Prenatal Coronary Morphogenesis

  • Robert J. Tomanek


The coronary vasculature is formed by precursor cells that (1) originate outside the heart; (2) migrate to form the epicardium and subepicardium; (3) differentiate into endothelial cells, smooth muscle, and fibroblasts; and (4) migrate and assemble into vascular structures. This is an elaborate process involving vasculogenesis, angiogenesis, and arteriogenesis. Since the heart chambers are initially thin-walled, consisting primarily of a trabecular network of cardiomyocytes, O2 diffusion from the chamber lumens is sufficient. However, the thickening of the compact regions makes this diffusion inadequate and sets into motion a cascade of events that facilitate the formation of a coronary vasculature. The initial set of vascular channels consists of endothelial-lined tubes that are not yet perfused because they lack connections to the aorta. Part of this network penetrates the root of the aorta just above the left and right cusps, establishing a functional coronary circulation. This event is followed by the development of larger coronary vessels. This chapter addresses these events and the factors that precipitate and regulate coronary vessel development.


Vascular Endothelial Growth Factor Serum Response Factor Vascular Endothelial Growth Factor Signaling Coronary Ostium Embryonic Heart 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Bone morphogenic protein


Endothelial cells


Extracellular matrix




Epithelial progenitor derived cells


Fibroblast growth factor


Hamburger–Hamilton stages (chick development)


