Psychoneuroimmunology and Cancer: Incidence, Progression, and Quality of Life

  • Christopher P. Fagundes
  • Monica E. Lindgren
  • Janice K. Kiecolt-Glaser
Chapter

Abstract

The notion that psychological factors affect cancer has been present throughout history. Stress is an important factor that dysregulates immune function. Considerable work over the past decade has shown how psychological processes can impact pathways implicated in cancer progression. Furthermore, immune system dysregulation may have major implications for fatigue and depressive symptoms among cancer survivors. In this chapter, we first review evidence linking psychosocial factors to cancer incidence and progression. Then, we examine underlying biological mechanisms that may contribute to these links. Finally, we explore how dysregulated immune function contributes to cancer survivors’ quality of life.

Keywords

Placebo Fatigue Migration Depression Lymphoma 

Notes

Acknowledgments

The work on this chapter was supported in part by the following grants: National Institute on Aging (AG029562), National Cancer Institute (CA126857 and CA131029), and an American Cancer Society Postdoctoral Fellowship Grant PF-11-007-01-CPPB awarded to the first author.

References

  1. 1.
    Mukherjee S. The emperor of all maladies: a biography of cancer. New York: Scribner; 2010.Google Scholar
  2. 2.
    Glaser R, Kiecolt-Glaser JK. Stress-induced immune dysfunction: implications for health. Nat Rev Immunol. 2005;5:243–51.PubMedCrossRefGoogle Scholar
  3. 3.
    Chida Y, Hamer M, Wardle J, Steptoe A. Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat Clin Pract Oncol. 2008;5:466–75.PubMedCrossRefGoogle Scholar
  4. 4.
    Lillberg K, Verkasalo PK, Kaprio J, Teppo L, Helenius H, Koskenvuo M. Stressful life events and risk of breast cancer in 10,808 women: a cohort study. Am J Epidemiol. 2003;157:415.PubMedCrossRefGoogle Scholar
  5. 5.
    Penninx BWJH, Guralnik JM, Havlik RJ, et al. Chronically depressed mood and cancer risk in older persons. J Natl Cancer Inst. 1998;90:1888.PubMedCrossRefGoogle Scholar
  6. 6.
    Ross K. Mapping pathways from stress to cancer progression. J Natl Cancer Inst. 2008;100:914.PubMedCrossRefGoogle Scholar
  7. 7.
    Lutgendorf SK, Sood AK, Antoni MH. Host factors and cancer progression: biobehavioral signaling pathways and interventions. J Clin Oncol. 2010;28:4094.PubMedCrossRefGoogle Scholar
  8. 8.
    Palesh O, Butler LD, Koopman C, Giese-Davis J, Carlson R, Spiegel D. Stress history and breast cancer recurrence. J Psychosom Res. 2007;63:233–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Watson M, Haviland J, Greer S, Davidson J, Bliss J. Influence of psychological response on survival in breast cancer: a population-based cohort study. Lancet. 1999;354:1331–6.PubMedCrossRefGoogle Scholar
  10. 10.
    Steel JL, Geller DA, Gamblin TC, Olek MC, Carr BI. Depression, immunity, and survival in patients with hepatobiliary carcinoma. J Clin Oncol. 2007;25:2397.PubMedCrossRefGoogle Scholar
  11. 11.
    Satin JR, Linden W, Phillips MJ. Depression as a predictor of disease progression and mortality in cancer patients. Cancer. 2009;115:5349–61.PubMedCrossRefGoogle Scholar
  12. 12.
    Laconi E, Tomasi C, Curreli F, et al. Early exposure to restraint stress enhances chemical carcinogenesis in rat liver. Cancer Lett. 2000;161:215–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Visintainer MA. Tumor rejection in rats after inescapable or escapable shock. Science. 1982;216:437.PubMedCrossRefGoogle Scholar
