiol 139:265–268CrossRefGoogle Scholar
  62. Dalal M, Tayal D, Chinnusamy V, Bansala KC (2009) Abiotic stress and ABA-inducible group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139:137–145PubMedCrossRefGoogle Scholar
  63. Datta MM, Mukherjee P, Ghosh B, Jha TB (2007) In vitro clonal propagation of biodiesel plant (Jatropha curcas L.). Curr Sci 93:1438–1442Google Scholar
  64. Day RC, Herridge RP, Ambrose BA, Macknight RC (2008) Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiol 148:1964–1984PubMedPubMedCentralCrossRefGoogle Scholar
  65. Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L et al (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119PubMedCrossRefGoogle Scholar
  66. Dierking EC, Bilyeu KD (2009) New sources of soybean seed meal and oil composition traits identified through TILLING. BMC Plant Biol 9:89PubMedPubMedCentralCrossRefGoogle Scholar
  67. Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321PubMedCrossRefGoogle Scholar
  68. Dumas C, Rogowsky P (2008) Fertilization and early seed formation. C R Biol 331:715–725PubMedCrossRefGoogle Scholar
  69. Dyson T (1996) Population and food: global trends and future prospects. Routledge, London, p 231Google Scholar
  70. Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712PubMedCrossRefGoogle Scholar
  71. Eswaran N, Parameswaran S, Sathram B, Anantharaman B, Kumar GRK, Tangirala SJ (2010) Yeast functional screen to identify genetic determinants capable of conferring abiotic stress tolerance in Jatropha curcas. BMC Biotechnol 10:23PubMedPubMedCentralCrossRefGoogle Scholar
  72. Ferrari RA, Casarini MB, Marques DA, Siqueira WJ (2009) Evaluation of the chemical ­composition and toxic constituent in physic nut plants from different localities. Braz J Food Technol 12:309–314CrossRefGoogle Scholar
  73. Finkelstein R, Gampala S, Rock C (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14:15–45Google Scholar
  74. Fischer S, Lerman L (1983) DNA fragments differing by single base-pairsubstitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc Natl Acad Sci USA 80:1579–1583PubMedPubMedCentralCrossRefGoogle Scholar
  75. Foidl N, Foidl G, Sanchez M, Mittelbach M, Hackel S (1996) Jatropha curcas L. as a source for the production of biofuel in Nicaragua. Bioresour Technol 58:77–82CrossRefGoogle Scholar
  76. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M et al (2005) AREB1 is a transcription activator of novel ABRE dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17:3470–3488PubMedPubMedCentralCrossRefGoogle Scholar
  77. Fujiwara S, Oda A, Yoshida R, Niinuma K, Miyata K, Tomozoe Y et al (2008) Circadian clock proteins LHY and CCA1 regulate SVP protein accumulation to control flowering in Arabidopsis. Plant Cell 20:2960–2971PubMedPubMedCentralCrossRefGoogle Scholar
  78. Gehring M, Bubb KL, Henikoff S (2009) Extensive demethylation of repetitive elements during seed development underlies gene imprinting. Science 324:1447–1451PubMedPubMedCentralCrossRefGoogle Scholar
  79. Ginwal HS, Rawat OS, Srivastava RL (2004) Seed source variation in growth performance and oil yield of Jatropha curcas Linn in central India. Silvae Genet 53:186–192Google Scholar
  80. Goel G, Makkar HPS, Francis G, Becker K (2007) Phorbol esters: structure, biological activity, and toxicity in animals. Int J Toxicol 26:279–288PubMedCrossRefGoogle Scholar
  81. Gomes KA, Almeida TC, Gesteira AS, Lôbo IP, Guimarães ACR, de Miranda AB et al (2010) ESTs from seeds to assist the selective breeding of Jatropha curcas L. for oil and active compounds. Genomics Insights 3:29–56PubMedPubMedCentralGoogle Scholar
  82. Gosal SS, Wani SH, Kang MS (2009) Biotechnology and drought tolerance. J Crop Improv 23:19–54CrossRefGoogle Scholar
  83. Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH et al (2003) Spectrum of chemically induced mutations from a large-scale reverse genetic screen in Arabidopsis. Genetics 164:731–740PubMedPubMedCentralGoogle Scholar
  84. Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal flowering responses in Arabidopsis and the cereals. Ann Bot 103:1165–1172PubMedPubMedCentralCrossRefGoogle Scholar
  85. Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174:246–263CrossRefGoogle Scholar
  86. Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ et al (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci USA 106:17835–17840PubMedPubMedCentralCrossRefGoogle Scholar