Platelet-derived growth factor




Transforming growth factor-β


Vascular endothelial growth factor


Vascular smooth muscle cell


Wilm’s tumor gene


  1. 1.
    Manasek FJ. Embryonic development of the heart. I. A light and electron microscopic study of myocardial development in the early chick embryo. J Morphol. 1968;125:329–65.PubMedGoogle Scholar
  2. 2.
    His W. Anatomic Menschlicher Embryonen. Leipzig: Vogel; 1885.Google Scholar
  3. 3.
    Kurkiewicz T. ZurKenntnis der histogenese des Hermuskels der wireltiere. Bull Internat Acad D sc De Cravocie. 1909;ii:148–191.Google Scholar
  4. 4.
    Van den Eijnde SM, Wenink AC, Vermeij-Keers C. Origin of subepicardial cells in rat embryos. Anat Rec. 1995;242:96–102.PubMedGoogle Scholar
  5. 5.
    Ratajska A, Czarnowska E, Ciszek B. Embryonic development of the proepicardium and coronary vessels. Int J Dev Biol. 2008;52:229–36.PubMedGoogle Scholar
  6. 6.
    Komiyama M, Ito K, Shimada Y. Origin and development of the epicardium in the mouse embryo. Anat Embryol (Berl). 1987;176:183–9.Google Scholar
  7. 7.
    Kalman F, Viragh S, Modis L. Cell surface glycoconjugates and the extracellular matrix of the developing mouse embryo epicardium. Anat Embryol (Berl). 1995;191:451–64.Google Scholar
  8. 8.
    Rodgers LS, Lalani S, Runyan RB, Camenisch TD. Differential growth and multicellular villi direct proepicardial translocation to the developing mouse heart. Dev Dyn. 2008;237:145–52.PubMedGoogle Scholar
  9. 9.
    Munoz-Chapuli R, Macias D, Ramos C, Gallego A, DA V. Development of the subepicardial mesenchyme and the early cardiac vessels in the dogfish (Scyliorhinus canicula). J Exp Zool. 1996;275:95–111.Google Scholar
  10. 10.
    Munoz-Chapuli R, Macias D, Ramos C, Fernandez B, Sans-Coma V. Development of the epicardium in the dogfish (Scyliorhinus Canicula). Acta Zool (Stockholm). 1997;78:39–46.Google Scholar
  11. 11.
    Kuhn W, Roebroek R, Blom H, van Oppenraaij D, Przuntek H, Kretschmer A, et al. Elevated plasma levels of homocysteine in Parkinson’s disease. Eur Neurol. 1998;40:225–7.PubMedGoogle Scholar
  12. 12.
    Viragh S, Gittenberger-de Groot AC, Poelmann RE, Kalman F. Early development of quail heart epicardium and associated vascular and glandular structures. Anat Embryol (Berl). 1993;188:381–93.Google Scholar
  13. 13.
    Manner J. Experimental study on the formation of the epicardium in chick embryos. Anat Embryol (Berl). 1993;187:281–9.Google Scholar
  14. 14.
    Viragh S, Challice CE. The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec. 1981;201:157–68.PubMedGoogle Scholar
  15. 15.
    Hiruma T, Hirakow R. Epicardial formation in embryonic chick heart: computer-aided reconstruction, scanning, and transmission electron microscopic studies. Am J Anat. 1989;184:129–38.PubMedGoogle Scholar
  16. 16.
    Nahirney PC, Mikawa T, Fischman DA. Evidence for an extracellular matrix bridge guiding proepicardial cell migration to the myocardium of chick embryos. Dev Dyn. 2003;227:511–23.PubMedGoogle Scholar
  17. 17.
    Moorman AF, Christoffels VM, Anderson RH, van den Hoff MJ. The heart-forming fields: one or multiple? Philos Trans R Soc Lond B Biol Sci. 2007;362:1257–65.PubMedGoogle Scholar
  18. 18.
    Ishii Y, Langberg J, Rosborough K, Mikawa T. Endothelial cell lineages of the heart. Cell Tissue Res. 2009;335:67–73.PubMedGoogle Scholar
  19. 19.
    Schulte I, Schlueter J, Abu-Issa R, Brand T, Manner J. Morphological and molecular left-right asymmetries in the development of the proepicardium: a comparative analysis on mouse and chick embryos. Dev Dyn. 2007;236:684–95.PubMedGoogle Scholar
  20. 20.
    Cossette S, Misra R. The identification of different endothelial cell populations within the mouse proepicardium. Dev Dyn. 2011;240:2344–53.PubMedGoogle Scholar
  21. 21.
    Shimada Y, Ho E, Toyota N. Epicardial covering over myocardial wall in the chicken embryo as seen with the scanning electron microscope. Scan Electron Microsc. 1981;(Pt 2):275–80.Google Scholar
  22. 22.
    Manner J. The development of pericardial villi in the chick embryo. Anat Embryol (Berl). 1992;186:379–85.Google Scholar
  23. 23.
    Poelmann RE, Gittenberger-de Groot AC, Mentink MM, Bokenkamp R, Hogers B. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res. 1993;73:559–68.PubMedGoogle Scholar
  24. 24.
    Munoz-Chapuli R, Macias D, Ramos C, de Andres V, Gallego A, Navarro P. Cardiac development in the dogfish (Scyliorhinus canicula): a model for the study of vertebrate cardiogenesis. Cardioscience. 1994;5:245–53.PubMedGoogle Scholar
  25. 25.
    Nesbitt T, Lemley A, Davis J, Yost MJ, Goodwin RL, Potts JD. Epicardial development in the rat: a new perspective. Microsc Microanal. 2006;12:390–8.PubMedGoogle Scholar
  26. 26.
    Icardo JM, Guerrero A, Duran AC, Colvee E, Domezain A, Sans-Coma V. The development of the epicardium in the sturgeon Acipenser naccarii. Anat Rec (Hoboken). 2009;292:1593–601.Google Scholar
  27. 27.
    Serluca FC. Development of the proepicardial organ in the zebrafish. Dev Biol. 2008;315:18–27.PubMedGoogle Scholar
  28. 28.
    Fransen ME, Lemanski LF. Epicardial development in the axolotl, Ambystoma mexicanum. Anat Rec. 1990;226:228–36.PubMedGoogle Scholar
  29. 29.
    Jahr M, Schlueter J, Brand T, Manner J. Development of the proepicardium in Xenopus laevis. Dev Dyn. 2008;237:3088–96.PubMedGoogle Scholar
  30. 30.
    Majesky MW. Development of coronary vessels. Curr Top Dev Biol. 2004;62:225–59.PubMedGoogle Scholar
  31. 31.
    Mikawa T, Fischman DA. Retroviral analysis of cardiac morphogenesis: discontinuous formation of coronary vessels. Proc Natl Acad Sci USA. 1992;89:9504–8.PubMedGoogle Scholar
  32. 32.
    Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol. 1996;174:221–32.PubMedGoogle Scholar
  33. 33.
    Ishii Y, Langberg JD, Hurtado R, Lee S, Mikawa T. Induction of proepicardial marker gene expression by the liver bud. Development. 2007;134:3627–37.PubMedGoogle Scholar
  34. 34.
