Advertisement

Two-Dimensional Fluid Queues with Temporary Assistance

  • Guy Latouche
  • Giang T. NguyenEmail author
  • Zbigniew Palmowski
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 27)

Abstract

Stochastic fluid models have a wide range of applications such as water reservoir operational control, industrial and computer engineering, risk analysis, environmental analysis, and telecommunications. In particular, they have been used in telecommunication modeling since the seminal article [3]. With the advent of differentiated services, buffers have, in a very natural way, become multidimensional. To give another example, that of decentralized mobile networks, callers transmit data via each other’s equipment, and it is necessary to determine the appropriate fractions of caller capacity, be it buffer space or power, that may be allocated to other users.

Notes

Acknowledgements

This work was subsidized by the ARC Grant AUWB-08/13-ULB 5 financed by the Ministère de la Communauté Française de Belgique. The second author also gratefully acknowledges the hospitality of the Mathematical Institute at the University of Wrocław, where part of this work was done.

References

  1. 1.
    Aggarwal, V., Gautam, N., Kumara, S.R.T., Greaves, M.: Stochastic fluid flow models for determining optimal switching thresholds with an applicaiton to agent task scheduling. Perfom. Eval. 59(1), 19–46 (2004)CrossRefGoogle Scholar
  2. 2.
    Akar, N., Sohraby, K.: Inifinite- and finite-buffer Markov fluid queues: a unified analysis. J. Appl. Probab. 41, 557–569 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Anick, D., Mitra, D., Sondhi, M.M.: Stochastic theory of a data handling system with multiple sources. Bell Syst. Tech. J. 61(8), 1871–1894 (1982)MathSciNetGoogle Scholar
  4. 4.
    Bean, N., O’Reilly, M.M., Taylor, P.G.: Algorithms for return probabilities for stochastic fluid flows. Stoch. Models 21(1), 149–184 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bean, N.G., O’Reilly, M.M.: Performance measures of a multi-layer Markovian fluid model. Ann. Oper. Res. 160(1), 99–120 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bean, N.G., O’Reilly, M.M., Taylor, P.G.: Hitting probabilities and hitting times for stochastic fluid flows. Stoch. Process. Appl. 115, 1530–1556 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bean, N.G., O’Reilly, M.M., Taylor, P.G.: Algorithms for the Laplace–Stieltjes transforms of first return times for stochastic fluid flows. Methodol. Comput. Appl. Probab. 10, 381–408 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bean, N.G., O’Reilly, M.M., Taylor, P.G.: Hitting probabilities and hitting times for stochastic fluid flows: the bounded model. Probab. Eng. Inf. Sci. 32(1), 121–147 (2009)MathSciNetCrossRefGoogle Scholar
  9. 9.
    da Silva Soares, A., Latouche, G.: Further results on the similarity between fluid queues and QBDs. In: Latouche, G., Taylor, P.G., (eds) Proceedings of the 4th International Conference on Matrix-Analytic Methods. Matrix-Analytic Methods: Theory and Applications, pp. 89–106, World Scientific, Singapore (2002)Google Scholar
  10. 10.
    da Silva Soares, A., Latouche, G.: Matrix-analytic methods for fluid queues with finite buffers. Perform. Eval. 63, 295–314 (2006)CrossRefGoogle Scholar
  11. 11.
    da Silva Soares, A., Latouche, G.: Fluid queues with level dependent evolution. Eur. J. Oper. Res. 196, 1041–1048 (2009)zbMATHCrossRefGoogle Scholar
  12. 12.
    Elwalid, A.I., Mitra, D.: Analysis, approximations and admission control of a multi-service multiplexing system with priorities. In: Proceedings of INFOCOM’95, vol. 2, pp. 463–472. IEEE Computer Society, New York (1995)Google Scholar
  13. 13.
    Elwalid, A.I., Mitra, D.: Effective bandwidth of general Markovian traffic sources and admission control of high speed networks. IEEE Trans. Netw. 1(3), 329–343 (1993)CrossRefGoogle Scholar
  14. 14.
    Gautam, N., Quality of Service for Multi-class Traffic in High-speed Networks, Ph.D. Thesis, Dept. of OR, University of North Carolina, Chapel Hill, (1997)Google Scholar
  15. 15.
    Gautam, N., Kulkani, V.G., Palmowski, Z., Rolski, T.: Bounds for fluid models driven by semi-Markov inputs. Probab. Eng. Inf. Sci. 13, 429–475 (1999)zbMATHCrossRefGoogle Scholar
  16. 16.
    Kelly, F.P.: Notes on Effective Bandwidths, vol. 4, pp. 141–168. Oxford University Press, Oxford (1996)Google Scholar
  17. 17.
    Kosten, L.: Stochastic theory of a multi-entry buffer, part 1. Delft Prog. Rep. F 1(1), 10–18 (1974)MathSciNetGoogle Scholar
  18. 18.
    Mahabhashyam, S.R., Gautam, N., Kumara, S.R.T.: Resource-sharing queueing systems with fluid-flow traffic. Oper. Res. 56(3), 728–744 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Mitra, D.: Stochastic theory of a fluid model of producers and consumers coupled by a buffer. Adv. Appl. Probab. 20, 646–676 (1988)zbMATHCrossRefGoogle Scholar
  20. 20.
    Narayanan, A., Kulkani, V.G.: First passage times in fluid models with an application to two-priority fluid systems. In: IEEE International Computer Performance and Dependability Symposium, pp. 166–175 (1996)Google Scholar
  21. 21.
    Ramaswami, V.: Matrix analytic methods for stochastic fluid flows. In: Smith, D., Hey, P. (eds.) Proceedings of the 16th International Teletraffic Congress, Teletraffic Engineering in a Competitive World, pp. 1019–1030. Elsevier Science B. V. NYGoogle Scholar
  22. 22.
    Roger, L.C.G.: Fluid models in queueing theory and Wiener-Hopf factorization of Markov chains. Adv. Appl. Probab. 4, 390–413 (1994)CrossRefGoogle Scholar
  23. 23.
    Stern, T.E., Elwalid, A.I.: Analysis of separable Markov-modulated rate models for information-handling systems. Adv. Appl. Probab. 23, 105–139 (1991)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Guy Latouche
    • 1
  • Giang T. Nguyen
    • 1
    Email author
  • Zbigniew Palmowski
    • 2
  1. 1.Université Libre de BruxellesDépartement d’InformatiqueBrusselsBelgium
  2. 2.University of WrocławMathematical InstituteWrocławPoland

Personalised recommendations