Skip to main content

Adaptations to Exercise Training

  • Chapter
  • First Online:
Coronary Vasculature
  • 1249 Accesses

Abstract

Repeated bouts of exercise are widely recognized as a factor that reduces the risk of ischemic heart disease [1–5]. Exercise training (ET) cardiovascular benefits include improved cardiac function and O2 utilization and greater cardiac efficiency associated with a reduced resting heart rate. In patients with coronary heart disease, a 3-month program of exercise conditioning significantly reduced the exercise angina threshold, suggesting an increased myocardial O2 supply [6]. Meta-analysis of 51 studies involving 8,440 patients who participated in exercise-based cardiac rehabilitation programs revealed a 31 % reduction in cardiovascular mortality [7]. Cardiac responses to increased O2 demands depend on both adequate myocardial perfusion and transcapillary exchange at the cellular level [8]. Accordingly, improved O2 delivery to myocardial cells resulting from exercise training could result from biochemical/physiological and/or structural adaptations, which could occur at various levels of the coronary hierarchy. Such adaptations can include several levels of control, e.g. endothelial, neurohumoral, metabolic, and myogenic, as well as at several levels of the coronary hierarchy, i.e. conduit arteries, arterioles, and the capillary bed. This chapter reviews the adaptations that occur in healthy as well as diseased hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EC:

Endothelial cell

ET:

Exercise training

LV:

Left ventricle

MI:

Myocardial infarction

NO:

Nitric oxide

RV:

Right ventricle

VEGF:

Vascular endothelial growth factor

References

  1. Paffenbarger Jr RS, Hyde RT, Wing AL, Hsieh CC. Physical activity, all-cause mortality, and longevity of college alumni. N Engl J Med. 1986;314:605–13.

    PubMed  Google Scholar 

  2. Leon S, Connett J, Jacobs DR, Rauramaa R. Leisure-time physical activity levels and risk of coronary heart disease and death. JAMA. 1987;258:2388–95.

    PubMed  CAS  Google Scholar 

  3. Powell KE, Thompson PD, Caspersen CJ, Kendrick JS. Physical activity and the incidence of coronary heart disease. Annu Rev Public Health. 1987;8:253–87.

    PubMed  CAS  Google Scholar 

  4. Kavanagh T. Exercise in the primary prevention of coronary artery disease. Can J Cardiol. 2001;17:155–61.

    PubMed  CAS  Google Scholar 

  5. Laughlin MH, Bowles DK, Duncker DJ. The coronary circulation in exercise training. Am J Physiol Heart Circ Physiol. 2012;302:H10–23.

    PubMed  CAS  Google Scholar 

  6. Sim DN, Neill WA. Investigation of the physiological basis for increased exercise threshold for angina pectoris after physical conditioning. J Clin Invest. 1974;54:763–70.

    PubMed  CAS  Google Scholar 

  7. Jolliffe JA, Rees K, Taylor RS, Thompson D, Oldridge N, Ebrahim S. Exercise-based rehabilitation for coronary heart disease. Cochrane Database Syst Rev 2001;CD001800

    Google Scholar 

  8. Renkin EM. Capillary blood flow and transcapillary exchange. Physiologist. 1966;9:361–6.

    PubMed  CAS  Google Scholar 

  9. Thijssen DH, Maiorana AJ, O’Driscoll G, Cable NT, Hopman MT, Green DJ. Impact of inactivity and exercise on the vasculature in humans. Eur J Appl Physiol. 2010;108:845–75.

    PubMed  Google Scholar 

  10. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88:1009–86.

    PubMed  CAS  Google Scholar 

  11. Duncker D, Bache R, Merkus D. Regulation of coronary resistance vessel tone in response to exercise. J Mol Cell Cardiol. 2012;52:P802–13.

    Google Scholar 

  12. von Restorff W, Holtz J, Bassenge E. Exercise induced augmentation of myocardial oxygen extraction in spite of normal coronary dilatory capacity in dogs. Pflugers Arch. 1977;372:181–5.

    Google Scholar 

  13. Vatner SF, Higgins CB, Millard RW, Franklin D. Role of the spleen in the peripheral vascular response to severe exercise in untethered dogs. Cardiovasc Res. 1974;8:276–82.

    PubMed  CAS  Google Scholar 

  14. Downey JM, Kirk ES. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res. 1975;36:753–60.

    PubMed  CAS  Google Scholar 

  15. Gorman MW, Rooke GA, Savage MV, Jayasekara MP, Jacobson KA, Feigl EO. Adenine nucleotide control of coronary blood flow during exercise. Am J Physiol Heart Circ Physiol. 2010;299:H1981–9.

    PubMed  CAS  Google Scholar 

  16. Tune JD, Gorman MW, Feigl EO. Matching coronary blood flow to myocardial oxygen consumption. J Appl Physiol. 2004;97:404–15.

    PubMed  Google Scholar 

  17. Duncker DJ, Merkus D. Exercise hyperaemia in the heart: the search for the dilator mechanism. J Physiol. 2007;583:847–54.

    PubMed  CAS  Google Scholar 

  18. deBeer VJ, Bender SB, Taverne YJ, Gao F, Dunker DJ, Laughlin MH, Merkus D. Exercise limits the production of endothelin in the coronary vasculature. Am J Physiol. 2011;300:H1950–9.

    Google Scholar 

  19. Laughlin MH, McAllister RM. Exercise training-induced coronary vascular adaptation. J Appl Physiol. 1992;73:2209–25.

    PubMed  CAS  Google Scholar 

  20. Baur TS, Brodowicz GR, Lamb DR. Indomethacin suppresses the coronary flow response to hypoxia in exercise trained and sedentary rats. Cardiovasc Res. 1990;24:733–6.

    PubMed  CAS  Google Scholar 

  21. Buttrick PM, Levite HA, Schaible TF, Ciambrone G, Scheuer J. Early increases in coronary vascular reserve in exercised rats are independent of cardiac hypertrophy. J Appl Physiol. 1985;59:1861–5.

    PubMed  CAS  Google Scholar 

  22. Wicker P, Abdul-Samad M, Rakusan K, Tarazi RC, Healy B. Effects of chronic exercise on the coronary circulation in conscious rats with renovascular hypertension. Hypertension. 1987;10:74–81.

    PubMed  CAS  Google Scholar 

  23. Schaible TF, Scheuer J. Effects of physical training by running or swimming on ventricular performance of rat hearts. J Appl Physiol. 1979;46:854–60.

    PubMed  CAS  Google Scholar 

  24. Penpargkul S, Scheuer J. The effect of physical training upon the mechanical and metabolic performance of the rat heart. J Clin Invest. 1970;49:1859–68.

    PubMed  CAS  Google Scholar 

  25. Spear KL, Koerner JE, Terjung RL. Coronary blood flow in physically trained rats. Cardiovasc Res. 1978;12:135–43.

    PubMed  CAS  Google Scholar 

  26. Laughlin MH. Effects of exercise training on coronary transport capacity. J Appl Physiol. 1985;58:468–76.

    PubMed  CAS  Google Scholar 

  27. Laughlin MH, Tomanek RJ. Myocardial capillarity and maximal capillary diffusion capacity in exercise-trained dogs. J Appl Physiol. 1987;63:1481–6.

    PubMed  CAS  Google Scholar 

  28. Laughlin MH, Diana JN, Tipton CM. Effects of exercise training on coronary reactive hyperemia and blood flow in the dog. J Appl Physiol. 1978;45:604–10.