    Zhou B, von Gise A, Ma Q, Rivera-Feliciano J, Pu WT. Nkx2-5- and Isl1-expressing cardiac progenitors contribute to proepicardium. Biochem Biophys Res Commun. 2008;375:450–3.PubMedGoogle Scholar
  35. 35.
    Robb L, Mifsud L, Hartley L, Biben C, Copeland NG, Gilbert DJ, et al. Epicardin: a novel basic helix-loop-helix transcription factor gene expressed in epicardium, branchial arch myoblasts, and ­mesenchyme of developing lung, gut, kidney, and gonads. Dev Dyn. 1998;213:105–13.PubMedGoogle Scholar
  36. 36.
    Watt AJ, Battle MA, Li J, Duncan SA. GATA4 is essential for formation of the proepicardium and regulates cardiogenesis. Proc Natl Acad Sci USA. 2004;101:12573–8.PubMedGoogle Scholar
  37. 37.
    Yang JT, Rayburn H, Hynes RO. Cell adhesion events mediated by α4 integrins are essential in placental and cardiac development. Development. 1995;121:549–60.PubMedGoogle Scholar
  38. 38.
    Pinco KA, Liu S, Yang JT. alpha4 integrin is expressed in a subset of cranial neural crest cells and in epicardial progenitor cells during early mouse development. Mech Dev. 2001;100:99–103.PubMedGoogle Scholar
  39. 39.
    Schlueter J, Manner J, Brand T. BMP is an important regulator of proepicardial identity in the chick embryo. Dev Biol. 2006;295:546–58.PubMedGoogle Scholar
  40. 40.
    Ishii Y, Garriock RJ, Navetta AM, Coughlin LE, Mikawa T. BMP signals promote proepicardial protrusion necessary for recruitment of coronary vessel and epicardial progenitors to the heart. Dev Cell. 2010;19:307–16.PubMedGoogle Scholar
  41. 41.
    Kruithof BP, van Wijk B, Somi S, Kruithof-de Julio M, Perez Pomares JM, Weesie F, et al. BMP and FGF regulate the differentiation of multipotential pericardial mesoderm into the myocardial or epicardial lineage. Dev Biol. 2006;295:507–22.PubMedGoogle Scholar
  42. 42.
    Torlopp A, Schlueter J, Brand T. Role of fibroblast growth factor signaling during proepicardium formation in the chick embryo. Dev Dyn. 2010;239:2393–403.PubMedGoogle Scholar
  43. 43.
    Vrancken Peeters M, Mentink MMT, Poelmann RE, G-dG AC. Cytokeratins as a marker for epicardial formation in the quail embryo. Anat Embryol (Berl). 1995;191:503–8.Google Scholar
  44. 44.
    Perez-Pomares JM, Macias D, Garcia-Garrido L, Munoz-Chapuli R. Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos. Dev Dyn. 1997;210:96–105.PubMedGoogle Scholar
  45. 45.
    Manner J, Perez-Pomares JM, Macias D, Munoz-Chapuli R. The origin, formation and developmental significance of the epicardium: a review. Cells Tissues Organs. 2001;169:89–103.PubMedGoogle Scholar
  46. 46.
    Lie-Venema H, Eralp I, Maas S, Gittenberger-De Groot AC, Poelmann RE, DeRuiter MC. Myocardial heterogeneity in permissiveness for epicardium-derived cells and endothelial precursor cells along the developing heart tube at the onset of coronary vascularization. Anat Rec A Discov Mol Cell Evol Biol. 2005;282:120–9.PubMedGoogle Scholar
  47. 47.
    Moore AW, McInnes L, Kreidberg J, Hastie ND, Schedl A. YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development. 1999;126:1845–57.PubMedGoogle Scholar
  48. 48.
    Wessels A, Perez-Pomares JM. The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec. 2004;276A:43–57.Google Scholar
  49. 49.
    Li WE, Waldo K, Linask KL, Chen T, Wessels A, Parmacek MS, et al. An essential role for connexin43 gap junctions in mouse ­coronary artery development. Development. 2002;129:2031–42.PubMedGoogle Scholar
  50. 50.
    Wei CJ, Francis R, Xu X, Lo CW. Connexin43 associated with an N-cadherin-containing multiprotein complex is required for gap junction formation in NIH3T3 cells. J Biol Chem. 2005;280:19925–36.PubMedGoogle Scholar
  51. 51.
    Ward NL, Van Slyke P, Sturk C, Cruz M, Dumont DJ. Angiopoietin 1 expression levels in the myocardium direct coronary vessel development. Dev Dyn. 2004;229:500–9.PubMedGoogle Scholar
  52. 52.
    Sridurongrit S, Larsson J, Schwartz R, Ruiz-Lozano P, Kaartinen V. Signaling via the Tgf-beta type I receptor Alk5 in heart development. Dev Biol. 2008;322:208–18.PubMedGoogle Scholar
  53. 53.
    Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development. 1999;126:3597–605.PubMedGoogle Scholar
  54. 54.
    Kwee L, Baldwin HS, Shen HM, Stewart CL, Buck C, Buck CA, et al. Defective development of the embryonic and ­extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development. 1995;121:489–503.PubMedGoogle Scholar
  55. 55.
    Xavier-Neto J, Shapiro MD, Houghton L, Rosenthal N. Sequential programs of retinoic acid synthesis in the myocardial and epicardial layers of the developing avian heart. Dev Biol. 2000;219:129–41.PubMedGoogle Scholar
  56. 56.
    Olivey HE, Svensson EC. Epicardial-myocardial signaling directing coronary vasculogenesis. Circ Res. 2010;106:818–32.PubMedGoogle Scholar
  57. 57.
    Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene. 2005;24:5764–74.PubMedGoogle Scholar
  58. 58.
    Chau YY, Brownstein D, Mjoseng H, Lee WC, Buza-Vidas N, Nerlov C, Jacobsen SE, Perry P, Berry R, Thornburn A, Secton D, Morton N, Hohenstein P, Freyer E, Samuel K, Van’t Hof R, Hastie N. Acute multiple organ failure in adult mice deleted for the developmental regulator Wt1, PLoS. 2011;7:e1002404.Google Scholar
  59. 59.
    Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.PubMedGoogle Scholar
  60. 60.
    Carmona R, Gonzalez-Iriarte M, Macias D, Perez-Pomares JM, Garcia-Garrido L, Munoz-Chapuli R. Immunolocalization of the transcription factor Slug in the developing avian heart. Anat Embryol (Berl). 2000;201:103–9.Google Scholar
  61. 61.
    Cai H, Reed RR. Cloning and characterization of neuropilin-1-interacting protein: a PSD-95/Dlg/ZO-1 domain-containing protein that interacts with the cytoplasmic domain of neuropilin-1. J Neurosci. 1999;19:6519–27.PubMedGoogle Scholar
  62. 62.
    Kraus F, Haenig B, Kispert A. Cloning and expression analysis of the mouse T-box gene Tbx18. Mech Dev. 2001;100:83–6.PubMedGoogle Scholar
  63. 63.