  87. Hammer GL, Chapman S, van Oosterom E, Podlich DW (2005) Trait physiology and crop modelling as a framework to link phenotypic complexity to underlying genetic systems. Aust J Agric Res 56:947–960CrossRefGoogle Scholar
  88. Hammer GL, van Oosterom E, McLean G, Chapman SC, Broad I, Harland P et al (2010) Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. J Exp Bot 61:2185–2202PubMedCrossRefGoogle Scholar
  89. He P, Osaki M, Takebe M, Shinano T, Wasaki J (2005) Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J Exp Bot 56:1117–1128PubMedCrossRefGoogle Scholar
  90. Heck G, Perry S, Nichols K, Fernandez D (1995) AGL15, a MADS domain protein expressed in developing embryos. Plant Cell 7:1271–1282PubMedPubMedCentralCrossRefGoogle Scholar
  91. Hongyo T, Buzard G, Calvert R, Weghorst CM (1993) Cold SSCP: a simple, rapid and nonradioactive method for optimized single-strand conformation polymorphism analyses. Nucleic Acids Res 21:3637–3642PubMedPubMedCentralCrossRefGoogle Scholar
  92. Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet 113:497–507PubMedCrossRefGoogle Scholar
  93. Ingelbrecht I, van Houdt H, van Montagu M, Depicker A (1994) Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc Natl Acad Sci USA 91:10502–10506PubMedPubMedCentralCrossRefGoogle Scholar
  94. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Physiol Plant Mol Biol 47:377–403CrossRefGoogle Scholar
  95. Jackson SD (2009) Plant responses to photoperiod. New Phytol 181:517–531PubMedCrossRefGoogle Scholar
  96. Jang IC, Oh SJ, Seo JS, ChoiW B, Song SI, Kim CH et al (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524PubMedPubMedCentralCrossRefGoogle Scholar
  97. Jassbi AR, Gase K, Hettenhausen C, Schmidt A, Baldwin IT (2008) Silencing geranylgeranyl diphosphate synthase in Nicotiana attenuata dramatically impairs resistance to tobacco hornworm. Plant Physiol 46:974–986CrossRefGoogle Scholar
  98. Jha TB, Mukherjee P, Datta MM (2007) Somatic embryogenesis in Jatropha curcas Linn., an important biofuel plant. Plant Biotechnol Rep 1:135–140CrossRefGoogle Scholar
  99. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53PubMedCrossRefGoogle Scholar
  100. Jordi W, Schapendonk A, Davelaar E, Stoopen GM, Pot CS, De Visser R et al (2000) Increased cytokinin levels in transgenic P-SAG12-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning. Plant Cell Environ 23:279–289CrossRefGoogle Scholar
  101. Joshi M, Mishra A, Jha B (2011) Efficient genetic transformation of Jatropha curcas L. by microprojectile bombardment using embryo axes. Ind Crops Prod 33:67–77CrossRefGoogle Scholar
  102. Jubera MA, Janagoudar BS, Biradar DP, Ravikumar RL, Koti RV, Patil SJ (2009) Genetic diversity analysis of elite Jatropha curcas (L.) genotypes using randomly amplified polymorphic DNA markers. Karnataka J Agric Sci 22:293–295Google Scholar
  103. Juhász ACP, Pimenta S, Soares BO, Morais DLB, Rabello HO (2009) Floral biology and artificial polinization in physic nut in the north of Minas Gerais state, Brazil. Pesqui Agropecu Bras 44:1073–1077CrossRefGoogle Scholar
  104. Julier B, Huguet T, Chardon F, Ayadi R, Pierre JB, Prosperi JM et al (2007) Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula. Theor Appl Genet 114:1391–1406PubMedCrossRefGoogle Scholar
  105. Jullien PE, Berger F (2009) Gamete-specific epigenetic mechanisms shape genomic imprinting. Curr Opin Plant Biol 12:637–642PubMedCrossRefGoogle Scholar
  106. Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573PubMedCrossRefGoogle Scholar
  107. Jung S, Powell G, Moore K, Abbott A (2000) The high oleate trait in the cultivated peanut [Arachis hypogaea L.]. II. Molecular basis and genetics of the trait. Mol Gen Genet 263:806–811PubMedCrossRefGoogle Scholar
  108. Kalimuthu K, Paulsamy S, Senthilkumar R, Sathya M (2007) In vitro propagation of the biodiesel plant Jatropha curcas L. Plant Tissue Cult Biotechnol 17:137–147Google Scholar
  109. Kao C-H (2004) Multiple-interval mapping for quantitative trait loci controlling endosperm traits. Genetics 167:1987–2002PubMedPubMedCentralCrossRefGoogle Scholar
  110. Karanam KR, Bhavanasi J (2010) Jatropha interspecific hybrid. US Patent US 2010/0287820 A1 1–6Google Scholar
  111. Kauffman SA (1993) The origins of order: self-organization and selection in evolution. Oxford University Press, New York, p 709Google Scholar
  112. Kaushik N, Roy S, Biswas GC (2006) Screening of Indian germplasm of Jatropha curcas for selection of high oil yielding plants. Indian J Agroforest 8:54–57Google Scholar
