Skip to main content

Glivenko–Cantelli Theorem and Bernstein–Kantorovich Invariance Principle

  • Chapter
  • First Online:
The Methods of Distances in the Theory of Probability and Statistics

Abstract

This chapter begins with an application of the theory of probability metrics to the problem of convergence of the empirical probability measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Prokhorov [1956].

  2. 2.

    See, for example, Billingsley [1999, Theorem 10.1].

  3. 3.

    See, for example, Billingsley [1999].

  4. 4.

    Given (i), then (ii) is equivalent to (12.3.5); see Kruglov [1973, Theorem 1].

  5. 5.

    See Bernstein [1964, p. 358].

  6. 6.

    See Bernstein [1964], Kruglov [1973], and de Acosta and Gine [1979].

  7. 7.

    See Gikhman and Skorokhod [1971, p. 491, or p. 416 of the English edition].

  8. 8.

    See Billingsley [1999].

  9. 9.

    See Billingsley [1999, Chap. 3].

References

  1. Bernstein SN (1964) Collected works, vol 4. Nauka, Moscow (in Russian)

    Google Scholar 

  2. Billingsley P (1999) Convergence of probability measures, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  3. de Acosta A, Gine E (1979) Convergence of moments and related functionals in the general central limit theorem in Banach spaces. Z Wahrsch Verw Geb 48:213–231

    Article  MATH  Google Scholar 

  4. Dudley RM (1969) The speed of mean Glivenko-Cantelli convergence. Ann Math Statist 40:40–50

    Article  MathSciNet  MATH  Google Scholar 

  5. Fortet R, Mourier B (1953) Convergence de la réparation empirique vers la répétition theorétique. Ann Sci Ecole Norm 70:267–285

    MathSciNet  MATH  Google Scholar 

  6. Gikhman II, Skorokhod AV (1971) The theory of stochastic processes. Nauka, Moscow (in Russian). [Engl. transl. (1976) Springer, Berlin]

    Google Scholar 

  7. Kalashnikov VV, Rachev ST (1988) Mathematical methods for construction of stochastic queueing models. Nauka, Moscow (in Russian). [Engl. transl., (1990) Wadsworth, Brooks–Cole, Pacific Grove, CA]

    Google Scholar 

  8. Kruglov VM (1973) Convergence of numerical characteristics of independent random variables with values in a Hilbert space. Theor Prob Appl 18:694–712

    Article  MathSciNet  MATH  Google Scholar 

  9. Prokhorov YuV (1956) Convergence of random processes and limit theorems in probability theory. Theor Prob Appl 1:157–214

    Article  Google Scholar 

  10. Ranga RR (1962) Relations between weak and uniform convergence of measures with applications. Ann Math Statist 33:659–680

    Article  MathSciNet  MATH  Google Scholar 

  11. Samuel E, Bachi R (1964) Measures of the distance of distribution functions and some applications. Metron XXIII:83–122

    Google Scholar 

  12. Varadarajan VS (1958) Weak convergence of measures on separable metric space. Sankhya 19:15–22

    MathSciNet  MATH  Google Scholar 

  13. Wellner Jon A (1981) A Glivenko-Cantelli theorem for empirical measures of independent but nonidentically distributed random variables. Stoch Process Appl 11:309–312

    Article  MATH  Google Scholar 

  14. Yukich JE (1989) Optimal matching and empirical measures. Proc Am Math Soc 107:1051–1059

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rachev, S.T., Klebanov, L.B., Stoyanov, S.V., Fabozzi, F.J. (2013). Glivenko–Cantelli Theorem and Bernstein–Kantorovich Invariance Principle. In: The Methods of Distances in the Theory of Probability and Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4869-3_12

Download citation

Publish with us

Policies and ethics