Global Geodesic Properties of Gödel-type SpaceTimes

  • Rossella Bartolo
  • Anna Maria Candela
  • José Luis Flores
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 26)


The aim of this chapter is to review and complete the study of geodesics on Gödel-type spacetimes from a variational viewpoint in the last decade (say, from [10] to [2]). In particular, we prove some new results on geodesic connectedness and geodesic completeness for these spacetimes.





The authors of this chapter acknowledge the partial support of the Spanish Grants with FEDER funds MTM2010-18099 (MICINN). Furthermore, R. Bartolo and A.M. Candela acknowledge also the partial support of M.I.U.R. Research Project PRIN2009 “Metodi Variazionali e Topologici nello Studio di Fenomeni Nonlineari” and of the G.N.A.M.P.A. Research Project 2011 “Analisi Geometrica sulle Varietà di Lorentz ed Applicazioni alla Relatività Generale”; J.L. Flores acknowledges also the partial support of the Regional J. Andalucía Grant P09-FQM-4496, with FEDER funds.


  1. 1.
    Bartolo, R., Candela, A.M., Flores, J.L.: Geodesic connectedness of stationary spacetimes with optimal growth. J. Geom. Phys. 56, 2025–2038 (2006)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bartolo, R., Candela, A.M., Flores, J.L.: A note on geodesic connectedness in Gödel type spacetimes. Differ. Geom. Appl. 29, 779–786 (2011)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bartolo, R., Candela, A.M., Flores, J.L., Sánchez, M.: Geodesics in static Lorentzian manifolds with critical quadratic behavior. Adv. Nonlinear Stud. 3, 471–494 (2003)MathSciNetMATHGoogle Scholar
  4. 4.
    Benci, V., Fortunato, D.: On the existence of infinitely many geodesics on space–time manifolds. Adv. Math. 105, 1–25 (1994)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Benci, V., Fortunato, D., Giannoni, F.: On the existence of multiple geodesics in static space–times. Ann. Inst. H. Poincaré Anal. Non Linéaire 8, 79–102 (1991)MathSciNetMATHGoogle Scholar
  6. 6.
    Calvão, M.O., Damião Soares, I., Tiomno, J.: Geodesics in Gödel–type space–times. Gen. Relat. Gravit. 22, 683–705 (1990)MATHCrossRefGoogle Scholar
  7. 7.
    Candela, A.M., Flores, J.L., Sánchez, M.: On general Plane Fronted Waves. Geodesics. Gen. Relat. Gravit. 35, 631–649 (2003)MATHCrossRefGoogle Scholar
  8. 8.
    Candela, A.M., Flores, J.L., Sánchez, M.: Global hyperboliticity and Palais–Smale condition for action functionals in stationary spacetimes. Adv. Math. 218, 515–536 (2008)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Candela, A.M., Romero, A., Sánchez, M.: Completeness of the trajectories of particles coupled to a general force field. To appear in Arch. Rational Mech. Anal. ArXiv:1202.0523v1.Google Scholar
  10. 10.
    Candela, A.M., Sánchez, M.: Geodesic connectedness in Gödel type space–times. Differ. Geom. Appl. 12, 105–120 (2000)MATHCrossRefGoogle Scholar
  11. 11.
    Candela, A.M., Sánchez, M.: Existence of geodesics in Gödel type space–times. Nonlinear Anal. TMA 47, 1581–1592 (2001)MATHCrossRefGoogle Scholar
  12. 12.
    Candela, A.M., Sánchez, M.: Geodesics in semi–Riemannian manifolds: geometric properties and variational tools. In: Alekseevsky, D.V., Baum, H. (eds.) Recent Developments in Pseudo–Riemannian Geometry, Special Volume in the ESI–Series on Mathematics and Physics, pp. 359–418, EMS Publishing House (2008)Google Scholar
  13. 13.
    Candela, A.M., Salvatore, A., Sánchez, M.: Periodic trajectories in Gödel type space–times. Nonlinear Anal. TMA 51, 607–631 (2002)MATHCrossRefGoogle Scholar
  14. 14.
    Caponio, E., Javaloyes M.A., Sánchez, M.: On the interplay between Lorentzian causality and Finsler metrics of Randers type. Rev. Mat. Iberoam. 27, 919–952 (2011)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Carrion, H.L., Rebouças, M.J., Teixeira, A.F.F.: Gödel–type space–times in induced matter gravity theory. J. Math. Phys. 40, 4011–4027 (1999)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Chandrasekhar, S., Wright, J.P.: The geodesics in Gödel’s universe. Proc. Natl. Acad. Sci. USA 47, 341–347 (1961)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Giannoni, F., Masiello, A.: On the existence of geodesics on stationary Lorentz manifolds with convex boundary. J. Funct. Anal. 101, 340–369 (1991)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Gödel, K.: An example of a new type of cosmological solution of Einstein’s field equations of gravitation. Rev. Mod. Phys. 21, 447–450 (1949)MATHCrossRefGoogle Scholar
  19. 19.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space–Time. Cambridge University Press, London (1973)MATHCrossRefGoogle Scholar
  20. 20.
    Kramer, D., Stephani, H., Herlt, E., MacCallum, M.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (1980)MATHGoogle Scholar
  21. 21.
    Kundt, W.: Trägheitsbahnen in einem von Gödel angegebenen kosmologischen Modell. Z. Phys. 145, 611–620 (1956)CrossRefGoogle Scholar
  22. 22.
    Masiello, A.: Variational Methods in Lorentzian Geometry. Pitman Res. Notes Math. Ser. vol. 309. Longman Sci. Tech., Harlow (1994)Google Scholar
  23. 23.
    Müller, O.: A note on closed isometric embeddings. J. Math. Anal. Appl. 349, 297–298 (2009)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Nash, J.: The imbedding problem for Riemannian manifold. Ann. Math. 63, 20–63 (1956)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    O’Neill, B.: Semi–Riemannian Geometry with Applications to Relativity. Academic, New York (1983)MATHGoogle Scholar
  26. 26.
    Piccione, P., Tausk, D.V.: An index theory for paths that are solutions of a class of strongly indefinite variational problems. Calc. Var. Part. Differ. Equat. 15, 529–551 (2002)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. CBMS Reg. Conf. Ser. Math. vol. 65. Amer. Math. Soc., Providence (1986)Google Scholar
  28. 28.
    Raychaudhuri, A.K., Thakurta, S.N.G.: Homogeneous space-times of the Gödel type. Phys. Rev. D 22, 802–806 (1980)CrossRefGoogle Scholar
  29. 29.
    Rebouças, M.J., Tiomno, J.: Homogeneity of Riemannian space–times of Gödel type. Phys. Rev. D 28, 1251–1264 (1983)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sánchez, M.: Some Remarks on Causality Theory and Variational Methods in Lorentzian Manifolds. Conf. Semin. Mat. Univ. Bari 265 (1997) ArXiv:0712.0600v2Google Scholar
  31. 31.
    Santaló, L.A.: Geodesics in Gödel–Synge spaces. Tensor N.S. 37, 173–178 (1982)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Rossella Bartolo
    • 1
  • Anna Maria Candela
    • 2
  • José Luis Flores
    • 3
  1. 1.Dipartimento di Meccanica Matematica e ManagementPolitecnico di BariBariItaly
  2. 2.Dipartimento di MatematicaUniversità degli Studi di Bari “Aldo Moro”BariItaly
  3. 3.Departamento de Álgebra, Geometría y Topología, Facultad de CienciasUniversidad de MálagaMálagaSpain

Personalised recommendations