  113. Kaushik N, Kumar K, Kumar S, Kaushik N, Roy S (2007) Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions. Biomass Bioenergy 31:497–502CrossRefGoogle Scholar
  114. Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D et al (2003) An overview of APSIM, a model designed for farming systems simulation. Eur J Agron 18:267–288CrossRefGoogle Scholar
  115. Khemkladngoen N, Cartagena J, Shibagaki N, Fukui K (2011) Adventitious shoot regeneration from juvenile cotyledons of a biodiesel producing plant, Jatropha curcas L. J Biosci Bioeng 111:67–70PubMedCrossRefGoogle Scholar
  116. Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, Lee IC et al (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation ofARR2 in Arabidopsis. Proc Natl Acad Sci USA 103:814–819PubMedPubMedCentralCrossRefGoogle Scholar
  117. Kirst M, Myburg AA, De Leon JP, Kirst ME, Scott J, Sederoff R (2004) Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of Eucalyptus. Plant Physiol 135:2368–2378PubMedPubMedCentralCrossRefGoogle Scholar
  118. Knowles PF, Hill AB (1964) Inheritance of fatty acid content in the seed oil of a safflower introduction from Iran. Crop Sci 4:406–409CrossRefGoogle Scholar
  119. Kochhar S, Singh SP, Kochhar VK (2008) Effect of auxins and associated biochemical changes during clonal propagation of the biofuel plant – Jatropha curcas. Biomass Bioenergy 32:1136–1143CrossRefGoogle Scholar
  120. Krishnan PR, Paramathma M (2009) Potentials and Jatropha species wealth of India. Curr Sci 97:1000–1004Google Scholar
  121. Kristensen TN, Pedersen KS, Vermeulen CJ, Loeschcke V (2009) Research on inbreeding in the ‘omic’ era. Trends Ecol Evol 25:44–52PubMedCrossRefGoogle Scholar
  122. Kumar N, Reddy MP (2010) Plant regeneration through the direct induction of shoot buds from petiole explants of Jatropha curcas: a biofuel plant. Ann Appl Biol 156:367–375CrossRefGoogle Scholar
  123. Kumar A, Sharma S (2008) An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. Ind Crops Prod 28:1–10CrossRefGoogle Scholar
  124. Kumar GR, Sakthivel K, Sundaram RM, Neeraja CN, Balachandran SM, Shobha Rani N et al (2010a) Allele mining in crops: prospects and potentials. Biotechnol Adv 28:451–461PubMedCrossRefGoogle Scholar
  125. Kumar N, Vijay Anand KG, Sudheer PDVN, Sarkar T, Reddy MP, Radhakrishnan T et al (2010b) Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants. Ind Crops Prod 32:41–47CrossRefGoogle Scholar
  126. Kumar N, Vijay Anand KG, Reddy MP (2010c) Shoot regeneration from cotyledonary leaf explants of Jatropha curcas: a biodesel plant. Acta Physiol Plant 32:917–924CrossRefGoogle Scholar
  127. Kumar N, Vijay Anand KG, Reddy MP (2011) In vitro regeneration from petiole explants of non-toxic Jatropha curcas. Ind Crops Prod 33:146–151CrossRefGoogle Scholar
  128. Kunkeaw S, Tangphatsornruang S, Smith DR, Triwitayakorn K (2010) Genetic linkage map of cassava (Manihot esculenta Crantz) based on AFLP and SSR markers. Plant Breed 129: 112–115CrossRefGoogle Scholar
  129. Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y et al (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655PubMedCrossRefGoogle Scholar
  130. Latha R, Rubia L, Bennett J, Swaminathan MS (2004) Allele mining for stress tolerance genes in Oryza species and related germplasm. Mol Biotechnol 27:101–108PubMedCrossRefGoogle Scholar
  131. Laux T, Mayer K, Berger J, Jurgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96PubMedGoogle Scholar
  132. Laviola BG, Rosado TB, Bhering LL, Kobayashi AK, de Resende MDV (2010) Genetic parameters and variability in physic nut accessions during early developmental stages. Pesqui Agropecu Bras 45:1117–1123Google Scholar
  133. Lespinasse D, Rodier-Goud M, Grivet L, Leconte A, Legnate H, Seguin M (2000) A saturated genetic linkage map of rubber tree (Hevea spp.) based on RFLP, AFLP, microsatellite, and isozyme markers. Theor Appl Genet 100:127–138CrossRefGoogle Scholar
  134. Lewis RS, Linger LR, Wolff MF, Wernsman EA (2007) The negative influence of N-mediated TMV resistance on yield in tobacco: linkage drag versus pleiotropy. Theor Appl Genet 115:169–178PubMedCrossRefGoogle Scholar
  135. Li D, Liu C, Shen L, Wu Y, Chen H, Robertson M et al (2008a) A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 15:110–120PubMedCrossRefGoogle Scholar
  136. Li M, Li H, Jiang H, Pan X, Wu G (2008b) Establishment of an Agrobacterium-mediated cotyledon disc transformation method for Jatropha curcas. Plant Cell Tissue Organ Cult 92:173–181CrossRefGoogle Scholar