    PubMed  CAS  Google Scholar 

  29. Liang IY, Stone HL. Effect of exercise conditioning on coronary resistance. J Appl Physiol. 1982;53:631–6.

    PubMed  CAS  Google Scholar 

  30. Laughlin MH, Overholser KA, Bhatte MJ. Exercise training increases coronary transport reserve in miniature swine. J Appl Physiol. 1989;67:1140–9.

    PubMed  CAS  Google Scholar 

  31. Overholser KA, Laughlin MH, Bhatte MJ. Exercise training-induced increase in coronary transport capacity. Med Sci Sports Exerc. 1994;26:1239–44.

    PubMed  CAS  Google Scholar 

  32. Bove AA, Hultgren PB, Ritzer TF, Carey RA. Myocardial blood flow and hemodynamic responses to exercise training in dogs. J Appl Physiol. 1979;46:571–8.

    PubMed  CAS  Google Scholar 

  33. Stone HL. Coronary flow, myocardial oxygen consumption, and exercise training in dogs. J Appl Physiol. 1980;49:759–68.

    PubMed  CAS  Google Scholar 

  34. Barnard RJ, Duncan HW, Baldwin KM, Grimditch G, Buckberg GD. Effects of intensive exercise training on myocardial performance and coronary blood flow. J Appl Physiol. 1980;49:444–9.

    PubMed  CAS  Google Scholar 

  35. Carey RA, Santamore WP, Michele JJ, Bove AA. Effects of endurance training on coronary resistance in dogs. Med Sci Sports Exerc. 1983;15:355–9.

    PubMed  CAS  Google Scholar 

  36. Liang IY, Hamra M, Stone HL. Maximum coronary blood flow and minimum coronary resistance in exercise-trained dogs. J Appl Physiol. 1984;56:641–7.

    PubMed  CAS  Google Scholar 

  37. Cohen MV. Coronary vascular reserve in the greyhound with left ventricular hypertrophy. Cardiovasc Res. 1986;20:182–94.

    PubMed  CAS  Google Scholar 

  38. Scheel KW, Ingram LA, Wilson JL. Effects of exercise on the coronary and collateral vasculature of beagles with and without coronary occlusion. Circ Res. 1981;48:523–30.

    PubMed  CAS  Google Scholar 

  39. Yipintsoi T, Rosenkrantz J, Codini MA, Scheuer J. Myocardial blood flow responses to acute hypoxia and volume loading in physically trained rats. Cardiovasc Res. 1980;14:50–7.

    PubMed  CAS  Google Scholar 

  40. Breisch EA, White FC, Nimmo LE, McKirnan MD, Bloor CM. Exercise-induced cardiac hypertrophy: a correlation of blood flow and microvasculature. J Appl Physiol. 1986;60:1259–67.

    PubMed  CAS  Google Scholar 

  41. DiCarlo SE, Blair RW, Bishop VS, Stone HL. Daily exercise enhances coronary resistance vessel sensitivity to pharmacological activation. J Appl Physiol. 1989;66:421–8.

    PubMed  CAS  Google Scholar 

  42. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol. 1986;251:H779–88.

    PubMed  CAS  Google Scholar 

  43. Chilian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML. Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Physiol. 1989;256:H383–90.

    PubMed  CAS  Google Scholar 

  44. Tepperman J, Pearlman D. Effects of exercise and anemia on coronary arteries of small animals as revealed by the corrosion-cast technique. Circ Res. 1961;9:576–84.

    Google Scholar 

  45. Tepperman J, Pearlman D. Effects of exercise and anemia on coronary arteries of small animals as revealed by the corrosion-cast technique. Circ Res. 1961;9:576–84.

    PubMed  CAS  Google Scholar 

  46. Stevenson JA, Box BM, Feleki V, Beaton JR. Bouts of exercise and food intake in the rat. J Appl Physiol. 1966;21:118–22.

    PubMed  CAS  Google Scholar 

  47. Ho KW, Roy RR, Taylor JF, Heusner WW, Van Huss WD. Differential effects of running and weight-lifting on the rat coronary arterial tree. Med Sci Sports Exerc. 1983;15:472–7.

    PubMed  CAS  Google Scholar 

  48. Kramsch DM, Aspen AJ, Abramowitz BM, Kreimendahl T, Hood Jr WB. Reduction of coronary atherosclerosis by moderate conditioning exercise in monkeys on an atherogenic diet. N Engl J Med. 1981;305:1483–9.

    PubMed  CAS  Google Scholar 

  49. Pelliccia A, Spataro A, Granata M, Biffi A, Caselli G, Alabiso A. Coronary arteries in physiological hypertrophy: echocardiographic evidence of increased proximal size in elite athletes. Int J Sports Med. 1990;11:120–6.

    PubMed  CAS  Google Scholar 

  50. Kozakova M, Galetta F, Gregorini L, Bigalli G, Franzoni F, Giusti C, et al. Coronary vasodilator capacity and epicardial vessel remodeling in physiological and hypertensive hypertrophy. Hypertension. 2000;36:343–9.

    PubMed  CAS  Google Scholar 

  51. Hildick-Smith DJ, Johnson PJ, Wisbey CR, Winter EM, Shapiro LM. Coronary flow reserve is supranormal in endurance athletes: an adenosine transthoracic echocardiographic study. Heart. 2000;84:383–9.

    PubMed  CAS  Google Scholar 

  52. Haskell WL, Sims C, Myll J, Bortz WM, St Goar FG, Alderman EL. Coronary artery size and dilating capacity in ultradistance runners. Circulation. 1993;87:1076–82.

    PubMed  CAS  Google Scholar 

  53. Tronc F, Wassef M, Esposito B, Henrion D, Glagov S, Tedgui A. Role of NO in flow-induced remodeling of the rabbit common carotid artery. Arterioscler Thromb Vasc Biol. 1996;16:1256–62.

    PubMed  CAS  Google Scholar 

  54. Hintze TH, Vatner SF. Reactive dilation of large coronary arteries in conscious dogs. Circ Res. 1984;54:50–7.

    PubMed  CAS  Google Scholar 

  55. Holtz J, Forstermann U, Pohl U, Giesler M, Bassenge E. Flow-dependent, endothelium-mediated dilation of epicardial coronary arteries in conscious dogs: effects of cyclooxygenase inhibition. J Cardiovasc Pharmacol. 1984;6:1161–9.

    PubMed  CAS  Google Scholar 

  56. Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation. 2000;102:1270–5.

    PubMed  CAS  Google Scholar 

  57. Brown M. Exercise and coronary vascular remodeling in the healthy heart. Exp Physiol. 2003;88(5):645–58.

    PubMed  Google Scholar 

  58. Haslam RW, Cobb RB. Frequency of intensive, prolonged exercise as a determinant of relative coronary circumference index. Int J Sports Med. 1982;3:118–21.

    PubMed  CAS  Google Scholar 

  59. Wyatt HL, Mitchell J. Influences of physical conditioning and deconditioning on coronary vasculature of dogs. J Appl Physiol. 1978;45:619–25.

    PubMed  CAS  Google Scholar 

  60. Gigante B, Tarsitano M, Cimini V, De Falco S, Persico MG. Placenta growth factor is not required for exercise-induced angiogenesis. Angiogenesis. 2004;7:277–84.

    PubMed  CAS  Google Scholar 

  61. White FC, McKirnan MD, Breisch EA, Guth BD, Liu YM, Bloor CM. Adaptation of the left ventricle to exercise-induced hypertrophy. J Appl Physiol. 1987;62:1097–110.