    Macias D, Perez-Pomares JM, Garcia-Garrido L, Carmona R, Munoz-Chapuli R. Immunoreactivity of the ets-1 transcription factor correlates with areas of epithelial-mesenchymal transition in the developing avian heart. Anat Embryol (Berl). 1998;198:307–15.Google Scholar
  64. 64.
    Lie-Venema H, Gittenberger-de Groot AC, van Empel LJ, Boot MJ, Kerkdijk H, de Kant E, et al. Ets-1 and Ets-2 transcription factors are essential for normal coronary and myocardial development in chicken embryos. Circ Res. 2003;92:749–56.PubMedGoogle Scholar
  65. 65.
    Yang K, Doughman YQ, Karunamuni G, Gu S, Yang YC, Bader DM, et al. Expression of active Notch1 in avian coronary development. Dev Dyn. 2009;238:162–70.PubMedGoogle Scholar
  66. 66.
    Crispino JD, Lodish MB, Thurberg BL, Litovsky SH, Collins T, Molkentin JD, et al. Proper coronary vascular development and heart morphogenesis depend on interaction of GATA-4 with FOG cofactors. Genes Dev. 2001;15:839–44.PubMedGoogle Scholar
  67. 67.
    Zamora M, Manner J, Ruiz-Lozano P. Epicardium-derived progenitor cells require beta-catenin for coronary artery formation. Proc Natl Acad Sci USA. 2007;104:18109–14.PubMedGoogle Scholar
  68. 68.
    Rhee DY, Zhao XQ, Francis RJ, Huang GY, Mably JD, Lo CW. Connexin 43 regulates epicardial cell polarity and migration in coronary vascular development. Development. 2009;136:3185–93.PubMedGoogle Scholar
  69. 69.
    Huang X, Gao X, Diaz-Trelles R, Ruiz-Lozano P, Wang Z. Coronary development is regulated by ATP-dependent SWI/SNF chromatin remodeling component BAF180. Dev Biol. 2008;319:258–66.PubMedGoogle Scholar
  70. 70.
    Dokic D, Dettman RW. VCAM-1 inhibits TGFbeta stimulated epithelial-mesenchymal transformation by modulating Rho activity and stabilizing intercellular adhesion in epicardial mesothelial cells. Dev Biol. 2006;299:489–504.PubMedGoogle Scholar
  71. 71.
    Lavine KJ, White AC, Park C, Smith CS, Choi K, Long F, et al. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev. 2006;20:1651–66.PubMedGoogle Scholar
  72. 72.
    Pennisi DJ, Mikawa T. FGFR-1 is required by epicardium-derived cells for myocardial invasion and correct coronary vascular lineage differentiation. Dev Biol. 2009;328:148–59.PubMedGoogle Scholar
  73. 73.
    Morabito CJ, Dettman RW, Kattan J, Collier JM, Bristow J. Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Dev Biol. 2001;234:204–15.PubMedGoogle Scholar
  74. 74.
    Olivey HE, Mundell NA, Austin AF, Barnett JV. Transforming growth factor-beta stimulates epithelial-mesenchymal transformation in the proepicardium. Dev Dyn. 2006;235:50–9.PubMedGoogle Scholar
  75. 75.
    Compton LA, Potash DA, Mundell NA, Barnett JV. Transforming growth factor-beta induces loss of epithelial character and smooth muscle cell differentiation in epicardial cells. Dev Dyn. 2006;235:82–93.PubMedGoogle Scholar
  76. 76.
    Dettman RW, Pae SH, Morabito C, Bristow J. Inhibition of alpha4-integrin stimulates epicardial-mesenchymal transformation and alters migration and cell fate of epicardially derived mesenchyme. Dev Biol. 2003;257:315–28.PubMedGoogle Scholar
  77. 77.
    Mahtab EA, Wijffels MC, Van Den Akker NM, Hahurij ND, Lie-Venema H, Wisse LJ, et al. Cardiac malformations and myocardial abnormalities in podoplanin knockout mouse embryos: correlation with abnormal epicardial development. Dev Dyn. 2008;237:847–57.PubMedGoogle Scholar
  78. 78.
    Savagner P, Yamada KM, Thiery JP. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol. 1997;137:1403–19.PubMedGoogle Scholar
  79. 79.
    Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien KR, et al. Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature. 2007;445:177–82.PubMedGoogle Scholar
  80. 80.
    Smart N, Risebro CA, Melville AA, Moses K, Schwartz RJ, Chien KR, et al. Thymosin beta-4 is essential for coronary vessel development and promotes neovascularization via adult epicardium. Ann NY Acad Sci. 2007;1112:171–88.PubMedGoogle Scholar
  81. 81.
    Phillips HM, Hildreth V, Peat JD, Murdoch JN, Kobayashi K, Chaudhry B, et al. Non-cell-autonomous roles for the planar cell polarity gene Vangl2 in development of the coronary circulation. Circ Res. 2008;102:615–23.PubMedGoogle Scholar
  82. 82.
    Tidball JG. Distribution of collagens and fibronectin in the subepicardium during avian cardiac development. Anat Embryol (Berl). 1992;185:155–62.Google Scholar
  83. 83.
    Bouchey D, Drake CJ, Wunsch AM, Little CD. Distribution of connective tissue proteins during development and neovascularization of the epicardium. Cardiovasc Res. 1996;31:Spec No: E104–15.Google Scholar
  84. 84.
    Burch GH, Bedolli MA, McDonough S, Rosenthal SM, Bristow J. Embryonic expression of tenascin-X suggests a role in limb, muscle, and heart development. Dev Dyn. 1995;203:491–504.PubMedGoogle Scholar
  85. 85.
    Hutchins GM, Kessler-Hanna A, Moore GW. Development of the coronary arteries in the embryonic human heart. Circulation. 1988;77:1250–7.PubMedGoogle Scholar
  86. 86.
    Viragh SZ, Kalman F, Gittenberger-de Groot AC, Poelmann RE, AFM M. Angiogenesis and hematopoiesis in the epicardium of the vertebrate embryo heart. Ann NY Acad Sci. 1990;588:455–8.Google Scholar
  87. 87.
    Suri C, Yancopoulos GD. The ties that bind: emerging concepts about the structure and function of angiopoietins and their receptors in angiogenesis. In: Tomanek RJ, editor. Assembly of the vasculature and its regulation. Boston: Birkhauser; 2002. p. 55–66.Google Scholar
  88. 88.
    Dettman RW, Denetclaw Jr W, Ordahl CP, Bristow J. Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol. 1998;193:169–81.PubMedGoogle Scholar
  89. 89.
    Manner J. Does the subepicardial mesenchyme contribute ­myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat Rec. 1999;255:212–26.PubMedGoogle Scholar
  90. 90.
    Gittenberger-de Groot A, Vrancken Peeters M-P, Mentink M, Gourdie R, Poelmann R. Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res. 1998;82:1043–52.PubMedGoogle Scholar