  137. Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z et al (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci USA 103:6398–6403PubMedPubMedCentralCrossRefGoogle Scholar
  138. Lin J, Yan F, Tang L, Chen F (2003) Antitumor effects of curcin from seeds of Jatropha curcas. Acta Pharmacol Sin 24:241–246PubMedGoogle Scholar
  139. Lin J, Jin YJ, Zhou X, Wang JY (2010) Molecular cloning and functional analysis of the gene encoding geranylgeranyl diphosphate synthase from J. curcas. Afr J Biotechnol 9:3342–3351Google Scholar
  140. Liu Q, Chen YQ (2009) Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response. Biochem Biophys Res Commun 384:1–5PubMedCrossRefGoogle Scholar
  141. Liu Q, Chen YQ (2010) A new mechanism in plant engineering: the potential roles of microRNAs in molecular breeding for crop improvement. Biotechnol Adv 28:301–307PubMedCrossRefGoogle Scholar
  142. Liu B, Vega JM, Segal G, Abbo S, Rodova M, Feldman M (1998) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome 41:272–277CrossRefGoogle Scholar
  143. Liu Q, Singh S, Green A (2002) High-oleic and high-stearic cottonseed oils: nutritionally improved cooking oils developed using gene silencing. J Am Coll Nutr 21:205S–211SPubMedCrossRefGoogle Scholar
  144. Liu X, Hua X, Guo J, Qi D, Wang L, Liu Z et al (2008) Enhanced tolerance to drought stress in transgenic tobacco plants overexpressing. Biotechnol Lett 30:1275–1280PubMedCrossRefGoogle Scholar
  145. Liu B, Xu C, Zhao N, Qi B, Kimatu JN, Pang J et al (2009a) Rapid genomic changes in polyploid wheat and related species: implications for genome evolution and genetic improvement. J Genet Genomics 36:519–528PubMedCrossRefGoogle Scholar
  146. Liu Q, Zhang YC, Wang CY, Luo YC, Huang QJ, Chen SY et al (2009b) Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett 583:723–728PubMedCrossRefGoogle Scholar
  147. Liu Z, Zhu Y, Gao J, Yu F, Dong A, Shen WH (2009c) Molecular and reverse genetic characterization of Nucleosome Assembly Protein1 (NAP1) genes unravels their function in transcription and nucleotide excision repair in Arabidopsis thaliana. Plant J 59:27–38PubMedCrossRefGoogle Scholar
  148. Lokko Y, Anderson JV, Rudd S, Raji A, Horvath D, Mikel MA et al (2007) Characterization of an 18,166 EST dataset for cassava (Manihot esculenta Crantz) enriched for drought-responsive genes. Plant Cell Rep 26:1605–1618PubMedCrossRefGoogle Scholar
  149. Loureiro J, Rodriguez E, Dolezel J, Santos C (2006) Comparison of four nuclear isolation buffers for plant DNA flow cytometry. Ann Bot 98:679–689PubMedPubMedCentralCrossRefGoogle Scholar
  150. Luo CW, Li K, Chen Y, Sun YY (2007) Floral display and breeding system of Jatropha curcas L. Forest Stud China 9:114–119CrossRefGoogle Scholar
  151. Luo Y, Liu YB, Dong YX, Gao XQ, Zhang YS (2009) Expression of a putative alfalfa helicase increases tolerance to abiotic stress in Arabidopsis by enhancing the capacities for ROS scavenging and osmotic adjustment. J Plant Physiol 166:385–394PubMedCrossRefGoogle Scholar
  152. Ma QH (2008) Genetic engineering of cytokinins and their application to agriculture. Crit Rev Biotechnol 28:213–232PubMedCrossRefGoogle Scholar
  153. Ma CX, Casella G, Wu R (2002) Functional mapping of quantitative trait loci underlying the character process: a theoretical framework. Genetics 161:1751–1762PubMedPubMedCentralGoogle Scholar
  154. Makarevich G, Villar CB, Erilova A, Kohler C (2008) Mechanism of PHERES1 imprinting in Arabidopsis. J Cell Sci 121:906–912PubMedCrossRefGoogle Scholar
  155. Makkar HPS, Becker K, Sporer F, Wink M (1997) Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J Agric Food Chem 45:3152–3157CrossRefGoogle Scholar
  156. Makkar HPS, Kumar V, Oyeleye OO, Akinleye AO, Angulo-Escalante MA, Becker K (2011) Jatropha platyphylla, a new non-toxic Jatropha species: physical properties and chemical constituents including toxic and antinutritional factors of seeds. Food Chem 125:63–71CrossRefGoogle Scholar
  157. Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis auxin response factor17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17:1360–1375PubMedPubMedCentralCrossRefGoogle Scholar
  158. Malosetti M, Visser RGF, Celis-Gamboa C, van Eeuwijk FA (2006) QTL methodology for response curves on the basis of non-linear mixed models, with an illustration to senescence in potato. Theor Appl Genet 113:288–300PubMedCrossRefGoogle Scholar
