Skip to main content

The In Situ Biodiesel Production and Its Applicability to Jatropha

  • Chapter
  • First Online:
Jatropha, Challenges for a New Energy Crop

Abstract

Jatropha curcas L. has been widely regarded as a promising plant to supplement the existing biofuel production from first generation biocrops. However, several of its distinctive oil properties such as high moisture and free fatty acid (FFA) content lower its cost competitiveness and compatibility with established biofuels production process. Consequently, in situ biodiesel production, which combines both oil extraction and transesterification in a single processing unit, is applied for Jatropha to address these shortcomings. There are four main routes of in situ process being explored i.e. alkaline catalytic, acidic catalytic, enzymatic catalytic and supercritical non-catalytic reaction. Most of the experimental studies showed that in situ biodiesel production process for Jatropha was superior in terms of process severity, extraction rate and final biodiesel yield. However, more detailed studies pertaining to the kinetics and mechanism should be conducted in the future to increase its sustainability and commercialization prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel K, de Schmertzing H, Peterson JI (1963) Classification of microorganism by analysis of chemical composition 1. Feasibility of utilizing gas chromatography. J Bacteriol 85:1039–1044

    PubMed  CAS  Google Scholar 

  • Achten WMJ, Verchot L, Franken YJ, Mathijs E, Singh VP, Aerts R et al (2008) Jatropha biodiesel production and use. Biomass Bioenergy 32:1063–1084

    Article  CAS  Google Scholar 

  • Aregheore EM, Makkar HPS, Becker K (1998) Assessment of lectin activity in a toxic and a non-toxic variety of Jatropha curcas using latex agglutination and haemagglutination methods and inactivation of lectin by heat treatments. J Sci Food Agric 77:349–352

    Article  CAS  Google Scholar 

  • Carrapiso AI, Timón ML, Petrón MJ, Tejeda JF, García C (2000) In situ transesterification of fatty acids from Iberian pig subcutaneous adipose tissue. Meat Sci 56:159–164

    Article  PubMed  CAS  Google Scholar 

  • Currie J (2007) Food, feed and fuels: an outlook on the agriculture, livestock and biofuel markets. The Goldman Sachs Group. Available from: http://www.gceholdings.com/pdf/GoldmanReportFoodFeedFuel.pdf

  • Ginting MSA, Azizan MT, Yusup S (2012) Alkaline in situ ethanolysis of Jatropha curcas. Fuel 93:82–85. doi:10.1016/j.fuel.2011.08.062

    Article  CAS  Google Scholar 

  • Gu H, Jiang Y, Zhou L, Gao J (2011) Reactive extraction and in situ self-catalyzed methanolysis of germinated oilseed for biodiesel production. Energy Environ Sci 4:1337–1344

    Article  CAS  Google Scholar 

  • Haas JH, Scott KM (2007) Moisture removal substantially improves the efficiency of in situ biodiesel production from soybeans. J Am Oil Chem Soc 84:197–204

    Article  CAS  Google Scholar 

  • Haas MJ, Scott KM, Marmer WN, Foglia TA (2004) In situ alkaline transesterification: an effective method for the production of fatty acid esters from vegetable oils. J Am Oil Chem Soc 81:83–89

    Article  CAS  Google Scholar 

  • Haas MJ, Scott KM, Foglia TA, Marmer WN (2007) The general applicability of in situ transesterification for the production of fatty acid esters from a variety of feedstocks. J Am Oil Chem Soc 84:963–970

    Article  CAS  Google Scholar 

  • Hailegiorgis SM, Mahadzir S, Subbarao D (2011) Enhanced in situ ethanolysis of Jatropha curcas L. in the presence of cetyltrimethylammonium bromide as a phase transfer catalyst. Renew Energy 36:2502–2507

    Article  CAS  Google Scholar 

  • Harrington KJ, D’Arcy-Evans C (1985) Transesterification in situ of sunflower seed oil. Ind Eng Chem Prod Res Dev 24:314–318

    Article  CAS  Google Scholar 

  • Karaj S, Muller J (2011) Optimizing mechanical oil extraction from Jatropha curcas L. seeds with respect to press capacity, oil recovery and energy efficiency. Ind Crops Prod 34:1010–1016

    Article  Google Scholar 

  • Kaul S, Porwal J, Garg MO (2010) Parametric study of Jatropha seeds for biodiesel production by reactive extraction. J Am Oil Chem Soc 87:903–908

    Article  CAS  Google Scholar 

  • Kildiran G, Ozgul-Yucel S, Turkay S (1996) In situ alcoholysis of soybean oil. J Am Oil Chem Soc 73:225–232

    Article  CAS  Google Scholar 

  • Kumar MS, Ramesh A, Nagalingam B (2003) An experimental comparison of methods to use methanol and Jatropha oil in a compression ignition engine. Biomass Bioenergy 25:309–318