    PubMed  CAS  Google Scholar 

  62. White FC, Witzel G, Breisch EA, Bloor CM, Nimmo LE. Regional capillary and myocyte distribution in normal and exercise trained male and female rat hearts. Am J Cardiovasc Pathol. 1988;2:247–53.

    PubMed  CAS  Google Scholar 

  63. White FC, Bloor CM, McKirnan MD, Carroll SM. Exercise training in swine promotes growth of arteriolar bed and capillary angiogenesis in heart. J Appl Physiol. 1998;85:1160–8.

    PubMed  CAS  Google Scholar 

  64. Rogers PJ, Miller TD, Bauer BA, Brum JM, Bove AA, Vanhoutte PM. Exercise training and responsiveness of isolated coronary arteries. J Appl Physiol. 1991;71:2346–51.

    PubMed  CAS  Google Scholar 

  65. Wang DH, Prewitt RL. Alterations of mature arterioles associated with chronically reduced blood flow. Am J Physiol. 1993;264:H40–4.

    PubMed  CAS  Google Scholar 

  66. Oltman CL, Parker JL, Laughlin MH. Endothelium-dependent vasodilation of proximal coronary arteries from exercise-trained pigs. J Appl Physiol. 1995;79:33–40.

    PubMed  CAS  Google Scholar 

  67. Oltman CL, Parker JL, Adams HR, Laughlin MH. Effects of exercise training on vasomotor reactivity of porcine coronary arteries. Am J Physiol. 1992;263:H372–82.

    PubMed  CAS  Google Scholar 

  68. Huxley VH, Wang JJ, Sarelius IH. Adaptation of coronary microvascular exchange in arterioles and venules to exercise training and a role for sex in determining permeability responses. Am J Physiol Heart Circ Physiol. 2007;293:H1196–205.

    PubMed  CAS  Google Scholar 

  69. Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH. Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res. 1994;74:349–53.

    PubMed  CAS  Google Scholar 

  70. Wang J, Wolin MS, Hintze TH. Chronic exercise enhances endothelium-mediated dilation of epicardial coronary artery in conscious dogs. Circ Res. 1993;73:829–38.

    PubMed  CAS  Google Scholar 

  71. Zhao G, Zhang X, Xu X, Ochoa M, Hintze TH. Short-term exercise training enhances reflex cholinergic nitric oxide-dependent coronary vasodilation in conscious dogs. Circ Res. 1997;80:868–76.

    PubMed  CAS  Google Scholar 

  72. Laughlin MH, Rubin LJ, Rush JW, Price EM, Schrage WG, Woodman CR. Short-term training enhances endothelium-dependent dilation of coronary arteries, not arterioles. J Appl Physiol. 2003;94:234–44.

    PubMed  CAS  Google Scholar 

  73. Stewart JM, Xu X, Ochoa M, Hintze TH. Exercise reduces epicardial coronary artery wall stiffness: roles of cGMP and cAMP. Med Sci Sports Exerc. 1998;30:220–8.

    PubMed  CAS  Google Scholar 

  74. Zanesco A, Antunes E. Effects of exercise training on the cardiovascular system: pharmacological approaches. Pharmacol Ther. 2007;114:307–17.

    PubMed  CAS  Google Scholar 

  75. Erbs S, Linke A, Hambrecht R. Effects of exercise training on mortality in patients with coronary heart disease. Coron Artery Dis. 2006;17:219–25.

    PubMed  Google Scholar 

  76. Rush JW, Laughlin MH, Woodman CR, Price EM. SOD-1 expression in pig coronary arterioles is increased by exercise training. Am J Physiol Heart Circ Physiol. 2000;279:H2068–76.

    PubMed  CAS  Google Scholar 

  77. Fukai T, Siegfried MR, Ushio-Fukai M, Cheng Y, Kojda G, Harrison DG. Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest. 2000;105:1631–9.

    PubMed  CAS  Google Scholar 

  78. Parker JL, Oltman CL, Muller JM, Myers PR, Adams HR, Laughlin MH. Effects of exercise training on regulation of tone in coronary arteries and arterioles. Med Sci Sports Exerc. 1994;26:1252–61.

    PubMed  CAS  Google Scholar 

  79. Muller JM, Myers PR, Laughlin MH. Vasodilator responses of coronary resistance arteries of exercise-trained pigs. Circulation. 1994;89:2308–14.

    PubMed  CAS  Google Scholar 

  80. Laughlin MH, Pollock JS, Amann JF, Hollis ML, Woodman CR, Price EM. Training induces nonuniform increases in eNOS content along the coronary arterial tree. J Appl Physiol. 2001;90:501–10.

    PubMed  CAS  Google Scholar 

  81. Woodman CR, Muller JM, Laughlin MH, Price EM. Induction of nitric oxide synthase mRNA in coronary resistance arteries isolated from exercise-trained pigs. Am J Physiol. 1997;273:H2575–9.

    PubMed  CAS  Google Scholar 

  82. Mombouli JV, Nakashima M, Hamra M, Vanhoutte PM. Endothelium-dependent relaxation and hyperpolarization evoked by bradykinin in canine coronary arteries: enhancement by exercise-training. Br J Pharmacol. 1996;117:413–8.

    PubMed  CAS  Google Scholar 

  83. Bove AA, Dewey JD. Proximal coronary vasomotor reactivity after exercise training in dogs. Circulation. 1985;71:620–5.

    PubMed  CAS  Google Scholar 

  84. Jones AW, Rubin LJ, Magliola L. Endothelin-1 sensitivity of porcine coronary arteries is reduced by exercise training and is gender dependent. J Appl Physiol. 1999;87:1172–7.

    PubMed  CAS  Google Scholar 

  85. Stehno-Bittel L, Laughlin MH, Sturek M. Exercise training alters Ca release from coronary smooth muscle sarcoplasmic reticulum. Am J Physiol. 1990;259:H643–7.

    PubMed  CAS  Google Scholar 

  86. Stehno-Bittel L, Laughlin MH, Sturek M. Exercise training depletes sarcoplasmic reticulum calcium in coronary smooth muscle. J Appl Physiol. 1991;71:1764–73.

    PubMed  CAS  Google Scholar 

  87. Bowles DK, Laughlin MH, Sturek M. Exercise training alters the Ca2+ and contractile responses of coronary arteries to endothelin. J Appl Physiol. 1995;78:1079–87.

    PubMed  CAS  Google Scholar 

  88. Heaps CL, Bowles DK, Sturek M, Laughlin MH, Parker JL. Enhanced L-type Ca2+ channel current density in coronary smooth muscle of exercise-trained pigs is compensated to limit myoplasmic free Ca2+ accumulation. J Physiol. 2000;528:435–45.

    PubMed  CAS  Google Scholar 

  89. Bowles DK, Hu Q, Laughlin MH, Sturek M. Exercise training increases L-type calcium current density in coronary smooth muscle. Am J Physiol. 1998;275:H2159–69.

    PubMed  CAS  Google Scholar 

  90. Bowles L, Kopelman P. Leptin: of mice and men? J Clin Pathol. 2001;54:1–3.

    PubMed  CAS  Google Scholar 

  91. Wamhoff BR, Bowles DK, Dietz NJ, Hu Q, Sturek M. Exercise training attenuates coronary smooth muscle phenotypic modulation and nuclear Ca2+ signaling. Am J Physiol Heart Circ Physiol. 2002;283:H2397–410.

    PubMed  CAS  Google Scholar 

  92. Witczak CA, Sturek M. Exercise prevents diabetes-induced impairment in superficial buffer barrier in porcine coronary smooth muscle. J Appl Physiol. 2004;96:1069–79.