  159. Martinez-Garcia JF, Virgos-Soler A, Prat S (2002) Control of photoperiod-regulated tuberization in potato by the Arabidopsis flowering-time gene CONSTANS. Proc Natl Acad Sci USA 99: 15211–15216PubMedPubMedCentralCrossRefGoogle Scholar
  160. Martínez-Herrera J, Siddhuraju P, Francis G, Dávila-Ortíz G, Becker K (2006) Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. Food Chem 96:80–89CrossRefGoogle Scholar
  161. Matzke MA, Matzke AJ (2004) Planting the seeds of a new paradigm. PLoS Biol 2:582–586CrossRefGoogle Scholar
  162. Matzke M, Aufsatz W, Kanno T, Daxinger L, Papp I, Mette MF et al (2004) Genetic analysis of RNA-mediated transcriptional gene silencing. Biochim Biophys Acta 1677:129–141PubMedCrossRefGoogle Scholar
  163. McKersie BD, Bowley SR, Harjanto E, Leprince O (1996) Water-deficit tolerance and field per­formance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111: 1177–1181PubMedPubMedCentralGoogle Scholar
  164. Meinke D (1992) A homoeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science 258:1647–1650PubMedCrossRefGoogle Scholar
  165. Michaels SD, Amasino RM (1999) Flowering Locus C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956PubMedPubMedCentralCrossRefGoogle Scholar
  166. Mishra DK (2009) Selection of candidate plus phenotypes of Jatropha curcas L. using method of paired comparisons. Biomass Bioenergy 33:542–545CrossRefGoogle Scholar
  167. Misra M, Misra AN (2010) Jatropha: the biodiesel plant biology, tissue culture and genetic transformation – a review. Int J Pure Appl Sci Technol 1:11–24Google Scholar
  168. Montoya T, Nomura T, Yokota T, Farrar K, Harrison K, Jones JGD et al (2005) Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. Plant J 42:262–269PubMedCrossRefGoogle Scholar
  169. Nagy A, Perrimon N, Sandmeyer S, Plasterk R (2003) Tailoring the genome: the power of genetic approaches. Nat Genet 33:276–284PubMedCrossRefGoogle Scholar
  170. Nahar NM, Waris A, Azam MM (2005) Prospects and potential of fatty acid methyl esters of some non-traditional seed oils for use as biodiesel in India. Biomass Bioenergy 29:293–302CrossRefGoogle Scholar
  171. Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439PubMedCrossRefGoogle Scholar
  172. Okogbenin E, Marin J, Fregene M (2006) An SSR-based molecular genetic map of cassava. Euphytica 147:433–440CrossRefGoogle Scholar
  173. Okogbenin E, Marin J, Fregene M (2008) QTL analysis for early yield in a pseudo F2 population of cassava. Afr J Biotechnol 7:131–138Google Scholar
  174. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989) Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2770PubMedPubMedCentralCrossRefGoogle Scholar
  175. Pan BZ, Xu ZF (2010) Benzyladenine treatment significantly increases the seed yield of the biofuel plant Jatropha curcas. J Plant Growth Regul 30:166–174CrossRefGoogle Scholar
  176. Pan J, Fu Q, Xu ZF (2010) Agrobacterium tumefaciens-mediated transformation of biofuel plant Jatropha curcas using kanamycin selection. Afr J Biotechnol 9:6477–6481Google Scholar
  177. Park YD, Papp I, Moscone EA, Iglesias VA, Vaucheret H, Matzke AJM et al (1996) Gene silencing mediated by promoter homology occurs at the level of transcription and results in meiotically heritable alterations in methylation and gene activity. Plant J 9:183–194PubMedCrossRefGoogle Scholar
  178. Park BJ, Liu Z, Kanno A, Kameya T (2005a) Genetic improvement of Chinese cabbage for salt and drought tolerance by constitutive expression of a B. napus LEA gene. Plant Sci 169:553–558CrossRefGoogle Scholar
  179. Park BJ, Liu Z, Kanno A, Kameya T (2005b) Increased tolerance to salt and water deficit stress in transgenic lettuce (Lactuca sativa L.) by constitutive expression of LEA. Plant Growth Regul 45:165–171CrossRefGoogle Scholar
  180. Parthiban KT, Kumar RS, Thiyagarajan P, Subbulakshmi V, Vennila S, Rao MG (2009) Hybrid progenies in Jatropha – a new development. Curr Sci 96:815–823Google Scholar
  181. Pastori GM, Foyer CH (2002) Common components, networks and pathways of cross tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiol 129:460–468PubMedPubMedCentralCrossRefGoogle Scholar
  182. Patel M, Jung S, Moore K, Powell G, Ainsworth C, Abbott A (2004) High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theor Appl Genet 108:1492–1502PubMedCrossRefGoogle Scholar
  183. Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC et al (2010) NINJA connects the co-repressor TOPLESS to jasmonate signaling. Nature 464:788–793PubMedPubMedCentralCrossRefGoogle Scholar