    Article  Google Scholar 

  • Li Y, Lian S, Tong D, Song R, Yang W, Fan Y et al (2011) One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst. Appl Energy 88:3313–3317

    Article  CAS  Google Scholar 

  • Lim S, Lee KT (2011) Effects of solid pre-treatment towards optimizing supercritical methanol extraction and transesterification of Jatropha curcas L. seeds for the production of biodiesel. Sep Purif Technol 81:363–370

    Article  CAS  Google Scholar 

  • Lim S, Hoong SS, Teong LK, Bhatia S (2010) Supercritical fluid reactive extraction of Jatropha curcas L. seeds with methanol: a novel biodiesel production method. Bioresour Technol 101:7169–7172

    Article  CAS  Google Scholar 

  • Min J, Li S, Hao J, Liu N (2010) Supercritical CO2 extraction of Jatropha oil and solubility correlation. J Chem Eng Data 55:3755–3758

    Article  CAS  Google Scholar 

  • Ozgul-Yucel S, Turkay S (1993) In situ esterification of rice bran oil with methanol and ethanol. J Am Oil Chem Soc 70:145–147

    Article  Google Scholar 

  • Ozgul-Yucel S, Turkay S (2003) Fatty acid monoalkylesters from rice bran oil by in situ esterification. J Am Oil Chem Soc 80:81–84

    Article  CAS  Google Scholar 

  • Pandey KK, Pragya N, Sahoo PK (2011) Life cycle assessment of small-scale high-input Jatropha biodiesel production in India. Appl Energy 88:4831–4839

    Article  Google Scholar 

  • Pramanik K (2002) Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. Renew Energy 28:239–248

    Article  Google Scholar 

  • Qian J, Wang F, Liu S, Yun Z (2008) In situ alkaline transesterification of cottonseed oil for production of biodiesel and nontoxic cottonseed meal. Bioresour Technol 99:9009–9012

    Article  PubMed  CAS  Google Scholar 

  • Sato S, Hirakawa H, Isobe S, Fukai E, Watanabe A, Kato M et al (2010) Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. DNA Res 18:65–76

    Article  PubMed  CAS  Google Scholar 

  • Shah S, Sharma A, Gupta MN (2004) Extraction of oil from Jatropha curcas L. seed kernels by enzyme assisted three phase partitioning. Ind Crops Prod 20:275–279

    Article  CAS  Google Scholar 

  • Shah S, Sharma A, Gupta MN (2005) Extraction of oil from Jatropha curcas L. seed kernels by combination of ultrasonication and aqueous enzymatic oil extraction. Bioresour Technol 96:121–123

    Article  PubMed  CAS  Google Scholar 

  • Shuit SH, Lee KT, Kamaruddin AH (2010a) Reactive extraction and in situ esterification of Jatropha curcas L. seeds for the production of biodiesel. Fuel 89:527–530

    Article  CAS  Google Scholar 

  • Shuit SH, Lee KT, Kamaruddin AH, Yusup S (2010b) Reactive Extraction of Jatropha curcas L. seed for Production of Biodiesel: Process Optimization Study. Environ Sci Technol 44:4361–4367

    Article  CAS  Google Scholar 

  • Siler-Marinkovic S, Tomasevic A (1998) Transesterification of sunflower oil in situ. Fuel 77:1389–1391

    Article  CAS  Google Scholar 

  • Su EZ, Xu WQ, Gao KL, Zheng Y, Wei DZ (2007) Lipase-catalyzed in situ reactive extraction of oilseeds with short-chained alkyl acetates for fatty acid esters production. J Mol Catal B: Enzym 48:28–32

    Article  CAS  Google Scholar 

  • The Global Exchange for Social Investment (GEXSI 2008) Global Market Study on Jatropha and our project in Madagascar. JatrophaWorld 2008 Miami

    Article  CAS  Google Scholar 

  • Wyatt VT, Haas MJ (2009) Production of fatty acid methyl esters via the in situ transesterification of soybean oil in carbon dioxide-expanded methanol. J Am Oil Chem Soc 86:1009–1016

    Article  CAS  Google Scholar 

  • Zeng J, Wang X, Zhao B, Sun J, Wang Y (2009) Rapid in situ transesterification of sunflower oil. Ind Chem Eng Res 48:850–856

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Universiti Sains Malaysia for the financial support given (Research University Grant No: 814062) and USM Vice-Chancellors Award of a student scholarship to Steven Lim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keat Teong Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lee, K.T., Lim, S. (2012). The In Situ Biodiesel Production and Its Applicability to Jatropha. In: Carels, N., Sujatha, M., Bahadur, B. (eds) Jatropha, Challenges for a New Energy Crop. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4806-8_28

Download citation

Publish with us

Policies and ethics