    PubMed  CAS  Google Scholar 

  93. Mokelke EA, Hu Q, Song M, Toro L, Reddy HK, Sturek M. Altered functional coupling of coronary K+ channels in diabetic dyslipidemic pigs is prevented by exercise. J Appl Physiol. 2003;95:1179–93.

    PubMed  CAS  Google Scholar 

  94. Albarwani S, Al-Siyabi S, Baomar H, Hassan MO. Exercise training attenuates ageing-induced BKCa channel downregulation in rat coronary arteries. Exp Physiol. 2010;95:746–55.

    PubMed  CAS  Google Scholar 

  95. Fulton WF. Chronic generalized myocardial ischaemia with advanced coronary artery disease. Br Heart J. 1956;18:341–54.

    PubMed  CAS  Google Scholar 

  96. Heaps CL, Parker JL. Effects of exercise training on coronary collateralization and control of collateral resistance. J Appl Physiol. 2011;111:587–98.

    PubMed  Google Scholar 

  97. Cohen MV. Coronary and collateral blood flows during exercise and myocardial vascular adaptations to training. Exerc Sport Sci Rev. 1983;11:55–98.

    PubMed  CAS  Google Scholar 

  98. Ferguson RJ, Petitclerc R, Choquette G, Chaniotis L, Gauthier P, Huot R, et al. Effect of physical training on treadmill exercise capacity, collateral circulation and progression of coronary disease. Am J Cardiol. 1974;34:764–9.

    PubMed  CAS  Google Scholar 

  99. Nolewajka AJ, Kostuk WJ, Rechnitzer PA, Cunningham DA. Exercise and human collateralization: an angiographic and scintigraphic assessment. Circulation. 1979;60:114–21.

    PubMed  CAS  Google Scholar 

  100. Niebauer J, Hambrecht R, Marburger C, Hauer K, Velich T, von Hodenberg E, et al. Impact of intensive physical exercise and low-fat diet on collateral vessel formation in stable angina pectoris and angiographically confirmed coronary artery disease. Am J Cardiol. 1995;76:771–5.

    PubMed  CAS  Google Scholar 

  101. Sasayama S. Effect of coronary collateral circulation on myocardial ischemia and ventricular dysfunction. Cardiovasc Drugs Ther. 1994;8 Suppl 2:327–34.

    PubMed  Google Scholar 

  102. Senti S, Fleisch M, Billinger M, Meier B, Seiler C. Long-term physical exercise and quantitatively assessed human coronary collateral circulation. J Am Coll Cardiol. 1998;32:49–56.

    PubMed  CAS  Google Scholar 

  103. Zbinden R, Zbinden S, Meier P, Hutter D, Billinger M, Wahl A, et al. Coronary collateral flow in response to endurance exercise training. Eur J Cardiovasc Prev Rehabil. 2007;14:250–7.

    PubMed  Google Scholar 

  104. Eckstein RW. Effect of exercise and coronary artery narrowing on coronary collateral circulation. Circ Res. 1957;5:230–5.

    PubMed  CAS  Google Scholar 

  105. Burt JJ, Jackson R. The effects of physical exercise on the coronary collateral circulation of dogs. J Sports Med Phys Fitness. 1965;4:203.

    Google Scholar 

  106. Cohen MV, Yipintsoi T, Malhotra A, Penpargkul S, Scheuer J. Effect of exercise on collateral development in dogs with normal coronary arteries. J Appl Physiol. 1978;45:797–805.

    PubMed  CAS  Google Scholar 

  107. Sanders M, White FC, Peterson TM, Bloor CM. Effects of endurance exercise on coronary collateral blood flow in miniature swine. Am J Physiol. 1978;234:H614–9.

    PubMed  CAS  Google Scholar 

  108. Koerner JE, Terjung RL. Effect of physical training on coronary collateral circulation of the rat. J Appl Physiol. 1982;52:376–87.

    PubMed  CAS  Google Scholar 

  109. Amann L, Meesmann W, Schulz FW, Schley G, Wilde A, Tuttemann J. Studies on the formation of collaterals in the healthy heart following physical training. Verh Dtsch Ges Kreislaufforsch. 1971;37:151–4.

    PubMed  CAS  Google Scholar 

  110. Heaton WH, Marr KC, Capurro NL, Goldstein RE, Epstein SE. Beneficial effect of physical training on blood flow to myocardium perfused by chronic collaterals in the exercising dog. Circulation. 1978;57:575–81.

    PubMed  CAS  Google Scholar 

  111. Neill WA, Oxendine JM. Exercise can promote coronary collateral development without improving perfusion of ischemic myocardium. Circulation. 1979;60:1513–9.

    PubMed  CAS  Google Scholar 

  112. Cohen MV, Yipintsoi T, Scheuer J. Coronary collateral stimulation by exercise in dogs with stenotic coronary arteries. J Appl Physiol. 1982;52:664–71.

    PubMed  CAS  Google Scholar 

  113. Bloor CM, White FC, Sanders TM. Effects of exercise on collateral development in myocardial ischemia in pigs. J Appl Physiol. 1984;56:656–65.

    PubMed  CAS  Google Scholar 

  114. Roth DM, White FC, Nichols ML, Dobbs SL, Longhurst JC, Bloor CM. Effect of long-term exercise on regional myocardial function and coronary collateral development after gradual coronary artery occlusion in pigs. Circulation. 1990;82:1778–89.

    PubMed  CAS  Google Scholar 

  115. Kaplinsky E, Hood Jr WB, McCarthy B, McCombs HL, Lown B. Effects of physical training in dogs with coronary artery ligation. Circulation. 1968;37:556–65.

    PubMed  CAS  Google Scholar 

  116. Schaper W. Influence of physical exercise on coronary collateral blood flow in chronic experimental two-vessel occlusion. Circulation. 1982;65:905–12.

    PubMed  CAS  Google Scholar 

  117. Unger EF. Experimental evaluation of coronary collateral development. Cardiovasc Res. 2001;49:497–506.

    PubMed  CAS  Google Scholar 

  118. Lu X, Wu T, Huang P, Lin S, Qiu F, Meng X, et al. Effect and mechanism of intermittent myocardial ischemia induced by exercise on coronary collateral formation. Am J Phys Med Rehabil. 2008;87:803–14.

    PubMed  Google Scholar 

  119. Rapps JA, Sturek M, Jones AW, Parker JL. Altered reactivity of coronary arteries located distal to a chronic coronary occlusion. Am J Physiol. 1997;273:H1879–87.

    PubMed  CAS  Google Scholar 

  120. Peters KG, Marcus ML, Harrison DG. Vasopressin and the mature coronary collateral circulation. Circulation. 1989;79:1324–31.

    PubMed  CAS  Google Scholar 

  121. Sellke FW, Quillen JE, Brooks LA, Harrison DG. Endothelial modulation of the coronary vasculature in vessels perfused via mature collaterals. Circulation. 1990;81:1938–47.

    PubMed  CAS  Google Scholar 

  122. Sellke FW, Kagaya Y, Johnson RG, Shafique T, Schoen FJ, Grossman W, et al. Endothelial modulation of porcine coronary microcirculation perfused via immature collaterals. Am J Physiol. 1992;262:H1669–75.

    PubMed  CAS  Google Scholar 

  123. Fogarty JA, Muller-Delp JM, Delp MD, Mattox ML, Laughlin MH, Parker JL. Exercise training enhances vasodilation responses to vascular endothelial growth factor in porcine coronary arterioles exposed to chronic coronary occlusion. Circulation. 2004;109:664–70.