  91. 91.
    Vrancken Peeters M-P, Gittenberger-de Groot AC, Mentink MM, Poelmann RE. Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat Embryol (Berl). 1999;199:367–78.Google Scholar
  92. 92.
    Landerholm TE, Dong XR, Lu J, Belaguli NS, Schwartz RJ, Majesky MW. A role for serum response factor in coronary smooth muscle differentiation from proepicardial cells. Development. 1999;126:2053–62.PubMedGoogle Scholar
  93. 93.
    Lu J, Landerholm TE, Wei JS, Dong XR, Wu SP, Liu X, et al. Coronary smooth muscle differentiation from proepicardial cells requires rhoA-mediated actin reorganization and p160 rho-kinase activity. Dev Biol. 2001;240:404–18.PubMedGoogle Scholar
  94. 94.
    Sun Y, Liang X, Najafi N, Cass M, Lin L, Cai CL, et al. Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Dev Biol. 2007;304:286–96.PubMedGoogle Scholar
  95. 95.
    Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, et al. Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell. 2006;127:1151–65.PubMedGoogle Scholar
  96. 96.
    Perez-Pomares JM, Macias D, Garcia-Garrido L, Munoz-Chapuli R. Immunolocalization of the vascular endothelial growth factor receptor-2 in the subepicardial mesenchyme of hamster embryos: identification of the coronary vessel precursors. Histochem J. 1998;30:627–34.PubMedGoogle Scholar
  97. 97.
    Katz TC, Singh MK, Degenhardt K, Rivera-Feliciano J, Johnson RL, Epstein JA, et al. Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial cells. Dev Cell. 2012;22:639–50.PubMedGoogle Scholar
  98. 98.
    Guadix JA, Carmona R, Munoz-Chapuli R, Perez-Pomares JM. In vivo and in vitro analysis of the vasculogenic potential of avian proepicardial and epicardial cells. Dev Dyn. 2006;235:1014–26.PubMedGoogle Scholar
  99. 99.
    Merki E, Zamora M, Raya A, Kawakami Y, Wang J, Zhang X, et al. Epicardial retinoid X receptor alpha is required for myocardial growth and coronary artery formation. Proc Natl Acad Sci USA. 2005;102:18455–60.PubMedGoogle Scholar
  100. 100.
    Red-Horse K, Ueno H, Weissman IL, Krasnow MA. Coronary arteries form by developmental reprogramming of venous cells. Nature. 2010;464:549–53.PubMedGoogle Scholar
  101. 101.
    Perez-Pomares JM, Carmona R, Gonzalez-Iriarte M, Atencia G, Wessels A, Munoz-Chapuli R. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int J Dev Biol. 2002;46:1005–13.PubMedGoogle Scholar
  102. 102.
    Hirakow R. Development of the cardiac blood vessels in staged human embryos. Acta Anat (Basel). 1983;115:220–30.Google Scholar
  103. 103.
    Tomanek RJ, Christensen LP, Simons M, Murakami M, Zheng W, Schatteman GC. Embryonic coronary vasculogenesis and angiogenesis are regulated by interactions between multiple FGFs and VEGF and are influenced by mesenchymal stem cells. Dev. Dyn. 2010;239:3182–3191.Google Scholar
  104. 104.
    Heintzberger CF. Development of myocardial vascularisation in the rat. Acta Morphol Neerl Scand. 1983;21:267–84.PubMedGoogle Scholar
  105. 105.
    Rongish BJ, Torry RJ, Tucker DC, Tomanek RJ. Neovascularization of embryonic rat hearts cultured in oculo closely mimics in utero coronary vessel development. J Vasc Res. 1994;31:206–15.Google Scholar
  106. 106.
    Ratajska A, Czarnowska E, Kolodzinska A, Kluzek W, Lesniak W. Vasculogenesis of the embryonic heart: origin of blood island-like structures. Anat Rec A Discov Mol Cell Evol Biol. 2006;288:223–32.PubMedGoogle Scholar
  107. 107.
    Tomanek RJ, Hansen HK, Dedkov EI. Vascular patterning of the quail coronary system during development. Anat Rec A Discov Mol Cell Evol Biol. 2006;288:989–99.PubMedGoogle Scholar
  108. 108.
    Tomanek RJ, Ishii Y, Holifield JS, Sjogren CL, Hansen HK, Mikawa T. VEGF family members regulate myocardial ­tubulogenesis and coronary artery formation in the embryo. Circ Res. 2006;98:947–53.PubMedGoogle Scholar
  109. 109.
    Kattan J, Dettman RW, Bristow J. Formation and remodeling of the coronary vascular bed in the embryonic avian heart. Dev Dyn. 2004;230:34–43.PubMedGoogle Scholar
  110. 110.
    Ratajska A, Czarnowska E, Kolodzinska A, Jablonska A, Stachurska E. New morphological aspects of blood islands formation in the embryonic mouse hearts. Histochem Cell Biol. 2009;131:297–311.PubMedGoogle Scholar
  111. 111.
    Majesky MW. Developmental basis of vascular smooth muscle diversity. Arterioscler Thromb Vasc Biol. 2007;27:1248–58.PubMedGoogle Scholar
  112. 112.
    Wang D, Chang PS, Wang Z, Sutherland L, Richardson JA, Small E, et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell. 2001;105:851–62.PubMedGoogle Scholar
  113. 113.
    Creemers EE, Sutherland LB, McAnally J, Richardson JA, Olson EN. Myocardin is a direct transcriptional target of Mef2, Tead and Foxo proteins during cardiovascular development. Development. 2006;133:4245–56.PubMedGoogle Scholar
  114. 114.
    Hoofnagle MH, Neppl RL, Berzin EL, Teg Pipes GC, Olson EN, Wamhoff BW, et al. Myocardin is differentially required for the development of smooth muscle cells and cardiomyocytes. Am J Physiol Heart Circ Physiol. 2011;300:H1707–21.PubMedGoogle Scholar
  115. 115.
    Gries Kamp T, Rudat C, LÜdkte TH, Norden J, Kispert A. Notch signaling regulates smooth muscle differentiation of epicardium-derived cells. Circ Res. 2011;108:813–23.Google Scholar
  116. 116.
    del Monte G, Casanova JC, Guadix JA, MacGrogan D, Burch JB, Pérez-Pomares JM, de la Pompa JL. Differential notch signaling in the epicardium is required for cardiac inflow development and coronary vessel morphogenesis. Circ Res. 2011;108:824–36.Google Scholar
  117. 117.
    Mellgren AM, Smith CL, Olsen GS, Eskiocak B, Zhou B, Kazi MN, et al. Platelet-derived growth factor receptor beta signaling is required for efficient epicardial cell migration and development of two distinct coronary vascular smooth muscle cell populations. Circ Res. 2008;103:1393–401.PubMedGoogle Scholar
  118. 118.
    Nelson TJ, Duncan SA, Misra RP. Conserved enhancer in the serum response factor promoter controls expression during early coronary vasculogenesis. Circ Res. 2004;94:1059–66.PubMedGoogle Scholar
  119. 119.
    Akhurst RJ, Lehnert SA, Faissner A, Duffie E. TGF beta in murine morphogenetic processes: the early embryo and cardiogenesis. Development. 1990;108:645–56.PubMedGoogle Scholar
  120. 120.
    Austin AF, Compton LA, Love JD, Brown CB, Barnett JV. Primary and immortalized mouse epicardial cells undergo differentiation in response to TGFbeta. Dev Dyn. 2008;237:366–76.PubMedGoogle Scholar
  121. 121.
    Snider P, Standley KN, Wang J, Azhar M, Doetschman T, Conway SJ. Origin of cardiac fibroblasts and the role of periostin. Circ Res. 2009;105:934–47.PubMedGoogle Scholar
  122. 122.
    Diaz-Flores L, Gutierrez R, Madrid JF, Varela H, Valladares F, Acosta E, et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol. 2009;24:909–69.PubMedGoogle Scholar
  123. 123.
    Yamashita J, Itoh H, Hirashima M, Ogawa M, Nishikawa S, Yurugi T, et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature. 2000;408:92–6.PubMedGoogle Scholar
  124. 124.
    Tomanek RJ, Holifield JS, Reiter RS, Sandra A, Lin JJ. Role of VEGF family members and receptors in coronary vessel formation. Dev Dyn. 2002;225:233–40.PubMedGoogle Scholar
  125. 125.
    Rongish BJ, Hinchman G, Doty MK, Baldwin HS, Tomanek RJ. Relationship of the extracellular matrix to coronary neovascularization during development. J Mol Cell Cardiol. 1996;28:2203–15.PubMedGoogle Scholar
  126. 126.
    Oštádal B, Schiebler T, Rychter Z. Relations between the development of the capillary wall and myoarchitecture of the rat heart. Adv Exp Med Biol. 1975;53:375–88.PubMedGoogle Scholar
  127. 127.
    Porter GA, Bankston PW. Functional maturation of the capillary wall in the fetal and neonatal rat heart: permeability characteristics of developing myocardial capillaries. Am J Anat. 1987;180:323–31.PubMedGoogle Scholar
  128. 128.
    Tomanek RJ, Ratajska A, Kitten GT, Yue X, Sandra A. Vascular endothelial growth factor expression coincides with coronary vasculogenesis and angiogenesis. Dev Dyn. 1999;215:54–61.PubMedGoogle Scholar
  129. 129.
    Tomanek RJ, Hu N, Phan B, Clark EB. Rate of coronary vascularization during embryonic chicken development is influenced by the rate of myocardial growth. Cardiovasc Res. 1999;41:663–71.PubMedGoogle Scholar
  130. 130.
    Bolender D, Olson M, Markwald R. Coronary vessel vasculogenesis. Ann NY Acad Sci. 1990;588:340–4.Google Scholar
  131. 131.
    Yue X, Tomanek RJ. Stimulation of coronary vasculogenesis/angiogenesis by hypoxia in cultured embryonic hearts. Dev Dyn. 1999;216:28–36.PubMedGoogle Scholar
  132. 132.
    Yue X, Tomanek RJ. Effects of VEGF(165) and VEGF(121) on vasculogenesis and angiogenesis in cultured embryonic quail hearts. Am J Physiol Heart Circ Physiol. 2001;280:H2240–7.PubMedGoogle Scholar
  133. 133.
    Nanka O, Valasek P, Dvorakova M, Grim M. Experimental hypoxia and embryonic angiogenesis. Dev Dyn. 2006;235:723–33.PubMedGoogle Scholar
  134. 134.
    Nanka O, Krizova P, Fikrle M, Tuma M, Blaha M, Grim M, et al. Abnormal myocardial and coronary vasculature development in experimental hypoxia. Anat Rec (Hoboken). 2008;291:1187–99.Google Scholar
  135. 135.
    Wikenheiser J, Doughman YQ, Fisher SA, Watanabe M. Differential levels of tissue hypoxia in the developing chicken heart. Dev Dyn. 2006;235:115–23.PubMedGoogle Scholar
  136. 136.
    Favier J, Kempf H, Corvol P, Gasc JM. Coexpression of endothelial PAS protein 1 with essential angiogenic factors suggests its involvement in human vascular development. Dev Dyn. 2001;222:377–88.PubMedGoogle Scholar
  137. 137.
    Marti HH, Risau W. Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci USA. 1998;95:15809–14.PubMedGoogle Scholar
  138. 138.
    Ramirez-Bergeron DL, Runge A, Dahl KD, Fehling HJ, Keller G, Simon MC. Hypoxia affects mesoderm and enhances hemangioblast specification during early development. Development. 2004;131:4623–34.PubMedGoogle Scholar
  139. 139.
    Han Y, Kuang SZ, Gomer A, Ramirez-Bergeron DL. Hypoxia influences the vascular expansion and differentiation of embryonic stem cell cultures through the temporal expression of vascular endothelial growth factor receptors in an ARNT-dependent manner. Stem Cells. 2010;28:799–809.PubMedGoogle Scholar
  140. 140.
    Ratajska A, Torry RJ, Kitten GT, Kolker SJ, Tomanek RJ. Modulation of cell migration and vessel formation by vascular endothelial growth factor and basic fibroblast growth factor in cultured embryonic heart. Dev Dyn. 1995;203:399–407.PubMedGoogle Scholar
  141. 141.
    Tomanek RJ, Lotun K, Clark EB, Suvarna PR, Hu N. VEGF and bFGF stimulate myocardial vascularization in embryonic chick. Am J Physiol. 1998;274:H1620–6.PubMedGoogle Scholar
  142. 142.
    Tomanek RJ, Sandra A, Zheng W, Brock T, Bjercke RJ, Holifield JS. Vascular endothelial growth factor and basic fibroblast growth factor differentially modulate early postnatal coronary angiogenesis. Circ Res. 2001;88:1135–41.PubMedGoogle Scholar
  143. 143.
    Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature. 1996;380:435–9.PubMedGoogle Scholar
  144. 144.
    Miquerol L, Langille BL, Nagy A. Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development. 2000;127:3941–6.PubMedGoogle Scholar
  145. 145.
    Lagercrantz J, Farnebo F, Larsson C, Tvrdik T, Weber G, Piehl F. A comparative study of the expression patterns for vegf, vegf-b/vrf and vegf-c in the developing and adult mouse. Biochim Biophys Acta. 1998;1398:157–63.PubMedGoogle Scholar
  146. 146.
    Ikuta T, Ariga H, Matsumoto KI. Effect of tenascin-X together with vascular endothelial growth factor A on cell proliferation in cultured embryonic hearts. Biol Pharm Bull. 2001;24:1320–3.PubMedGoogle Scholar
  147. 147.
    Achen MG, Jeltsch M, Kukk E, Makinen T, Vitali A, Wilks AF, et al. Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA. 1998;95:548–53.PubMedGoogle Scholar
  148. 148.
    Makinen T, Olofsson B, Karpanen T, Hellman U, Soker S, Klagsbrun M, et al. Differential binding of vascular endothelial growth factor B splice and proteolytic isoforms to neuropilin-1. J Biol Chem. 1999;274:21217–22.PubMedGoogle Scholar
  149. 149.
    Pepper M, Mandriota S, Jeltsch M, Kumar V, Alitalo K. Vascular endothelial growth factor (VEGF)-C synergizes with basic fibroblast growth factor and VEGF in the induction of angiogenesis in vitro and alters endothelial cell extracellular proteolytic activity. J Cell Physiol. 1998;177:439–52.PubMedGoogle Scholar
  150. 150.
    Lavine KJ, Ornitz DM. Shared circuitry: developmental signaling cascades regulate both embryonic and adult coronary vasculature. Circ Res. 2009;104:159–69.PubMedGoogle Scholar
  151. 151.
    Lavine KJ, Yu K, White AC, Zhang X, Smith C, Partanen J, et al. Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev Cell. 2005;8:85–95.PubMedGoogle Scholar
  152. 152.
    White AC, Lavine KJ, Ornitz DM. FGF9 and SHH regulate mesenchymal Vegfa expression and development of the pulmonary capillary network. Development. 2007;134:3743–52.PubMedGoogle Scholar
  153. 153.
    Vokes SA, Yatskievych TA, Heimark RL, McMahon J, McMahon AP, Antin PB, et al. Hedgehog signaling is essential for endothelial tube formation during vasculogenesis. Development. 2004;131:4371–80.PubMedGoogle Scholar
  154. 154.
    Lavine KJ, Schmid GJ, Smith CS, Ornitz DM. Novel tool to suppress cell proliferation in vivo demonstrates that myocardial and coronary vascular growth represent distinct developmental programs. Dev Dyn. 2008;237:713–24.PubMedGoogle Scholar
  155. 155.
    Lee SH, Schloss DJ, Swain JL. Maintenance of vascular integrity in the embryo requires signaling through the fibroblast growth factor receptor. J Biol Chem. 2000;275:33679–87.PubMedGoogle Scholar
  156. 156.
    Tomanek RJ, Haung L, Suvarna PR, O’Brien LC, Ratajska A, Sandra A. Coronary vascularization during development in the rat and its relationship to basic fibroblast growth factor. Cardiovasc Res. 1996;31:Spec No: E116–26.Google Scholar
  157. 157.
    Spirito P, Fu YM, Yu ZX, Epstein SE, Casscells W. Immunohistochemical localization of basic and acidic fibroblast growth factors in the developing rat heart. Circulation. 1991;84:322–32.PubMedGoogle Scholar
  158. 158.
    Joseph-Silverstein J, Consigli SA, Lyser KM, Ver Pault C. Basic fibroblast growth factor in the chick embryo: immunolocalization to striated muscle cells and their precursors. J Cell Biol. 1989;108:2459–66.PubMedGoogle Scholar
  159. 159.
    Pennisi DJ, Mikawa T. Normal patterning of the coronary capillary plexus is dependent on the correct transmural gradient of FGF expression in the myocardium. Dev Biol. 2005;279:378–90.PubMedGoogle Scholar
  160. 160.
    Montano MM, Doughman YQ, Deng H, Chaplin L, Yang J, Wang N, et al. Mutation of the HEXIM1 gene results in defects during heart and vascular development partly through downregulation of vascular endothelial growth factor. Circ Res. 2008;102:415–22.PubMedGoogle Scholar
  161. 161.
    Tevosian SG, Deconinck AE, Tanaka M, Schinke M, Litovsky SH, Izumo S, et al. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell. 2000;101:729–39.PubMedGoogle Scholar
  162. 162.
    Zhou B, Ma Q, Kong SW, Hu Y, Campbell PH, McGowan FX, et al. Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart. J Clin Invest. 2009;119:1462–76.PubMedGoogle Scholar
  163. 163.
    Zeini M, Hang CT, Lehrer-Graiwer J, Dao T, Zhou B, Chang CP. Spatial and temporal regulation of coronary vessel formation by calcineurin-NFAT signaling. Development. 2009;136:3335–45.PubMedGoogle Scholar
  164. 164.
    Bogers AJ, Gittenberger-de Groot AC, Poelmann RE, Peault BM, Huysmans HA. Development of the origin of the coronary arteries, a matter of ingrowth or outgrowth? Anat Embryol (Berl). 1989;180:437–41.Google Scholar
  165. 165.
    Waldo KL, Kumiski DH, Kirby ML. Association of the cardiac neural crest with development of the coronary arteries in the chick embryo. Anat Rec. 1994;239:315–31.PubMedGoogle Scholar
  166. 166.
    Ando K, Nakajima Y, Yamagishi T, Yamamoto S, Nakamura H. Development of proximal coronary arteries in quail embryonic heart: multiple capillaries penetrating the aortic sinus fuse to form main coronary trunk. Circ Res. 2004;94:346–52.PubMedGoogle Scholar
  167. 167.
    Velkey JM, Bernanke DH. Apoptosis during coronary artery orifice development in the chick embryo. Anat Rec. 2001;262:310–7.PubMedGoogle Scholar
  168. 168.
    Ratajska A, Fiejka E. Prenatal development of coronary arteries in the rat: morphologic patterns. Anat Embryol (Berl). 1999;200:533–40.Google Scholar
  169. 169.
    Ratajska A, Fiejka E, Sieminska J. Prenatal development of coronary arteries in the rat: morphometric patterns. Folia Morphol (Warsz). 2000;59:297–306.Google Scholar
  170. 170.
    Eralp I, Lie-Venema H, DeRuiter MC, van den Akker NM, Bogers AJ, Mentink MM, et al. Coronary artery and orifice development is associated with proper timing of epicardial outgrowth and correlated fas ligand associated apoptosis patterns. Circ Res. 2005;96:526–34.PubMedGoogle Scholar
  171. 171.
    Rychter Z, Ostadal B. Fate of “sinusoidal” intertrabecular spaces of the cardiac wall after development of the coronary vascular bed in chick embryo. Folia Morphol (Praha). 1971;19:31–44.Google Scholar
  172. 172.
    Wothe D, Hohimer A, Morton M, Thornburg K, Giraud G, Davis L. Increased coronary blood flow signals growth of coronary resistance vessels in near-term ovine fetuses. Am J Physiol Regul Integr Comp Physiol. 2002;282:R295–302.PubMedGoogle Scholar
  173. 173.
    Ziche M, Parenti A, Ledda F, Dell’Era P, Granger HJ, Maggi CA, et al. Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF. Circ Res. 1997;80:845–52.PubMedGoogle Scholar
  174. 174.
    Gu JW, Brady AL, Anand V, Moore MC, Kelly WC, Adair TH. Adenosine upregulates VEGF expression in cultured myocardial vascular smooth muscle cells. Am J Physiol. 1999;277:H595–602.PubMedGoogle Scholar