  184. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE et al (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261PubMedCrossRefGoogle Scholar
  185. Pereira-Netto AB (2007) Genes involved in brassinosteroids’s metabolism and signal transduction pathways. Braz Arch Biol Technol 50:605–618CrossRefGoogle Scholar
  186. Perl A, Perl-Treves R, Galili S, Aviv D, Shalgi E, Malkin S et al (1993) Enhanced oxidative-stress defense in transgenic potato overexpressing tomato Cu, Zn superoxide dismutase. Theor Appl Genet 85:568–576PubMedCrossRefGoogle Scholar
  187. Pham AT, Lee JD, Shannon JG, Bilyeu KD (2010) Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol 10:195PubMedPubMedCentralCrossRefGoogle Scholar
  188. Podlich DW, Winkler CR, Cooper M (2004) Mapping as you go: an effective approach for marker-assisted selection of complex traits. Crop Sci 44:1560–1571CrossRefGoogle Scholar
  189. Pogány M, Koehl J, Heiser I, Elstner EF, Barna B (2004) Juvenility of tobacco induced by cytokinin gene introduction decreases susceptibility to tobacco necrosis virus and confers tolerance to oxidative stress. Physiol Mol Plant Pathol 65:39–47CrossRefGoogle Scholar
  190. Popluechai S, Breviario D, Mulpuri M, Makkar HPS, Raorane M, Reddy AR et al (2009) Narrow genetic and apparent phenetic diversity in Jatropha curcas: initial success with generating low phorbol ester interspecific hybrids. doi: 10101/npre.2009.2782.1Google Scholar
  191. Qin F, Kakimoto M, Sakuma Y, Maruyama K, Osakabe Y, Tran LSP et al (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stress in Zea mays L. Plant J 50:54–69PubMedCrossRefGoogle Scholar
  192. Quin L, Prins P, Jones JT, Popeijus H, Smant G, Bakker J et al (2001) GenEST, a powerful bidirectional link between cDNA sequence data and gene expression profiles generated by cDNA-AFLP. Nucleic Acids Res 29:1616–1622CrossRefGoogle Scholar
  193. Raju AJS, Ezradanam V (2002) Pollination ecology and fruiting behavior in a monoecious species, Jatropha curcas L. (Euphorbiaceae). Curr Sci 83:1395–1398Google Scholar
  194. Ranade SA, Srivastava AP, Rana TS, Srivastava J, Tuli R (2008) Easy assessment of diversity in Jatropha curcas L. plants using two single-primer amplification reaction (SPAR) methods. Biomass Bioenergy 32:533–540CrossRefGoogle Scholar
  195. Rao SSR, Vardhini BV, Sujatha E, Anuradha S (2002) Brassinosteroids – a new class of phytohormones. Curr Sci 82:1239–1245Google Scholar
  196. Reddy KRK, Swamy NR, Bahadur B (1987) Cross incompatibility between Ricinus and Jatropha. Plant Cell Incomp Newslett USA 17:60–65Google Scholar
  197. Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606PubMedCrossRefGoogle Scholar
  198. Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S et al (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636PubMedPubMedCentralCrossRefGoogle Scholar
  199. Romero C, Belles JM, Vaya JL, Serrano R, Culianez-Macia FA (1997) Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants: pleiotropic phenotypes include drought tolerance. Planta 201:293–297PubMedCrossRefGoogle Scholar
  200. Rosado TB, Laviola BG, Faria DA, Pappas MR, Bhering LL, Quirino B et al (2010) Molecular markers reveal limited genetic diversity in a large germplasm collection of the biofuel crop Jatropha curcas L. in Brazil. Crop Sci 50:2372–2382CrossRefGoogle Scholar
  201. Sakakibara H, Takei K, Hirose N (2006) Interactions between nitrogen and cytokinin in the regulation of metabolism and development. Trends Plant Sci 11:440–448PubMedCrossRefGoogle Scholar
  202. Saranga Y, Menz M, Jiang CX, Wright RJ, Yakir D, Paterson AH (2001) Genomic dissection of genotype x environment interactions conferring adaptation of cotton to arid conditions. Genome Res 11:1988–1995PubMedCrossRefGoogle Scholar
  203. Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M et al (2011) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76PubMedPubMedCentralCrossRefGoogle Scholar
  204. Schmidt E, Guzzo F, Toonen M, De Vries S (1997) Aleucinerich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062PubMedGoogle Scholar
  205. Schmidt A, Wächtler B, Temp U, Krekling T, Séguin A, Gershenzon J (2010) A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiol 152:639–655PubMedPubMedCentralCrossRefGoogle Scholar
  206. Scott RJ, Spielman M (2004) Epigenetics: imprinting in plants and mammals – the same but different? Curr Biol 14:R201–R203PubMedCrossRefGoogle Scholar