    PubMed  CAS  Google Scholar 

  124. Fogarty JA, Delp MD, Muller-Delp JM, Laine GA, Parker JL, Heaps CL. Neuropilin-1 is essential for enhanced VEGF(165)-mediated vasodilatation in collateral-dependent coronary arterioles of exercise-trained pigs. J Vasc Res. 2009;46:152–61.

    PubMed  CAS  Google Scholar 

  125. Heaps CL, Mattox ML, Kelly KA, Meininger CJ, Parker JL. Exercise training increases basal tone in arterioles distal to chronic coronary occlusion. Am J Physiol Heart Circ Physiol. 2006;290:H1128–35.

    PubMed  CAS  Google Scholar 

  126. Thengchaisri N, Shipley R, Ren Y, Parker J, Kuo L. Exercise training restores coronary arteriolar dilation to NOS activation distal to coronary artery occlusion: role of hydrogen peroxide. Arterioscler Thromb Vasc Biol. 2007;27:791–8.

    PubMed  CAS  Google Scholar 

  127. Heaps CL, Sturek M, Rapps JA, Laughlin MH, Parker JL. Exercise training restores adenosine-induced relaxation in coronary arteries distal to chronic occlusion. Am J Physiol Heart Circ Physiol. 2000;278:H1984–92.

    PubMed  CAS  Google Scholar 

  128. Griffin KL, Woodman CR, Price EM, Laughlin MH, Parker JL. Endothelium-mediated relaxation of porcine collateral-dependent arterioles is improved by exercise training. Circulation. 2001;104:1393–8.

    PubMed  CAS  Google Scholar 

  129. Zhou M, Widmer RJ, Xie W, Jimmy Widmer A, Miller MW, Schroeder F, et al. Effects of exercise training on cellular mechanisms of endothelial nitric oxide synthase regulation in coronary arteries after chronic occlusion. Am J Physiol Heart Circ Physiol. 2010;298:H1857–69.

    PubMed  CAS  Google Scholar 

  130. Rehman J, Li J, Parvathaneni L, Karlsson G, Panchal VR, Temm CJ, et al. Exercise acutely increases circulating endothelial progenitor cells and monocyte-/macrophage-derived angiogenic cells. J Am Coll Cardiol. 2004;43:2314–8.

    PubMed  Google Scholar 

  131. Steiner S, Niessner A, Ziegler S, Richter B, Seidinger D, Pleiner J, et al. Endurance training increases the number of endothelial progenitor cells in patients with cardiovascular risk and coronary artery disease. Atherosclerosis. 2005;181:305–10.

    PubMed  CAS  Google Scholar 

  132. Van Craenenbroeck EM, Hoymans VY, Beckers PJ, Possemiers NM, Wuyts K, Paelinck BP, et al. Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure. Basic Res Cardiol. 2010;105:665–76.

    PubMed  Google Scholar 

  133. Robles JC, Sturek M, Parker JL, Heaps CL. Ca2+ sensitization and PKC contribute to exercise training-enhanced contractility in porcine collateral-dependent coronary arteries. Am J Physiol Heart Circ Physiol. 2011;300:H1201–9.

    PubMed  CAS  Google Scholar 

  134. Wachtlova M, Rakusan K, Roth Z, Poupa O. The terminal vascular bed of the myocardium in the wild rat (Rattus norvegicus) and the laboratory rat (Rattus norvegicus lab.). Physiol Bohemoslov. 1967;16:548–54.

    PubMed  CAS  Google Scholar 

  135. Wachtlova M, Rakusan K, Poupa O. The coronary terminal vascular bed in the heart of the hare (Lepus europeus) and the rabbit (Oryctolagus domesticus). Physiol Bohemoslov. 1965;14:328–31.

    PubMed  CAS  Google Scholar 

  136. Hakkila J. Studies on the myocardial capillary concentration in cardiac hypertrophy due to training. An experimental study with guinea pigs. Ann Med Exp Biol Fenn. 1955;33:10.

    Google Scholar 

  137. Petren T, Sjostrand T, Sylven B. Der Einfluss des Trainings auf die Haufigkeit de Kapillaren in Herz-und Skellettmuskatur. Arbeitsphysiologie. 1936;9:376–86.

    Google Scholar 

  138. Frank A. Experimentelle herz hypertrophie. Ges Exp Med. 1950;115:312–49.

    Google Scholar 

  139. Mandache E, Unge G, Ljungqvist A. Myocardial blood capillary reaction in various forms of cardiac hypertrophy. An electron microscopical investigation in the rat. Virchows Arch B Cell Pathol. 1972;11:97–110.

    PubMed  CAS  Google Scholar 

  140. Unge G, Carlsson S, Ljungqvist A, Tornling G, Adolfsson J. The proliferative activity of myocardial capillary wall cells in variously aged swimming-exercised rats. Acta Pathol Microbiol Scand A. 1979;87:15–7.

    PubMed  CAS  Google Scholar 

  141. Ljungqvist A, Unge G. Capillary proliferative activity in myocardium and skeletal muscle of exercised rats. J Appl Physiol. 1977;43:306–7.

    PubMed  CAS  Google Scholar 

  142. Tomanek RJ. Effects of age and exercise on the extent of the myocardial capillary bed. Anat Rec. 1970;167:55–62.

    PubMed  CAS  Google Scholar 

  143. Bloor CM, Leon AS. Interaction of age and exercise on the heart and its blood supply. Lab Invest. 1970;22:160–5.

    PubMed  CAS  Google Scholar 

  144. Tagarakis CV, Bloch W, Hartmann G, Hollmann W, Addicks K. Testosterone-propionate impairs the response of the cardiac capillary bed to exercise. Med Sci Sports Exerc. 2000;32:946–53.

    PubMed  CAS  Google Scholar 

  145. Anversa P, Beghi C, Levicky V, McDonald SL, Kikkawa Y. Morphometry of right ventricular hypertrophy induced by strenuous exercise in rat. Am J Physiol. 1982;243:H856–61.

    PubMed  CAS  Google Scholar 

  146. Anversa P, Levicky V, Beghi C, McDonald SL, Kikkawa Y. Morphometry of exercise-induced right ventricular hypertrophy in the rat. Circ Res. 1983;52:57–64.

    PubMed  CAS  Google Scholar 

  147. Anversa P, Beghi C, Levicky V, McDonald SL, Kikkawa Y, Olivetti G. Effects of strenuous exercise on the quantitative morphology of left ventricular myocardium in the rat. J Mol Cell Cardiol. 1985;17:587–95.

    PubMed  CAS  Google Scholar 

  148. Leon AS, Bloor CM. Effects of exercise and its cessation on the heart and its blood supply. J Appl Physiol. 1968;24:485–90.

    PubMed  CAS  Google Scholar 

  149. Tittle K, Knacke K, Brauer B, Otto H. Der Einfluss Korperlicker Belastengen Uterschiedlicker dauer und Intersitof auf die kapillarisierung der herzund skelettmuskulatur bei albino ratten. Hannover: XVI International World Congress for Sports Medicine; 1966. p. 181–8.

    Google Scholar 

  150. Carlsson S, Ljungqvist A, Tornling G, Unge G. The myocardial capillary vasculature in repeated physical exercise. An experimental investigation in the rat. Acta Pathol Microbiol Scand A. 1978;86:117–9.