  14. 14.
    Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Padgett DA, Glaser R. How stress influences the immune response. Trends Immunol. 2003;24:444–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Costanzo ES, Sood AK, Lutgendorf SK. Biobehavioral influences on cancer progression. Immunol Allergy Clin North Am. 2011;31:109–32.PubMedCrossRefGoogle Scholar
  17. 17.
    Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med. 2011;17(7):347–62.PubMedCrossRefGoogle Scholar
  18. 18.
    Yang EV, Kim SJ, Donovan EL, et al. Norepinephrine upregulates VEGF, IL-8, and IL-6 expression in human melanoma tumor cell lines: implications for stress-related enhancement of tumor progression. Brain Behav Immun. 2009;23:267–75.PubMedCrossRefGoogle Scholar
  19. 19.
    Lutgendorf SK, Cole S, Costanzo E, et al. Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res. 2003;9:4514–21.PubMedGoogle Scholar
  20. 20.
    Yang EV, Sood AK, Chen M, et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 2006;66:10357–64.PubMedCrossRefGoogle Scholar
  21. 21.
    Lutgendorf SK, Johnsen EL, Cooper B, et al. Vascular endothelial growth factor and social support in patients with ovarian carcinoma. Cancer. 2002;95:808–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Lutgendorf SK, Lamkin DM, Jennings NB, et al. Biobehavioral influences on matrix metalloproteinase expression in ovarian carcinoma. Clin Cancer Res. 2008;14:6839–46.PubMedCrossRefGoogle Scholar
  23. 23.
    Sharma A, Greenman J, Sharp DM, Walker LG, Monson JR. Vascular endothelial growth factor and psychosocial factors in colorectal cancer. Psychooncology. 2008;17:66–73.PubMedCrossRefGoogle Scholar
  24. 24.
    Nausheen B, Carr NJ, Peveler RC, et al. Relationship between loneliness and proangiogenic cytokines in newly diagnosed tumors of colon and rectum. Psychosom Med. 2010;72:912–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Shih JY, Yuan A, Chen JJW, Yang PC. Tumor-associated macrophage: its role in cancer invasion and metastasis. J Cancer Molecules. 2006;2:101–6.Google Scholar
  26. 26.
    Sood AK, Bhatty R, Kamat AA, et al. Stress hormone-mediated invasion of ovarian cancer cells. Clin Cancer Res. 2006;12:369–75.PubMedCrossRefGoogle Scholar
  27. 27.
    Nilsson MB, Armaiz-Pena G, Takahashi R, et al. Stress hormones regulate interleukin-6 expression by human ovarian carcinoma cells through a Src-dependent mechanism. J Biol Chem. 2007;282: 29919–26.PubMedCrossRefGoogle Scholar
  28. 28.
    Costanzo ES, Lutgendorf SK, Sood AK, Anderson B, Sorosky J, Lubaroff DM. Psychosocial factors and interleukin-6 among women with advanced ovarian cancer. Cancer. 2005;104:305–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Sica A, Allavena P, Mantovani A. Cancer related inflammation: the macrophage connection. Cancer Lett. 2008;267:204–15.PubMedCrossRefGoogle Scholar
  30. 30.
    Tsutsui S, Yasuda K, Suzuki K, Tahara K, Higashi H, Era S. Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol Rep. 2005;14:425–31.PubMedGoogle Scholar
  31. 31.
    Sloan EK, Priceman SJ, Cox BF, et al. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010;70: 7042–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Sood AK, Armaiz-Pena GN, Halder J, et al. Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J Clin Invest. 2010;120:1515–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Sastry KS, Karpova Y, Prokopovich S, et al. Epinephrine protects cancer cells from apoptosis via activation of cAMP-dependent protein kinase and BAD phosphorylation. J Biol Chem. 2007;282:14094–100.PubMedCrossRefGoogle Scholar