  207. Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S et al (2006) The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes Dev 20:898–912PubMedPubMedCentralCrossRefGoogle Scholar
  208. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold, and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292PubMedCrossRefGoogle Scholar
  209. Serrano G, Herrera-Palau R, Romero JM, Serrano A, Coupland G, Valverde F (2009) Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling. Curr Biol 19:359–368PubMedCrossRefGoogle Scholar
  210. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217–223PubMedCrossRefGoogle Scholar
  211. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437–441PubMedCrossRefGoogle Scholar
  212. Simon R, Igeno MI, Coupland G (1996) Activation of floral meristem identity genes in Arabidopsis. Nature 384:59–62PubMedCrossRefGoogle Scholar
  213. Singh SP, Singh D (2010) Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renew Sust Energ Rev 14:200–216CrossRefGoogle Scholar
  214. Singh A, Reddy MP, Chikara J, Singh S (2010) A simple regeneration protocol from stem explants of Jatropha curcas – a biodiesel plant. Ind Crops Prod 31:209–213CrossRefGoogle Scholar
  215. Sivamani E, Bahieldin A, Wraith JM (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9PubMedCrossRefGoogle Scholar
  216. Soomro R, Memon RA (2007) Establishment of callus and suspension culture in Jatropha curcas. Pakistan J Bot 39:2431–2441Google Scholar
  217. Stam M (2009) Paramutation: a heritable change in gene expression by allelic interactions in trans. Mol Plant 2:578–588PubMedCrossRefGoogle Scholar
  218. Staswick PE (2007) JAZing up jasmonate signaling. Trends Plant Sci 13:66–71CrossRefGoogle Scholar
  219. Stoutjesdijk PA, Hurlestone C, Singh SP, Green AG (2000) High-oleic acid Australian Brassica napus and B. juncea varieties produced by cosuppression of endogenous Delta12 desaturases. Biochem Soc Trans 28:938–940PubMedCrossRefGoogle Scholar
  220. Súarez MC, Bernal A, Gutiérrez J, Tohme J, Fregene M (2000) Developing expressed sequence tags (ESTs) from polymorphic transcript-derived fragments (TDFs) in cassava (Manihot esculenta Crantz). Genome 43:62–67PubMedCrossRefGoogle Scholar
  221. Sudheer PDVN, Balaji C, Reddy MP (2009a) Genetic diversity and phylogenetic analysis of genus Jatropha based on nrDNA ITS sequence. Mol Biol Rep. doi: 10.1007/s11033-008-9401-6
  222. Sudheer PDVN, Singh S, Mastan SG, Patel J, Reddy MP (2009b) Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol Biol Rep 36:1357–1364CrossRefGoogle Scholar
  223. Sudheer PDVN, Mastan PSG, Rahman H, Reddy MP (2010a) Molecular characterization and genetic diversity analysis of Jatropha curcas L. in India using RAPD and AFLP analysis. Mol Biol Rep 37:2249–2257CrossRefGoogle Scholar
  224. Sudheer PDVN, Mastan SG, Rahman H, Prakash CR, Singh S, Reddy MP (2010b) Cross species amplification ability of novel microsatellites isolated from Jatropha curcas and genetic relationship with sister taxa. Cross species amplification and genetic relationship of Jatropha using novel microsatellites. Mol Biol Rep. doi: 10.1007/s11033-010-0241-9
  225. Sudheer PDVN, Rahman H, Mastan PSG, Reddy MP (2010c) Isolation of novel microsatellites using FIASCO by dual probe enrichment from Jatropha curcas L. and study on genetic equilibrium and diversity of Indian population revealed by isolated microsatellites. Mol Biol Rep 37:3785–3793PubMedCrossRefGoogle Scholar
  226. Sujatha M, Reddy TP, Mahasi MJ (2008) Role of biotechnological interventions in the improvement of castor (Ricinus communis L.) and Jatropha curcas L. Biotechnol Adv 26:424–435PubMedCrossRefGoogle Scholar
  227. Sun Q-B, Li L-F, Yong L, Wu G-J, Ge X-J (2008) SSR and AFLP markers reveal low genetic diversity in the biofuel plant Jatropha curcas in China. Crop Sci 48:1865–1870CrossRefGoogle Scholar
  228. Sunil N, Varaprasad KS, Sivaraj N, Kumar TS, Abraham B, Prasad RBN (2008) Assessing Jatropha curcas L. germplasm in situ – a case study. Biomass Bioenergy 32:198–202CrossRefGoogle Scholar
  229. Sunil N, Sujatha M, Kumar V, Vanaja M, Basha SD, Varaprasad KS (2011) Correlating the phenotypic and molecular diversity in Jatropha curcas L. Biomass Bioenergy 35:1085–1096CrossRefGoogle Scholar
  230. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019PubMedPubMedCentralCrossRefGoogle Scholar