    PubMed  CAS  Google Scholar 

  151. Rakusan K, Wicker P, Abdul-Samad M, Healy B, Turek Z. Failure of swimming exercise to improve capillarization in cardiac hypertrophy of renal hypertensive rats. Circ Res. 1987;61:641–7.

    PubMed  CAS  Google Scholar 

  152. Rakusan K, Wicker P. Morphometry of the small arteries and arterioles in the rat heart: effects of chronic hypertension and exercise. Cardiovasc Res. 1990;24:278–84.

    PubMed  CAS  Google Scholar 

  153. Frenzel H, Schwartzkopff B, Holtermann W, Schnurch HG, Novi A, Hort W. Regression of cardiac hypertrophy: morphometric and biochemical studies in rat heart after swimming training. J Mol Cell Cardiol. 1988;20:737–51.

    PubMed  CAS  Google Scholar 

  154. Parizkova J. Impact of daily work-load during pregnancy on the microstructure of the rat heart in male offspring. Eur J Appl Physiol Occup Physiol. 1975;34:323–6.

    PubMed  CAS  Google Scholar 

  155. Parizkova J. The impact of daily work load during pregnancy and/or postnatal life on the heart microstructure of rat male offspring. Basic Res Cardiol. 1978;73:433–41.

    PubMed  CAS  Google Scholar 

  156. Parizkova J. Cardiac microstructure in female and male offspring of exercised rat mothers. Acta Anat (Basel). 1979;104:382–7.

    CAS  Google Scholar 

  157. Mattfeldt T, Kramer KL, Zeitz R, Mall G. Stereology of myocardial hypertrophy induced by physical exercise. Virchows Arch A Pathol Anat Histopathol. 1986;409:473–84.

    PubMed  CAS  Google Scholar 

  158. Kayar SR, Conley KE, Claassen H, Hoppeler H. Capillarity and mitochondrial distribution in rat myocardium following exercise training. J Exp Biol. 1986;120:189–99.

    PubMed  CAS  Google Scholar 

  159. Kayar SR, Banchero N. Volume overload hypertrophy elicited by cold and its effects on myocardial capillarity. Respir Physiol. 1985;59:1–14.

    PubMed  CAS  Google Scholar 

  160. Tharp GD, Wagner CT. Chronic exercise and cardiac vascularization. Eur J Appl Physiol Occup Physiol. 1982;48:97–104.

    PubMed  CAS  Google Scholar 

  161. Anversa P, Beghi C, Kikkawa Y, Olivetti G. Myocardial response to infarction in the rat. Morphometric measurement of infarct size and myocyte cellular hypertrophy. Am J Pathol. 1985;118:484–92.

    PubMed  CAS  Google Scholar 

  162. Thorner W. Training Versuch an Huden. III Histologische Beobachtungen an Herz und Skelettmuske. Arbeitsphysiologie. 1935;8:359–70.

    Google Scholar 

  163. Prior BM, Yang HT, Terjung RL. What makes vessels grow with exercise training? J Appl Physiol. 2004;97:1119–28.

    PubMed  Google Scholar 

  164. Tomanek RJ, Torry RJ. Growth of the coronary vasculature in hypertrophy: mechanisms and model dependence. Cell Mol Biol Res. 1994;40:129–36.

    PubMed  CAS  Google Scholar 

  165. Hudlicka O, Brown MD, Walter H, Weiss JB, Bate A. Factors involved in capillary growth in the heart. Mol Cell Biochem. 1995;147:57–68.

    PubMed  CAS  Google Scholar 

  166. Tornling G. Capillary neoformation in the heart and skeletal muscle during dipyridamole–treatment and exercise. Acta Pathol Microbiol Immunol Scand Suppl. 1982;278:1–63.

    PubMed  CAS  Google Scholar 

  167. Mall G, Schikora I, Mattfeldt T, Bodle R. Dipyridamole-induced neoformation of capillaries in the rat heart. Quantitative stereological study on papillary muscles. Lab Invest. 1987;57:86–93.

    PubMed  CAS  Google Scholar 

  168. Torry RJ, O’Brien DM, Connell PM, Tomanek RJ. Dipyridamole-induced capillary growth in normal and hypertrophic hearts. Am J Physiol. 1992;262:H980–6.

    PubMed  CAS  Google Scholar 

  169. Wright AJ, Hudlicka O. Capillary growth and changes in heart performance induced by chronic bradycardial pacing in the rabbit. Circ Res. 1981;49:469–78.

    PubMed  CAS  Google Scholar 

  170. Lei L, Zhou R, Zheng W, Christensen LP, Weiss RM, Tomanek RJ. Bradycardia induces angiogenesis, increases coronary reserve, and preserves function of the postinfarcted heart. Circulation. 2004;110:796–802.

    PubMed  Google Scholar 

  171. Zheng W, Christensen LP, Tomanek RJ. Stretch induces upregulation of key tyrosine kinase receptors in microvascular endothelial cells. Am J Physiol Heart Circ Physiol. 2004;287:H2739–45.

    PubMed  CAS  Google Scholar 

  172. Olfert IM, Howlett RA, Tang K, Dalton ND, Gu Y, Peterson KL, et al. Muscle-specific VEGF deficiency greatly reduces exercise endurance in mice. J Physiol. 2009;587:1755–67.

    PubMed  CAS  Google Scholar 

  173. Ljungqvist A, Unge G, Carlsson S. The myocardial capillary vasculature in exercising animals with increased cardiac pressure load. Acta Pathol Microbiol Scand A. 1976;84:244–6.

    PubMed  CAS  Google Scholar 

  174. van Deel ED, de Boer M, Kuster DW, Boontje NM, Holemans P, Sipido KR, et al. Exercise training does not improve cardiac function in compensated or decompensated left ventricular hypertrophy induced by aortic stenosis. J Mol Cell Cardiol. 2011;50:1017–25.

    PubMed  Google Scholar 

  175. Marcus KD, Tipton CM. Exercise training and its effects with renal hypertensive rats. J Appl Physiol. 1985;59:1410–5.

    PubMed  CAS  Google Scholar 

  176. Crisman RP, Rittman B, Tomanek RJ. Exercise-induced myocardial capillary growth in the spontaneously hypertensive rat. Microvasc Res. 1985;30:185–94.

    PubMed  CAS  Google Scholar 

  177. Tomanek RJ, Gisolfi CV, Bauer CA, Palmer PJ. Coronary vasodilator reserve, capillarity, and mitochondria in trained hypertensive rats. J Appl Physiol. 1988;64:1179–85.

    PubMed  CAS  Google Scholar 

  178. Belabbas H, Zalvidea S, Casellas D, Moles JP, Galbes O, Mercier J, et al. Contrasting effect of exercise and angiotensin II hypertension on in vivo and in vitro cardiac angiogenesis in rats. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1512–8.

    PubMed  CAS  Google Scholar 

  179. Handoko ML, de Man FS, Happe CM, Schalij I, Musters RJ, Westerhof N, et al. Opposite effects of training in rats with stable and progressive pulmonary hypertension. Circulation. 2009;120:42–9.

    PubMed  CAS  Google Scholar 

  180. Calvert JW, Condit ME, Aragon JP, Nicholson CK, Moody BF, Hood RL, et al. Exercise protects against myocardial ischemia-reperfusion injury via stimulation of beta(3)-adrenergic receptors and increased nitric oxide signaling: role of nitrite and nitrosothiols. Circ Res. 2011;108:1448–58.