  34. 34.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Andersen BL, Farrar WB, Golden-Kreutz DM, et al. Psychological, behavioral, and immune changes after a psychological intervention: a clinical trial. J Clin Oncol. 2004;22:3570–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Thornton LM, Andersen BL, Crespin TR, Carson WE. Individual trajectories in stress covary with immunity during recovery from cancer diagnosis and treatments. Brain Behav Immun. 2007;21:185–94.PubMedCrossRefGoogle Scholar
  37. 37.
    Penedo FJ, Dahn JR, Kinsinger D, et al. Anger suppression mediates the relationship between optimism and natural killer cell cytotoxicity in men treated for localized prostate cancer. J Psychosom Res. 2006;60:423–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Lutgendorf SK, Sood AK, Anderson B, et al. Social support, psychological distress, and natural killer cell activity in ovarian cancer. J Clin Oncol. 2005;23: 7105–13.PubMedCrossRefGoogle Scholar
  39. 39.
    Lutgendorf SK, Lamkin DM, DeGeest K, et al. Depressed and anxious mood and T-cell cytokine expressing populations in ovarian cancer patients. Brain Behav Immun. 2008;22:890–900.PubMedCrossRefGoogle Scholar
  40. 40.
    Lutgendorf SK, DeGeest K, Sung CY, et al. Depression, social support, and beta-adrenergic transcription control in human ovarian cancer. Brain Behav Immun. 2009;23:176–83.PubMedCrossRefGoogle Scholar
  41. 41.
    Antonova L, Mueller CR. Hydrocortisone down-­regulates the tumor suppressor gene BRCA1 in mammary cells: a possible molecular link between stress and breast cancer. Genes Chromosomes Cancer. 2008;47:341–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Pang D, Kocherginsky M, Krausz T, Kim SY, Conzen SD. Dexamethasone decreases xenograft response to Paclitaxel through inhibition of tumor cell apoptosis. Cancer Biol Ther. 2006;5:933–40.PubMedCrossRefGoogle Scholar
  43. 43.
    Flint MS, Kim G, Hood BL, Bateman NW, Stewart NA, Conrads TP. Stress hormones mediate drug ­resistance to paclitaxel in human breast cancer cells through a CDK-1-dependent pathway. Psychoneuroendocrinology. 2009;34:1533–41.PubMedCrossRefGoogle Scholar
  44. 44.
    Zhao XY, Malloy PJ, Krishnan AV, et al. Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor. Nat Med. 2000;6:703–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Thornton LM, Andersen BL, Carson 3rd WE. Immune, endocrine, and behavioral precursors to breast cancer recurrence: a case-control analysis. Cancer Immunol Immunother. 2008;57:1471–81.PubMedCrossRefGoogle Scholar
  46. 46.
    Sephton SE, Sapolsky RM, Kraemer HC, Spiegel D. Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst. 2000;92:994–1000.PubMedCrossRefGoogle Scholar
  47. 47.
    Sephton SE, Dhabhar FS, Keuroghlian AS, et al: Depression, cortisol, and suppressed cellmediated immunity in metastatic breast cancer. Brain Behav Immun 2009;23:1148–1155.PubMedCrossRefGoogle Scholar
  48. 48.
    Weinrib AZ, Sephton SE, Degeest K, et al. Diurnal cortisol dysregulation, functional disability, and depression in women with ovarian cancer. Cancer. 2010;116:4410–9.PubMedCrossRefGoogle Scholar
  49. 49.
    Antoni MH, Lutgendorf SK, Cole SW, et al. The influence of bio-behavioural factors on tumour biology: pathways and mechanisms. Nat Rev Cancer. 2006;6:240–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Glaser R, Kiecolt-Glaser JK. Stress-associated immune modulation and its implications for reactivation of latent herpesviruses. In: Glaser R, Jones J, editors. Human herpesvirus infections. New York: Dekker; 1994. p. 245–70.Google Scholar
  51. 51.
    Glaser R, Kiecolt-Glacer J, Stout J, Tarr K, Speicher C, Holliday J. Stress-related impairments in cellular immunity. Psychiatry Res. 1985;16:233–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Glaser R, Pearl D, Kiecolt-Glaser J, Malarkey W. Plasma cortisol levels and reactivation of latent Epstein-Barr virus in response to examination stress. Psychoneuroendocrinology. 1994;19:765–72.PubMedCrossRefGoogle Scholar
  53. 53.
    Glaser R, Pearson G, Bonneau R, Esterling B, Atkinson C, Kiecolt-Glaser J. Stress and the memory T-cell response to the Epstein-Barr virus in healthy medical students. Health Psychol. 1993;12:435–42.PubMedCrossRefGoogle Scholar
  54. 54.
    Zur Hausen H. Papillomaviruses in the causation of human cancers—a brief historical account. Virology. 2009;384:260–5.PubMedCrossRefGoogle Scholar
  55. 55.
    Coker AL, Bond S, Madeleine MM, Luchok K, Pirisi L. Psychosocial stress and cervical neoplasia risk. Psychosom Med. 2003;65:644–51.PubMedCrossRefGoogle Scholar
  56. 56.
    Pereira DB, Antoni MH, Danielson A, et al. Life stress and cervical squamous intraepithelial lesions in women with human papillomavirus and human immunodeficiency virus. Psychosom Med. 2003;65: 427–34.PubMedCrossRefGoogle Scholar
  57. 57.
    Cole SW, Korin YD, Fahey JL, Zack JA. Norepinephrine accelerates HIV replication via protein kinase A-dependent effects on cytokine production. J Immunol. 1998;161:610–6.PubMedGoogle Scholar
  58. 58.
    Chang H, Dittmer DP, Shin YC, Hong Y, Jung JU. Role of Notch signal transduction in Kaposi’s sarcoma-associated herpesvirus gene expression. J Virol. 2005;79:14371–82.PubMedCrossRefGoogle Scholar
  59. 59.
    Turgeman H, Aboud M. Evidence that protein kinase A activity is required for the basal and tax-stimulated transcriptional activity of human T-cell leukemia virus type-I long terminal repeat. FEBS Lett. 1998;428:183–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Fagundes CP, Bennett BM, Alfano CM, et al. Social support and socioeconomic status interact to predict Epstein-Barr virus latency in women awaiting diagnosis or newly diagnosed with breast cancer. Health Psychol. 2012;31(1):11–9.PubMedCrossRefGoogle Scholar
  61. 61.
    Stowe R, Peek M, Perez N, Yetman D, Cutchin M, Goodwin J. Herpesvirus reactivation and socioeconomic position: a community-based study. J Epidemiol Community Health. 2010;64:666.PubMedCrossRefGoogle Scholar
  62. 62.
    Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9:46–56.PubMedCrossRefGoogle Scholar
  63. 63.
    Maier SF, Watkins LR. Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol Rev. 1998;105:83–107.PubMedCrossRefGoogle Scholar
  64. 64.
    Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry. 2009;66: 407–14.PubMedCrossRefGoogle Scholar
  65. 65.
    Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27:24–31.PubMedCrossRefGoogle Scholar
  66. 66.
    Bower JE, Ganz PA, Desmond KA, et al. Fatigue in long-term breast carcinoma survivors: a longitudinal investigation. Cancer. 2006;106:751–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Ganz PA, Desmond KA, Leedham B, Rowland JH, Meyerowitz BE, Belin TR. Quality of life in long-term, disease-free survivors of breast cancer: a follow-up study. J Natl Cancer Inst. 2002;94:39–49.PubMedCrossRefGoogle Scholar
  68. 68.
    Cleeland CS, Bennett GJ, Dantzer R, et al. Are the symptoms of cancer and cancer treatment due to a shared biologic mechanism? A cytokine-immunologic model of cancer symptoms. Cancer. 2003;97: 2919–25.PubMedCrossRefGoogle Scholar
  69. 69.
    Collado-Hidalgo A, Bower JE, Ganz PA, Cole SW, Irwin MR. Inflammatory biomarkers for persistent fatigue in breast cancer survivors. Clin Cancer Res. 2006;12:2759–66.PubMedCrossRefGoogle Scholar
  70. 70.
    Bower JE, Ganz PA, Aziz N, Fahey JL. Fatigue and proinflammatory cytokine activity in breast cancer survivors. Psychosom Med. 2002;64:604–11.PubMedGoogle Scholar
  71. 71.
    Lawrence DP, Kupelnick B, Miller K, Devine D, Lau J. Evidence report on the occurrence, assessment, and treatment of fatigue in cancer patients. J Natl Cancer Inst Monogr. 2004;32:40–50.PubMedCrossRefGoogle Scholar
  72. 72.
    Smets E, Garssen B, Schuster-Uitterhoeve A, De Haes J. Fatigue in cancer patients. Br J Cancer. 1993;68:220.PubMedCrossRefGoogle Scholar
  73. 73.
    Prue G, Rankin J, Allen J, Gracey J, Cramp F. Cancer-related fatigue: a critical appraisal. Eur J Cancer. 2006;42:846–63.PubMedCrossRefGoogle Scholar
  74. 74.
    Bower JE, Ganz PA, Aziz N, Fahey JL, Cole SW. T-cell homeostasis in breast cancer survivors with persistent fatigue. J Natl Cancer Inst. 2003;95: 1165–8.PubMedCrossRefGoogle Scholar
  75. 75.
    Bower JE, Ganz PA, Aziz N, Olmstead R, Irwin MR, Cole S. Inflammatory responses to psychological stress in fatigued breast cancer survivors: relationship to glucocorticoids. Brain Behav Immun. 2007;21: 251–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Bower JE. Cancer-related fatigue: links with inflammation in cancer patients and survivors. Brain Behav Immun. 2007;21:863–71.PubMedCrossRefGoogle Scholar
  77. 77.
    Bierhaus A, Wolf J, Andrassy M, et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci U S A. 2003;100: 1920–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Tracey KJ. Reflex control of immunity. Nat Rev Immunol. 2009;9:418–28.PubMedCrossRefGoogle Scholar
  79. 79.
    Fagundes CP, Murray DM, Hwang BS, et al. Sympathetic and parasympathetic activity in cancer-related fatigue: more evidence for a physiological substrate in cancer survivors. Psychoneuroendocrinology. 2011;36(8):1137–47.PubMedCrossRefGoogle Scholar
  80. 80.
    Bower JE, Ganz PA, Aziz N. Altered cortisol response to psychologic stress in breast cancer survivors with persistent fatigue. Psychosom Med. 2005;67:277–80.PubMedCrossRefGoogle Scholar
  81. 81.
    Raison CL, Miller AH. Depression in cancer: new developments regarding diagnosis and treatment. Biol Psychiatry. 2003;54:283–94.PubMedCrossRefGoogle Scholar
  82. 82.
    McDaniel JS, Musselman DL, Porter MR, Reed DA, Nemeroff CB. Depression in patients with cancer: diagnosis, biology, and treatment. Arch Gen Psychiatry. 1995;52:89.PubMedCrossRefGoogle Scholar
  83. 83.
    Spiegel D, Giese-Davis J. Depression and cancer: mechanisms and disease progression. Biol Psychiatry. 2003;54:269–82.PubMedCrossRefGoogle Scholar
  84. 84.
    Alesci S, Martinez PE, Kelkar S, et al. Major depression is associated with significant diurnal elevations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clinical implications. J Clin Endocrinol Metab. 2005;90:2522–30.PubMedCrossRefGoogle Scholar
  85. 85.
    Miller GE, Stetler CA, Carney RM, Freedland KE, Banks WA. Clinical depression and inflammatory risk markers for coronary heart disease. Am J Cardiol. 2002;90:1279–83.PubMedCrossRefGoogle Scholar
  86. 86.
    Bouhuys AL, Flentge F, Oldehinkel AJ, van den Berg MD. Potential psychosocial mechanisms linking depression to immune function in elderly subjects. Psychiatry Res. 2004;127:237–45.PubMedCrossRefGoogle Scholar
  87. 87.
    Musselman DL, Miller AH, Porter MR, et al. Higher than normal plasma interleukin-6 concentrations in cancer patients with depression: preliminary findings. Am J Psychiatry. 2001;158:1252–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Jehn CF, Kuehnhardt D, Bartholomae A, et al. Biomarkers of depression in cancer patients. Cancer. 2006;107:2723–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Bonaccorso S, Puzella A, Marino V, et al. Immunotherapy with interferon-alpha in patients affected by chronic hepatitis C induces an intercorrelated stimulation of the cytokine network and an increase in depressive and anxiety symptoms. Psychiatry Res. 2001;105:45–55.PubMedCrossRefGoogle Scholar
  90. 90.
    Wright C, Strike P, Brydon L, Steptoe A. Acute inflammation and negative mood: mediation by cytokine activation. Brain Behav Immun. 2005;19:345–50.PubMedCrossRefGoogle Scholar
  91. 91.
    Tyring S, Gottlieb A, Papp K, et al. Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet. 2006;367:29–35.PubMedCrossRefGoogle Scholar
  92. 92.
    Jacobsen PB, Jim HS. Psychosocial interventions for anxiety and depression in adult cancer patients: achievements and challenges. CA Cancer J Clin. 2008;58:214–30.PubMedCrossRefGoogle Scholar
  93. 93.
    Antoni MH, Lechner S, Diaz A, et al. Cognitive behavioral stress management effects on psychosocial and physiological adaptation in women undergoing treatment for breast cancer. Brain Behav Immun. 2009;23:580–91.PubMedCrossRefGoogle Scholar
  94. 94.
    Lutgendorf SK, Mullen-Houser E, Russell D, et al. Preservation of immune function in cervical cancer patients during chemoradiation using a novel integrative approach. Brain Behav Immun. 2010;24:1231–40.PubMedCrossRefGoogle Scholar
  95. 95.
    Moyer A, Sohl SJ, Knapp-Oliver SK, Schneider S. Characteristics and methodological quality of 25 years of research investigating psychosocial interventions for cancer patients. Cancer Treat Rev. 2009;35:475–84.PubMedCrossRefGoogle Scholar
  96. 96.
    Reiche EMV, Nunes SOV, Morimoto HK. Stress, depression, the immune system, and cancer. Lancet Oncol. 2004;5:617–25.PubMedCrossRefGoogle Scholar
  97. 97.
    Ciaramella A, Poli P. Assessment of depression among cancer patients: the role of pain, cancer type and treatment. Psychooncology. 2001;10:156–65.PubMedCrossRefGoogle Scholar
  98. 98.
    Couzin J. Cancer research. Probing the roots of race and cancer. Science (New York, NY). 2007; 315:592.CrossRefGoogle Scholar
  99. 99.
    Zhang-Salomons J, Qian H, Holowaty E, Mackillop W. Associations between socioeconomic status and cancer survival: choice of SES indicator may affect results. Ann Epidemiol. 2006;16:521–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Christopher P. Fagundes
    • 1
  • Monica E. Lindgren
    • 2
  • Janice K. Kiecolt-Glaser
    • 3
  1. 1.Institute for Behavioral Medicine ResearchThe Ohio State University College of MedicineColumbusUSA
  2. 2.Department of Psychology, Institute for Behavioral Medicine ResearchThe Ohio State University College of MedicineColumbusUSA
  3. 3.Department of Psychiatry, Institute for Behavioral Medicine ResearchThe Ohio State University College of MedicineColumbusUSA

Personalised recommendations