  175. 175.
    Yamamoto K, Sokabe T, Watabe T, Miyazono K, Yamashita JK, Obi S, et al. Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. Am J Physiol Heart Circ Physiol. 2005;288:H1915–24.PubMedGoogle Scholar
  176. 176.
    Ando K, Takahashi M, Yamagishi T, Miyagawa-Tomita S, Imanaka-Yoshida K, Yoshida T, et al. Tenascin C may regulate the recruitment of smooth muscle cells during coronary artery development. Differentiation. 2011;81:299–306.PubMedGoogle Scholar
  177. 177.
    Ishigaki T, Imanaka-Yoshida K, Shimojo N, Matsushima S, Taki W, Yoshida T. Tenascin-C enhances crosstalk signaling of integrin alphavbeta3/PDGFR-beta complex by SRC recruitment promoting PDGF-induced proliferation and migration in smooth muscle cells. J Cell Physiol. 2011;226:2617–24.PubMedGoogle Scholar
  178. 178.
    Tomanek RJ, Hansen HK, Christensen LP. Temporally expressed PDGF and FGF-2 regulate embryonic coronary artery formation and growth. Arterioscler Thromb Vasc Biol. 2008;28:1237–43.PubMedGoogle Scholar
  179. 179.
    Bogers AJ, Bartelings MM, Bokenkamp R, Stijnen T, van Suylen RJ, Poelmann RE, et al. Common arterial trunk, uncommon ­coronary arterial anatomy. J Thorac Cardiovasc Surg. 1993;106:1133–7.PubMedGoogle Scholar
  180. 180.
    Hood LC, Rosenquist TH. Coronary artery development in the chick: origin and deployment of smooth muscle cells, and the effects of neural crest ablation. Anat Rec. 1992;234:291–300.PubMedGoogle Scholar
  181. 181.
    Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cardiac neural crest. Development. 2000;127:1607–16.PubMedGoogle Scholar
  182. 182.
    Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999;126:3047–55.PubMedGoogle Scholar
  183. 183.
    Ratajska A, Zarska M, Quensel C, Kramer J. Differentiation of the smooth muscle cell phenotypes during embryonic development of coronary vessels in the rat. Histochem Cell Biol. 2001;116:79–87.PubMedGoogle Scholar
  184. 184.
    Watanabe T, Koibuchi N, Chin MT. Transcription factor CHF1/Hey2 regulates coronary vascular maturation. Mech Dev. 2010;127:418–27.PubMedGoogle Scholar
  185. 185.
    Kim H, Yoon CS, Rah B. Expression of extracellular matrix components fibronectin and laminin in the human fetal heart. Cell Struct Funct. 1999;24:19–26.PubMedGoogle Scholar
  186. 186.
    Moss JB, Xavier-Neto J, Shapiro MD, Nayeem SM, McCaffery P, Drager UC, et al. Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart. Dev Biol. 1998;199:55–71.PubMedGoogle Scholar
  187. 187.
    Azambuja AP, Portillo-Sanchez V, Rodrigues MV, Omae SV, Schechtman D, Strauss BE, et al. Retinoic acid and VEGF delay smooth muscle relative to endothelial differentiation to coordinate inner and outer coronary vessel wall morphogenesis. Circ Res. 2010;107:204–16.PubMedGoogle Scholar
  188. 188.
    Ratajska A, Ciszek B, Sowinska A. Embryonic development of coronary vasculature in rats: corrosion casting studies. Anat Rec. 2003;270A:109–16.Google Scholar
  189. 189.
    Eliska O, Eliskova M, Miller AJ. The absence of lymphatics in normal and atherosclerotic coronary arteries in man: a morphologic study. Lymphology. 2006;39:76–83.PubMedGoogle Scholar
  190. 190.
    Sacchi G, Weber E, Agliano M, Cavina N, Comparini L. Lymphatic vessels of the human heart: precollectors and collecting vessels. A morpho-structural study. J Submicrosc Cytol Pathol. 1999;31:515–25.PubMedGoogle Scholar
  191. 191.
    Rychter Z, Jelinek R, Klika E, Antalikova L. Development of the lymph bed in the wall of the chick embryo heart. Physiol Bohemoslov. 1971;20:533–9.PubMedGoogle Scholar
  192. 192.
    Klika E, Antalikova L, Rychter Z, Jelinek R. Inception and manner of development of the lymph vessels in the chick embryo heart. Lymphology. 1972;5:137–48.PubMedGoogle Scholar
  193. 193.
    Wilting J, Buttler K, Schulte I, Papoutsi M, Schweigerer L, Manner J. The proepicardium delivers hemangioblasts but not lymphangioblasts to the developing heart. Dev Biol. 2007;305:451–9.PubMedGoogle Scholar
  194. 194.
    Juszynski M, Ciszek B, Stachurska E, Jablonska A, Ratajska A. Development of lymphatic vessels in mouse embryonic and early postnatal hearts. Dev Dyn. 2008;237:2973–86.PubMedGoogle Scholar
  195. 195.
    Karunamuni G, Yang K, Doughman YQ, Wikenheiser J, Bader D, Barnett J, et al. Expression of lymphatic markers during avian and mouse cardiogenesis. Anat Rec (Hoboken). 2010;293:259–70.Google Scholar
  196. 196.
    Jussila L, Alitalo K. Vascular growth factors and lymphangiogenesis. Physiol Rev. 2002;82:673–700.PubMedGoogle Scholar
  197. 197.
    Yamada S, Samtani RR, Lee ES, Lockett E, Uwabe C, Shiota K, et al. Developmental atlas of the early first trimester human embryo. Dev Dyn. 2010;239:1585–95.PubMedGoogle Scholar
  198. 198.
    Conte G, Pellegrini A. On the development of the coronary arteries in human embryos, stages 14-19. Anat Embryol (Berl). 1984;169:209–18.Google Scholar
  199. 199.
    Mandarim-de-Lacerda CA. Development of the coronary arteries in staged human embryos (the Paris Embryological Collection revisited). An Acad Bras Cienc. 1990;62:79–84.PubMedGoogle Scholar
  200. 200.
    Licata R. The human embryonic heart in the ninth week. Am J Anat. 1954;94:73–125.PubMedGoogle Scholar
  201. 201.
    Partanen TA, Makinen T, Arola J, Suda T, Weich HA, Alitalo K. Endothelial growth factor receptors in human fetal heart. Circulation. 1999;100:583–6.PubMedGoogle Scholar
  202. 202.
    Rychter Z, Jirasek JE, Rychterova V, Uher J. Vascularization of heart in human embryo: location and shape of non-vascularized part of cardiac wall. Folia Morphol (Praha). 1975;23:88–96.Google Scholar
  203. 203.
    Cortis BS, Serratto M. The collateral coronary circulation in the human fetus: angiographic findings. Cardiologia. 1998;43:77–81.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Robert J. Tomanek
    • 1
  1. 1.Carver College of Medicine Cardiovascular CenterUniversity of IowaIowa CityUSA

Personalised recommendations