    PubMed  CAS  Google Scholar 

  181. Schaible TF, Ciambrone GJ, Capasso JM, Scheuer J. Cardiac conditioning ameliorates cardiac dysfunction associated with renal hypertension in rats. J Clin Invest. 1984;73:1086–94.

    PubMed  CAS  Google Scholar 

  182. Bowles DK, Wamhoff BR. Coronary smooth muscle adaptation to exercise: does it play a role in cardioprotection? Acta Physiol Scand. 2003;178:117–21.

    PubMed  CAS  Google Scholar 

  183. Symons JD, Rendig SV, Stebbins CL, Longhurst JC. Microvascular and myocardial contractile responses to ischemia: influence of exercise training. J Appl Physiol. 2000;88:433–42.

    PubMed  CAS  Google Scholar 

  184. Underwood FB, Laughlin MH, Sturek M. Altered control of calcium in coronary smooth muscle cells by exercise training. Med Sci Sports Exerc. 1994;26:1230–8.

    PubMed  CAS  Google Scholar 

  185. Paroo Z, Haist JV, Karmazyn M, Noble EG. Exercise improves postischemic cardiac function in males but not females: consequences of a novel sex-specific heat shock protein 70 response. Circ Res. 2002;90:911–7.

    PubMed  CAS  Google Scholar 

  186. Vaccarino V, Parsons L, Every NR, Barron HV, Krumholz HM. Sex-based differences in early mortality after myocardial infarction. National registry of myocardial infarction 2 participants. N Engl J Med. 1999;341:217–25.

    PubMed  CAS  Google Scholar 

  187. Le Page C, Noirez P, Courty J, Riou B, Swynghedauw B, Besse S. Exercise training improves functional post-ischemic recovery in senescent heart. Exp Gerontol. 2009;44:177–82.

    PubMed  Google Scholar 

  188. McElroy CL, Gissen SA, Fishbein MC. Exercise-induced reduction in myocardial infarct size after coronary artery occlusion in the rat. Circulation. 1978;57:958–62.

    PubMed  CAS  Google Scholar 

  189. Przyklenk K, Groom AC. Can exercise promote revascularization in the transition zone of infarcted rat hearts? Can J Physiol Pharmacol. 1984;62:630–3.

    PubMed  CAS  Google Scholar 

  190. Przyklenk K, Groom AC. Effects of exercise frequency, intensity, and duration on revascularization in the transition zone of infarcted rat hearts. Can J Physiol Pharmacol. 1985;63:273–8.

    PubMed  CAS  Google Scholar 

  191. Brown DA, Jew KN, Sparagna GC, Musch TI, Moore RL. Exercise training preserves coronary flow and reduces infarct size after ischemia-reperfusion in rat heart. J Appl Physiol. 2003;95:2510–8.

    PubMed  Google Scholar 

  192. Soufi FG, Saber MM, Ghiassie R, Alipour M. Role of 12-week resistance training in preserving the heart against ischemia-reperfusion-induced injury. Cardiol J. 2011;18:140–5.

    PubMed  Google Scholar 

  193. Leosco D, Rengo G, Iaccarino G, Golino L, Marchese M, Fortunato F, et al. Exercise promotes angiogenesis and improves beta-adrenergic receptor signalling in the post-ischaemic failing rat heart. Cardiovasc Res. 2008;78:385–94.

    PubMed  CAS  Google Scholar 

  194. de Waard MC, van Haperen R, Soullie T, Tempel D, de Crom R, Duncker DJ. Beneficial effects of exercise training after myocardial infarction require full eNOS expression. J Mol Cell Cardiol. 2010;48:1041–9.

    PubMed  Google Scholar 

  195. Wu G, Rana JS, Wykrzykowska J, Du Z, Ke Q, Kang P, et al. Exercise-induced expression of VEGF and salvation of myocardium in the early stage of myocardial infarction. Am J Physiol Heart Circ Physiol. 2009;296:H389–95.

    PubMed  CAS  Google Scholar 

  196. Detry JM, Bruce RA. Effects of physical training on exertional S-T-segment depression in coronary heart disease. Circulation. 1971;44:390–6.

    PubMed  CAS  Google Scholar 

  197. Ehsani AA, Heath GW, Hagberg JM, Sobel BE, Holloszy JO. Effects of 12 months of intense exercise training on ischemic ST-segment depression in patients with coronary artery disease. Circulation. 1981;64:1116–24.

    PubMed  CAS  Google Scholar 

  198. Hellerstein HK. Exercise therapy in coronary disease. Bull N Y Acad Med. 1968;44:1028–47.

    PubMed  CAS  Google Scholar 

  199. Landmesser U, Drexler H. The clinical significance of endothelial dysfunction. Curr Opin Cardiol. 2005;20:547–51.

    PubMed  Google Scholar 

  200. Carville C, Adnot S, Sediame S, Benacerraf S, Castaigne A, Calvo F, et al. Relation between impairment in nitric oxide pathway and clinical status in patients with congestive heart failure. J Cardiovasc Pharmacol. 1998;32:562–70.

    PubMed  CAS  Google Scholar 

  201. Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2000;342:454–60.

    PubMed  CAS  Google Scholar 

  202. Hambrecht R, Hilbrich L, Erbs S, Gielen S, Fiehn E, Schoene N, et al. Correction of endothelial dysfunction in chronic heart failure: additional effects of exercise training and oral L-arginine supplementation. J Am Coll Cardiol. 2000;35:706–13.

    PubMed  CAS  Google Scholar 

  203. Vona M, Codeluppi GM, Iannino T, Ferrari E, Bogousslavsky J, von Segesser LK. Effects of different types of exercise training followed by detraining on endothelium-dependent dilation in patients with recent myocardial infarction. Circulation. 2009;119:1601–8.

    PubMed  CAS  Google Scholar 

  204. Lee BC, Chen SY, Hsu HC, Su MY, Wu YW, Chien KL, et al. Effect of cardiac rehabilitation on myocardial perfusion reserve in postinfarction patients. Am J Cardiol. 2008;101:1395–402.

    PubMed  Google Scholar 

  205. Lee BC, Hsu HC, Tseng WY, Su MY, Chen SY, Wu YW, et al. Effect of cardiac rehabilitation on angiogenic cytokines in postinfarction patients. Heart. 2009;95:1012–8.

    PubMed  CAS  Google Scholar 

  206. Giallauria F, Acampa W, Ricci F, Vitelli A, Maresca L, Mancini M, Grieco A et al. Effects of exercise training started within 2 weeks after acute myocardial infarction on myocardial perfusion and left ventricular function: a gated SPECT imaging study. Eur J Cardiovas Prev Rehab. 2011, in press.

    Google Scholar 

  207. Rose G, Prineas RJ, Mitchell JR. Myocardial infarction and the intrinsic calibre of coronary arteries. Br Heart J. 1967;29:548–52.

    PubMed  CAS  Google Scholar 

  208. Mann GV, Spoerry A, Gray M, Jarashow D. Atherosclerosis in the Masai. Am J Epidemiol. 1972;95:26–37.

    PubMed  CAS  Google Scholar 

  209. Hambrecht R, Walther C, Mobius-Winkler S, Gielen S, Linke A, Conradi K, et al. Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: a randomized trial. Circulation. 2004;109:1371–8.

    PubMed  Google Scholar 

  210. Laufs U, Urhausen A, Werner N, Scharhag J, Heitz A, Kissner G, et al. Running exercise of different duration and intensity: effect on endothelial progenitor cells in healthy subjects. Eur J Cardiovasc Prev Rehabil. 2005;12:407–14.