  231. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two cu/zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065PubMedPubMedCentralCrossRefGoogle Scholar
  232. Tang H, Sezen U, Paterson AH (2010) Domestication and plant genomes. Curr Opin Plant Biol 13:160–166PubMedCrossRefGoogle Scholar
  233. Tatikonda L, Wani SP, Kannan S, Beerelli N, Sreedevi TK, Hoisington DA et al (2009) AFLP-based molecular characterization of an elite germplasm collection of Jatropha curcas L., a biofuel plant. Plant Sci 176:505–513PubMedCrossRefGoogle Scholar
  234. Thiemann A, Fu J, Schrag TA, Melchinger AE, Frisch M, Scholten S (2010) Correlation between parental transcriptome and field data for the characterization of heterosis in Zea mays L. Theor Appl Genet 120:401–413PubMedCrossRefGoogle Scholar
  235. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442–445PubMedPubMedCentralCrossRefGoogle Scholar
  236. Turck F, Fornara F, Coupland G (2008) Regulation and identity of florigen: Flowering Locus T moves center stage. Annu Rev Plant Biol 59:573–594PubMedCrossRefGoogle Scholar
  237. Vasudevan R, Ramashandran S (2010) Somatic embryogenesis of Jatropha curcas from ovules. US Patent WO 2010/011184 A1 1–21Google Scholar
  238. Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16:123–132PubMedCrossRefGoogle Scholar
  239. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedPubMedCentralCrossRefGoogle Scholar
  240. Wagner A (2002) Estimating coarse gene network structure from large scale gene perturbation data. Genome Res 12:309–315PubMedPubMedCentralCrossRefGoogle Scholar
  241. Wang G, Dixon RA (2009) Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc Natl Acad Sci USA 106:9914–9919PubMedPubMedCentralCrossRefGoogle Scholar
  242. Wang Y, Li J (2006) Genes controlling plant architecture. Curr Opin Biotechnol 17:123–129PubMedCrossRefGoogle Scholar
  243. Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279PubMedCrossRefGoogle Scholar
  244. Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005a) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17:2204–2216PubMedPubMedCentralCrossRefGoogle Scholar
  245. Wang YJ, Hao YJ, Zhang ZG, Chen T, Zhang JS, Chen SY (2005b) Isolation of trehalose-6-phosphate phosphatase gene from tobacco and its functional analysis in yeast cells. J Plant Physiol 162:215–223PubMedCrossRefGoogle Scholar
  246. Wang X, Song W, Yang Z, Wang Y, Tang Z, Xu C (2009a) Improved genetic mapping of endosperm traits using NCIII and TTC designs. J Hered 100:496–500PubMedCrossRefGoogle Scholar
  247. Wang X, Xu C, Wu R, Larkins BA (2009b) Genetic dissection of complex endosperm traits. Trends Plant Sci 14:391–398PubMedCrossRefGoogle Scholar
  248. Wen M, Wang H, Xia Z, Zou M, Lu C, Wang W (2010) Development of EST-SSR and genomic-SSR markers to assess genetic diversity in Jatropha curcas L. BMC Res Notes 3:42PubMedPubMedCentralCrossRefGoogle Scholar
  249. Williams L, Carles CC, Osmont KS, Fletcher JC (2005) A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc Natl Acad Sci USA 102:9703–9708PubMedPubMedCentralCrossRefGoogle Scholar
  250. Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133:4211–4218PubMedCrossRefGoogle Scholar
  251. Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110:249–257PubMedPubMedCentralGoogle Scholar
  252. Yang JH, Han SJ, Yoon EK, Lee WS (2006) Evidence of an auxin signal pathway, microRNA167- ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res 34:1892–1899PubMedPubMedCentralCrossRefGoogle Scholar
  253. Yi C, Zhang S, Liu X, Bui HTN, Hong Y (2010) Does epigenetic polymorphism contribute to phenotypic variances in Jatropha curcas L. BMC Plant Biol 10:259PubMedPubMedCentralCrossRefGoogle Scholar
  254. Zhang H, Ogas J (2009) An epigenetic perspective on developmental regulation of seed genes. Mol Plant 2:610–627PubMedCrossRefGoogle Scholar
  255. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201PubMedCrossRefGoogle Scholar
  256. Zhang JF, Qi CK, Pu HM, Chen S, Chen F, Gao J-Q et al (2008) QTL identification for fatty acid content in rapeseed (Brassica napus L.). Acta Agron Sin 34:54–60CrossRefGoogle Scholar
  257. Zheng P, Allen WB, Roesler K, Williams ME, Zhang S, Li J et al (2008) A phenylalanine in DGAT is a key determinant of oil content and composition in maize. Nat Genet 40:367–372PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Fundação Oswaldo Cruz (FIOCRUZ), Instituto Oswaldo Cruz (IOC)Laboratório de Genômica Funcional e BioinformáticaRio de JanerioBrazil

Personalised recommendations