Ceres: Its Origin, Evolution and Structure and Dawn’s Potential Contribution

  • Thomas B. McCord
  • Julie Castillo-Rogez
  • Andy Rivkin

Abstract

Ceres appears likely to be differentiated and to have experienced planetary evolution processes. This conclusion is based on current geophysical observations and thermodynamic modeling of Ceres’ evolution. This makes Ceres similar to a small planet, and in fact it is thought to represent a class of objects from which the inner planets formed. Verification of Ceres’ state and understanding of the many steps in achieving it remains a major goal. The Dawn spacecraft and its instrument package are on a mission to observe Ceres from orbit. Observations and potential results are suggested here, based on number of science questions.

Keywords

Dawn Ceres Evolution of ice-silicate bodies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.F. A’Hearn, P.D. Feldman, Water vaporization on Ceres. Icarus 98, 54–60 (1992) CrossRefGoogle Scholar
  2. B.G. Bills, F. Nimmo, Forced obliquities and moments of inertia of Ceres and Vesta. Icarus (2011, in press). doi:10.1016/j.icarus.2010.09.002 Google Scholar
  3. H. Campins, K. Hargrove, N. Pinilla-Alonso, E.S. Howell, M.S. Kelley, J. Licandro, T. Mothé-Diniz, Y. Fernández, J. Ziffer, Water ice and organics on the surface of the asteroid 24 Themis. Nature 464, 1320–1321 (2010). doi:10.1038/nature09029 CrossRefGoogle Scholar
  4. R. Canup, Origin of the terrestrial planets and the Earth-Moon system. Phys. Today 56 (2004) Google Scholar
  5. B. Carry et al., Near-infrared mapping and physical properties of the dwarf-planet Ceres. Astron. Astrophys. 478, 235–244 (2008) CrossRefGoogle Scholar
  6. J.C. Castillo-Rogez, P.G. Conrad, Habitability potential of Ceres, a warm icy body in the Asteroid Belt, in Astrobiology Science Conference 2010: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond. Abstract #5302, 2010 Google Scholar
  7. J.C. Castillo-Rogez, J.I. Lunine, Evolution of Titan’s rocky core constrained by Cassini observations. Geophys. Res. Lett. 37, L20205 (2010). doi:10.1029/2010GL044398 CrossRefGoogle Scholar
  8. J.C. Castillo-Rogez, T.B. McCord, Ceres’ evolution and present state constrained by shape data. Icarus 205, 443–459 (2010). doi:10.1016/j.icarus.2009.04.008 CrossRefGoogle Scholar
  9. J.C. Castillo-Rogez, B. Schmidt, Geophysical evolution of the Themis family parent body. Geophys. Res. Lett. 37, L10202 (2010). doi:10.1029/2009GL042353 CrossRefGoogle Scholar
  10. M.A. Chamberlain, M.V. Sykes, G.A. Esquerdo, Ceres lightcurve analysis—Period determination. Icarus 188, 451–456 (2007) CrossRefGoogle Scholar
  11. B.A. Cohen, R.F. Coker, Modeling of liquid water on CM meteorite parent bodies and implications for amino acid racemization. Icarus 145, 369–381 (2000). doi:10.1006/icar.1999.63299 CrossRefGoogle Scholar
  12. P. Descamps, F. Marchis, T. Michalowski, J. Berthier, J. Pollock, P. Wiggins, M. Birlan, F. Colas, F. Vachier, S. Fauvaud, M. Fauvaud, J.-P. Sareyan, F. Pilcher, D.A. Klinglesmith, A giant crater on 90 Antiope? Icarus 203, 102–111 (2009). doi:10.1016/j.icarus.2009.04.022 CrossRefGoogle Scholar
  13. S.J. Desch, J.C. Cook, T.C. Dogget, S.B. Porter, Thermal evolution of Kuiper belt objects, with implications for cryovolcanism. Icarus 202, 694–714 (2009). doi:10.1016/j.icarus.2009.03.009 CrossRefGoogle Scholar
  14. F.P. Fanale, J.R. Salvail, The water regime of asteroid (1) Ceres. Icarus 82, 97–110 (1989) CrossRefGoogle Scholar
  15. R.E. Grimm, H.Y. McSween, Water and the thermal evolution of carbonaceous chondrite parent bodies. Icarus 82, 244–280 (1989) CrossRefGoogle Scholar
  16. A.R. Hildebrand, T.D. Jones, L.A. Lebofsky, Is Ceres differentiated? Meteoritics 22, 410 (1987) Google Scholar
  17. T.V. Johnson, P.R. Estrada, Origin of the Saturn system, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S.M. Krimigis (Springer, Berlin, 2009) Google Scholar
  18. T.V.V. King, R.N. Clark, W.M. Calvin, D.M. Sherman, R.H. Brown, Evidence for ammonium-bearing minerals on Ceres. Science 255, 1551–1553 (1992) CrossRefGoogle Scholar
  19. G.A. Krasinsky, E.V. Pitjeva, M.V. Vasilyev, E.I. Yagudina, Hidden mass in the Asteroid Belt. Icarus 158, 98–105 (2002). doi:10.1006/icar.2002.6837 CrossRefGoogle Scholar
  20. L.A. Lebofsky, M.V. Sykes, E.F. Tedesco, G.J. Veeder, D.L. Matson, R.H. Brown, J.C. Gradie, M.A. Feierberg, R.J. Rudy, A refined ‘standard’ thermal model for asteroids based on observations of 1 Ceres and 2 Pallas. Icarus 68, 239–251 (1986). doi:10.1016/0019-1035(86)90021-7 CrossRefGoogle Scholar
  21. H.F. Levison, W.F. Bottke, M. Gounelle, A. Morbidelli, D. Nesvorný, K. Tsiganis, Contamination of the asteroid belt by primordial trans-Neptunian objects. Nature 460, 364–366 (2009) CrossRefGoogle Scholar
  22. J.-Y. Li, L.A. McFadden, J.Wm. Parker, E.F. Young, S.A. Stern, P.C. Thomas, C.T. Russell, M.V. Sykes, Photometric analysis of 1 Ceres and surface mapping from HST observations. Icarus 182, 143–160 (2006) CrossRefGoogle Scholar
  23. J.I. Lunine, Origin of water ice in the Solar system, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween Jr. (Univ. of Arizona, Tucson, 2006), pp. 309–319 Google Scholar
  24. T.B. McCord, C. Sotin, Ceres: Evolution and current state. J. Geophys. Res. 110, E05009 (2005) CrossRefGoogle Scholar
  25. T.B. McCord, L.A. McFadden, C.T. Russell, C. Sotin, P.C. Thomas, Ceres, Vesta, and Pallas: Protoplanets, not Asteroids. Eos Trans. AGU 87, 105–109 (2006). doi:10.1029/2006E0100002 CrossRefGoogle Scholar
  26. T.B. McCord, L.A. Taylor, J.-Ph. Combe, G. Kramer, C.M. Pieters, J.M. Sunshine, R.N. Clark, Sources and physical processes responsible for OH/H2O in the Lunar soil discovered by the Moon Mineralogy Mapper (M3). J. Geophys. Res. (2011, in press) Google Scholar
  27. W.B. McKinnon, Could Ceres be a refugee from the Kuiper Belt? in Asteroids Comets Meteors 2008, LPI Contrib. 1405, Paper 8389, 2008 Google Scholar
  28. R.E. Milliken, A.S. Rivkin, Brucite and carbonate assemblages from altered olivine-rich materials on Ceres. Nat. Geosci. 2, 258–261 (2009). doi:10.1038/ngeo478 CrossRefGoogle Scholar
  29. A. Morbidelli, H.F. Levison, K. Tsiganis, R. Gomes, Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–465 (2005). doi:10.1038/nature03540 CrossRefGoogle Scholar
  30. O. Mousis, Y. Alibert, On the composition of ices incorporated in Ceres. Mon. Not. R. Astron. Soc. 358, 188–192 (2005). doi:10.1111/j.1365-2966.2005.08777.x CrossRefGoogle Scholar
  31. O. Mousis, Y. Alibert, D. Hestroffer, U. Marboeuf, C. Dumas, B. Carry, J. Horner, F. Selsis, Origin of volatiles in the main belt. Mon. Not. R. Astron. Soc. 383, 1269–1280 (2008). doi:10.1111/j.1365-2966.2007.12653.x CrossRefGoogle Scholar
  32. D.P. O’Brien, K.J. Walsh, A. Morbidelli, S.N. Raymond, A.M. Mandell, J.C. Bond, Early giant planet migration in the solar system: geochemical and cosmochemical implications for terrestrial planet formation. Bull. Am. Astron. Soc. 42, 948 (2010) Google Scholar
  33. J.-P. Perrillat, I. Daniel, K.T. Koga, B. Reynard, H. Cardon, W. A. Crichton, Kinetics of antigorite dehydration: A real-time X-ray diffraction study. Earth Planet. Sci. Lett. 236, 899–913 (2005). doi:10.1016/j.epsl.2005.06.006 CrossRefGoogle Scholar
  34. C.M. Pieters, J.N. Goswami, R.N. Clark, M. Annadurai, J. Boardman, B. Buratti, J.-P. Combe, M.D. Dyar, R. Green, J.W. Head, C. Hibbitts, M. Hicks, P. Isaacson, R. Klima, G. Kramer, S. Kumar, E. Livo, S. Lundeen, E. Malaret, T. McCord, J. Mustard, J. Nettles, N. Petro, M.C. Runyon, M. Staid, J. Sunshine, L.A. Taylor, S. Tomplins, P. Varanasi, Character and spatial distribution of OH/H2O on the surface of the moon seen M3 on Chandrayaan-1. Science 326, 568–572 (2009) CrossRefGoogle Scholar
  35. E. Pitjeva, The dynamic estimation of the mass of the main asteroid belt, in Highlights of Astronomy, vol. 13, ed. by O. Engvold. Presented at the XXVth General Assembly of the IAU—2003, Sydney, Australia, 13–26 July 2003 (Astronomical Society of the Pacific, San Francisco, 2005), pp. 772–773. ISBN 1-58381-086-2 Google Scholar
  36. E.V. Pitjeva, E.M. Standish, Proposals for the masses of the three largest asteroids, the Moon-Earth mass ratio and the astronomical unit. Celest. Mech. Dyn. Astron. 103, 365–372 (2009) CrossRefGoogle Scholar
  37. A.S. Rivkin, J.P. Emery, Detection of ice and organics on an asteroidal surface. Nature 464, 1322–1323 (2010). doi:10.1038/nature09028 CrossRefGoogle Scholar
  38. A.S. Rivkin, et al. The case for Ceres: Report to the Planetary Science Decadal Survey Committee, 2009 Google Scholar
  39. A.S. Rivkin et al., Space Sci. Rev. (2011, this issue) Google Scholar
  40. P. Rousselot et al., A search for escaping water from Ceres’ poles, in Asteroids Comets Meteors 2008, LPI Contrib. 1405, Paper 8337, 2008 Google Scholar
  41. B.E. Schmidt, P.C. Thomas, J.M. Bauer, J.-Y. Li, L.A. McFadden, M.J. Mutchler, S.C. Radcliffe, A.S. Rivkin, C.T. Russell, J.Wm. Parker, S.A. Stern, The shape and surface variation of 2 Pallas from the Hubble Space Telescope. Science 326, 275–279 (2009). doi:10.1126/science.1177734 CrossRefGoogle Scholar
  42. R. Shapiro, D. Schulze-Makuch, The search for alien life in our Solar System: Strategies and priorities. Astrobiology 9, 335–343 (2008) CrossRefGoogle Scholar
  43. C. Thomas, J.Wm. Parker, L.A. McFadden, C.T. Russell, S.A. Stern, M.V. Sykes, E.F. Young, Differentiation of the asteroid Ceres as revealed by its shape. Nature 437, 224–226 (2005). doi:10.1038/nature03938 CrossRefGoogle Scholar
  44. D. Turrini, G. Magni, A. Coradini, Probing the history of Solar system through the cratering records on Vesta and Ceres (2009). arXiv:0902.3579v1
  45. J.H. Waite, W.S. Lewis, B. Magee, J.I. Lunine, W.B. McKinnon, C.R. Glein, O. Mousis, D.T. Young, T. Brockwell, J. Westlake, M.-J. Nguyen, B. Teolis, H. Niemann, W. Kasprzak, R. McNutt, M. Perry, W.-H. Ip, Ammonia, radiogenic Ar, organics, and deuterium measured in the plume of Saturn’s icy moon Enceladus. Nature 460, 487–490 (2009). doi:10.1038/nature08153 CrossRefGoogle Scholar
  46. K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A. Mandell, Origin of the Asteroid Belt and Mars’ small mass. Bull. Am. Astron. Soc. 42, 947 (2010) Google Scholar
  47. L. Wilson, K. Keil, L.B. Browning, A.N. Krot, W. Bourcier, Early aqueous alteration, explosive disruption, and re-processing of asteroids. Meteorit. Planet. Sci. 34, 541–557 (1999) CrossRefGoogle Scholar
  48. M.Y. Zolotov, On the composition and differentiation of Ceres. Icarus (2009). doi:10.1016/j.icarus.2009.06.011

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Thomas B. McCord
    • 1
  • Julie Castillo-Rogez
    • 2
  • Andy Rivkin
    • 3
  1. 1.The Bear Fight InstituteWinthropUSA
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of PlanetologyPasadenaUSA
  3. 3.Applied Physics LaboratoryJohn Hopkins UniversityLaurelUSA

Personalised recommendations