    PubMed  Google Scholar 

  211. Health NIo. Physical activity and cardiovascular health. NIH Consens Statement. 19995;13(3):1–33.

    Google Scholar 

  212. Fletcher GF, Balady G, Blair SN, Blumenthal J, Caspersen C, Chaitman B, et al. Statement on exercise: benefits and recommendations for physical activity programs for all Americans. A statement for health professionals by the Committee on Exercise and Cardiac Rehabilitation of the Council on Clinical Cardiology, American Heart Association. Circulation. 1996;94:857–62.

    PubMed  CAS  Google Scholar 

  213. Thompson PD, Buchner D, Pina IL, Balady GJ, Williams MA, Marcus BH, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease. A statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation. 2003;107:3109–16.

    PubMed  Google Scholar 

  214. Mora S, Cook N, Buring JE, Ridker PM, Lee IM. Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation. 2007;116:2110–8.

    PubMed  CAS  Google Scholar 

  215. Sofi F, Capalbo A, Cesari F, Abbate R, Gensini GF. Physical activity during leisure time and primary prevention of coronary heart disease: an updated meta-analysis of cohort studies. Eur J Cardiovasc Prev Rehabil. 2008;15:247–57.

    PubMed  Google Scholar 

  216. Sung J, Cho SJ, Choe YH, Choi YH, Hong KP. Prevalence of coronary atherosclerosis in asymptomatic middle-age men with high aerobic fitness. Am J Cardiol. 2012;109(6):839–43.

    PubMed  Google Scholar 

  217. Ahmed HM, Blaha MJ, Nasir K, Rivera JJ, Blumenthal RS. Effects of physical activity on cardiovascular disease. Am J Cardiol. 2012;109(2):288–95.

    PubMed  Google Scholar 

  218. Lavie CJ, Milani RV. Cardiac rehabilitation and exercise training in secondary coronary heart disease prevention. Prog Cardiovasc Dis. 2011;53:397–403.

    PubMed  Google Scholar 

  219. Munk PS, Breland UM, Aukrust P, Ueland T, Kvaloy JT, Larsen AL. High intensity interval training reduces systemic inflammation in post-PCI patients. Eur J Cardiovas Prev Rehabit. 2011;18:850–7.

    Google Scholar 

  220. Ribeiro F, Alves AJ, Duarte JA, Oliveira J. Is exercise training an effective therapy targeting endothelial dysfunction and vascular wall inflammation? Int J Cardiol. 2010;141:214–21.

    PubMed  Google Scholar 

  221. Walther C, Mobius-Winkler S, Linke A, Bruegel M, Thiery J, Schuler G, et al. Regular exercise training compared with percutaneous intervention leads to a reduction of inflammatory markers and cardiovascular events in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil. 2008;15:107–12.

    PubMed  Google Scholar 

  222. Kumar A, Kar S, Fay WP. Thrombosis, physical activity, and acute coronary syndromes. J Appl Physiol. 2011;111:599–605.

    PubMed  CAS  Google Scholar 

  223. Belardinelli R, Paolini I, Cianci G, Piva R, Georgiou D, Purcaro A. Exercise training intervention after coronary angioplasty: the ETICA trial. J Am Coll Cardiol. 2001;37:1891–900.

    PubMed  CAS  Google Scholar 

  224. Newcomer SC, Thijssen DH, Green DJ. Effects of exercise on endothelium and endothelium/smooth muscle cross talk: role of exercise-induced hemodynamics. J Appl Physiol. 2011;111:311–20.

    PubMed  CAS  Google Scholar 

  225. Linke A, Erbs S, Hambrecht R. Exercise and the coronary circulation-alterations and adaptations in coronary artery disease. Prog Cardiovasc Dis. 2006;48:270–84.

    PubMed  CAS  Google Scholar 

  226. Gielen S, Erbs S, Linke A, Mobius-Winkler S, Schuler G, Hambrecht R. Home-based versus hospital-based exercise programs in patients with coronary artery disease: effects on coronary vasomotion. Am Heart J. 2003;145:E3.

    PubMed  Google Scholar 

  227. Beck EB, Erbs S, MÖbiuis-Winkler S, Adams V, Woitek FJ, Walther T, Hambrecht P, Mohr FW, Stumvoll M, BlÜher M, Schuler G, Linke A. Exercise restores the endothelial response to vascular growth factors in patients with stable coronary artery ­disease. Eur J Prev Cardiol. 2011;19:412–8.

    Google Scholar 

  228. Smith JK. Exercise and cardiovascular disease. Cardiovasc Hematol Disord Drug Targets. 2010;10:269–72.

    PubMed  CAS  Google Scholar 

  229. Henderson KK, Turk JR, Rush JW, Laughlin MH. Endothelial function in coronary arterioles from pigs with early-stage coronary disease induced by high-fat, high-cholesterol diet: effect of exercise. J Appl Physiol. 2004;97:1159–68.

    PubMed  CAS  Google Scholar 

  230. Long X, Bratz IN, Alloosh M, Edwards JM, Sturek M. Short-term exercise training prevents micro- and macrovascular disease following coronary stenting. J Appl Physiol. 2010;108:1766–74.

    PubMed  Google Scholar 

  231. Witczak CA, Wamhoff BR, Sturek M. Exercise training prevents Ca2+ dysregulation in coronary smooth muscle from diabetic dyslipidemic yucatan swine. J Appl Physiol. 2006;101:752–62.

    PubMed  CAS  Google Scholar 

  232. Bunker AK, Laughlin MH. Influence of exercise and perivascular adipose tissue on coronary artery vasomotor function in a familial hypercholesterolemic porcine atherosclerosis model. J Appl Physiol. 2010;108:490–7.

    PubMed  Google Scholar 

  233. Sturek M. Ca2+ regulatory mechanisms of exercise protection against coronary artery disease in metabolic syndrome and diabetes. J Appl Physiol. 2011;111:573–86.

    PubMed  CAS  Google Scholar 

  234. Pynn M, Schafer K, Konstantinides S, Halle M. Exercise training reduces neointimal growth and stabilizes vascular lesions developing after injury in apolipoprotein e-deficient mice. Circulation. 2004;109:386–92.

    PubMed  CAS  Google Scholar 

  235. Okabe TA, Shimada K, Hattori M, Murayama T, Yokode M, Kita T, et al. Swimming reduces the severity of atherosclerosis in apolipoprotein E deficient mice by antioxidant effects. Cardiovasc Res. 2007;74:537–45.

    PubMed  CAS  Google Scholar 

  236. Kadoglou NP, Kostomitsopoulos N, Kapelouzou A, Moustardas P, Katsimpoulas M, Giagini A, et al. Effects of exercise training on the severity and composition of atherosclerotic plaque in apoE-deficient mice. J Vasc Res. 2011;48:347–56.

    PubMed  CAS  Google Scholar 

  237. Jacobs TB, Bell RD, McClements JD. Exercise, age and the development of the myocardial vasculature. Growth. 1984;48:148–57.

    PubMed  CAS  Google Scholar 

  238. Suzuki J. Microvascular angioadaptation after endurance training with L-arginine supplementation in rat heart and hindleg muscles. Exp Physiol. 2005;90:763–71.

    PubMed  CAS  Google Scholar 

  239. Bell RD, Rasmussen RL. Exercise and the myocardial capillary-fiber ratio during growth. Growth. 1974;38:237–44.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tomanek, R.J. (2013). Adaptations to Exercise Training. In: Coronary Vasculature. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4887-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4887-7_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-4886-0

  • Online ISBN: 978-1-4614-4887-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics