Skip to main content

Laser and Radiofrequency Ablation Procedures

  • Chapter
  • First Online:
Thyroid Ultrasound and Ultrasound-Guided FNA

Abstract

Percutaneous Laser Ablation and radiofrequency are minimally invasive techniques to destroy thyroid nodules and tumors using hyperthermia without surgical removal. The thermal damage caused by heating depends both on the tissue temperature reached and on the duration of heating. For example, heating tissue at 50–55 °C for 4–6 min produces irreversible cellular damage, at temperatures between 60 and 100 °C, near-immediate coagulation of tissue is induced, with irreversible damage to mitochondrial and cytolysic enzymes of the cells, and at over 100–110 °C, tissue vaporizes and carbonizes. The potential advantages of in situ tumor ablation include decreased costs, reduced morbidity, the possibility of performing procedures on outpatients, and the possibility of treating patients who are poor candidates for surgery due to age, comorbidity, or extent of disease. Ablation procedures are performed in the thyroid gland under ultrasound real time imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Christophi C, Winkworth A, Muralihdaran V, et al. The treatment of malignancy by hyperthermia. Surg Oncol. 1998;7:83–90.

    Article  PubMed  CAS  Google Scholar 

  2. Wheatley DN, Kerr C, Gregory DW. Heat-induced damage to HeLa-S3 cells: correlation of viability, permeability, osmosensitivity, phase-contrast light-, scanning electron- and transmission electron-microscopical findings. Int J Hyperthermia. 1989;5:145–62.

    Article  PubMed  CAS  Google Scholar 

  3. Bown SG. Phototherapy in tumors. World J Surg. 1983;7:700–9.

    Article  PubMed  CAS  Google Scholar 

  4. Nolsoe CP, Torp-Pedersen S, Burcharth F, et al. Interstitial hyperthermia of colorectal liver metastases with a US-guided Nd-YAG laser with a diffuser tip: a pilot clinical study. Radiology. 1993;187:333–7.

    PubMed  CAS  Google Scholar 

  5. Amin Z, Harries SA, Lees WR, et al. Interstitial tumour photocoagulation. Endosc Surg Allied Technol. 1993;1:224–9.

    PubMed  CAS  Google Scholar 

  6. Germer CT, Roggan A, Ritz JP, et al. Optical properties of native and coagulated human liver tissue and liver metastases in the near infrared range. Lasers Surg Med. 1998;23:194–203.

    Article  PubMed  CAS  Google Scholar 

  7. Heisterkamp J, van Hillegersberg R, Ijzermans JN. Interstitial laser coagulation for hepatic tumours. Br J Surg. 1999;86:293–304.

    Article  PubMed  CAS  Google Scholar 

  8. Dachman AH, Smith MJ, Burris JA, et al. Interstitial laser ablation in experimental models and in clinical use. Semin Intervent Radiol. 1993;10:101–12.

    Article  Google Scholar 

  9. Pacella CM, Rossi Z, Bizzarri G, et al. Ultrasound-guided percutaneous laser ablation of liver tissue in a rabbit model. Eur Radiol. 1993;3:26–32.

    Article  Google Scholar 

  10. Nikfarjam M, Muralidharan V, Malcontenti-Wilson C, et al. Progressive microvascular injury in liver and colorectal liver metastases following laser induced focal hyperthermia therapy. Lasers Surg Med. 2005;37:64–73.

    Article  PubMed  Google Scholar 

  11. Ritz JP, Lehmann KS, Zurbuchen U, et al. Ex vivo and in vivo evaluation of laser-induced thermotherapy for nodular thyroid disease. Lasers Surg Med. 2009;41:479–86.

    Article  PubMed  Google Scholar 

  12. Piana S, Riganti F, Froio E, Andrioli M, Pacella CM, Valcavi R. Pathological findings of thyroid nodules after percutaneous laser ablation: a series of 22 cases with cyto-histological correlation. Endocr Pathol. 2012;23(2):94–100.

    Article  PubMed  Google Scholar 

  13. Ritz JP, Roggan A, Isbert C, et al. Optical properties of native and coagulated porcine liver tissue between 400 and 2400 nm. Lasers Surg Med. 2001;29:205–12.

    Article  PubMed  CAS  Google Scholar 

  14. Hegedus L. Therapy: a new nonsurgical therapy option for benign thyroid nodules? Nat Rev Endocrinol. 2009;5:476–8.

    Article  PubMed  Google Scholar 

  15. Cooper DS, Doherty GM, Haugen BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–214.

    Article  PubMed  Google Scholar 

  16. Gharib H, Papini E, Paschke R, et al. American Association of Clinical Endocrinologist, Associazione Medici Endocrinologi, and European Thyroid Association medical guidelines for clinical practice for the diagnosis and management of thyroid nodules. Endocr Pract. 2010;16 Suppl 1:1–43.

    Article  PubMed  Google Scholar 

  17. Valcavi R, Frasoldati A. Ultrasound-guided percutaneous ethanol injection therapy in thyroid cystic nodules. Endocr Pract. 2004;10:269–75.

    PubMed  Google Scholar 

  18. Esnault O, Franc B, Monteil JP, et al. High-intensity focused ultrasound for localized thyroid-tissue ablation: preliminary experimental animal study. Thyroid. 2004;14:1072–6.

    Article  PubMed  Google Scholar 

  19. Esnault O, Franc B, Chapelon JY. Localized ablation of thyroid tissue by high-intensity focused ultrasound: improvement of noninvasive tissue necrosis methods. Thyroid. 2009;19:1085–91.

    Article  PubMed  Google Scholar 

  20. Esnault O, Rouxel A, Le Nestour E, et al. Minimally invasive ablation of a toxic thyroid nodule by high-intensity focused ultrasound. AJNR Am J Neuroradiol. 2010;31(10):1967–8.

    Article  PubMed  CAS  Google Scholar 

  21. Pacella CM, Bizzarri G, Guglielmi R, et al. Thyroid tissue: US-guided percutaneous interstitial laser ablation-a feasibility study. Radiology. 2000;217:673–7.

    PubMed  CAS  Google Scholar 

  22. Døssing H, Bennedbaek FN, Karstrup S, et al. Benign solitary solid cold thyroid nodules: US-guided interstitial laser photocoagulation—initial experience. Radiology. 2002;225:53–7.

    Article  PubMed  Google Scholar 

  23. Pacella CM, Bizzarri G, Spiezia S, et al. Thyroid tissue: US-guided percutaneous laser thermal ablation. Radiology. 2004;232:272–80.

    Article  PubMed  Google Scholar 

  24. Papini E, Guglielmi R, Bizzarri G, et al. Ultrasound-guided laser thermal ablation for treatment of benign thyroid nodules. Endocr Pract. 2004;10:276–83.

    PubMed  Google Scholar 

  25. Valcavi R, Bertani A, Pesenti M, et al. Laser and radiofrequency ablation procedures. In: Baskin BJ, Duick DS, Levine RA, editors. Thyroid ultrasound and ultrasound-guided FNA. 2nd ed. New York: Springer; 2008. p. 198–218.

    Google Scholar 

  26. Dossing H, Bennedbaek FN, Hegedus L. Ultrasound-guided interstitial laser photocoagulation of an autonomous thyroid nodule: the introduction of a novel alternative. Thyroid. 2003;13:885–8.

    Article  PubMed  Google Scholar 

  27. Døssing H, Bennedbaek FN, Hegedus L. Beneficial effect of combined aspiration and interstitial laser therapy in patients with benign cystic thyroid nodules: a pilot study. Br J Radiol. 2006;79:943–7.

    Article  PubMed  Google Scholar 

  28. Spiezia S, Vitale G, Di Somma C, et al. Ultrasound-guided laser thermal ablation in the treatment of autonomous hyperfunctioning thyroid nodules and compressive nontoxic nodular goiter. Thyroid. 2003;13:941–7.

    Article  PubMed  Google Scholar 

  29. Amabile G, Rotondi M, De Chiara G, et al. Low-energy interstitial laser photocoagulation for treatment of nonfunctioning thyroid nodules: therapeutic outcome in relation to pretreatment and treatment parameters. Thyroid. 2006;16:749–55.

    Article  PubMed  Google Scholar 

  30. Cakir B, Topaloglu O, Gul K, et al. Effects of percutaneous laser ablation treatment in benign solitary thyroid nodules on nodule volume, thyroglobulin and anti-thyroglobulin levels, and cytopathology of nodule in 1 yr follow-up. J Endocrinol Invest. 2006;29:876–84.

    PubMed  CAS  Google Scholar 

  31. Barbaro D, Orsini P, Lapi P, et al. Percutaneous laser ablation in the treatment of toxic and pretoxic nodular goiter. Endocr Pract. 2007;13:30–6.

    PubMed  Google Scholar 

  32. Rotondi M, Amabile G, Leporati P, et al. Repeated laser thermal ablation of a large functioning thyroid nodule restores euthyroidism and ameliorates constrictive symptoms. J Clin Endocrinol Metab. 2009;94:382–3.

    Article  PubMed  CAS  Google Scholar 

  33. Døssing H, Bennedbaek FN, Hegedus L. Effect of ultrasound-guided interstitial laser photocoagulation on benign solitary solid cold thyroid nodules—a randomised study. Eur J Endocrinol. 2005;152:341–5.

    Article  PubMed  Google Scholar 

  34. Papini E, Guglielmi R, Bizzarri G, et al. Treatment of benign cold thyroid nodules: a randomized clinical trial of percutaneous laser ablation versus levothyroxine therapy or follow-up. Thyroid. 2007;17:229–35.

    Article  PubMed  CAS  Google Scholar 

  35. Døssing H, Bennedbaek FN, Bonnema SJ, et al. Randomized prospective study comparing a single radioiodine dose and a single laser therapy session in autonomously functioning thyroid nodules. Eur J Endocrinol. 2007;157:95–100.

    Article  PubMed  Google Scholar 

  36. Gambelunghe G, Fatone C, Ranchelli A, et al. A randomized controlled trial to evaluate the efficacy of ultrasound-guided laser photocoagulation for treatment of benign thyroid nodules. J Endocrinol Invest. 2006;29:RC23–6.

    PubMed  CAS  Google Scholar 

  37. Valcavi R, Riganti F, Bertani A, et al. Percutaneous laser ablation of cold benign thyroid nodules. A three-year follow-up in 122 patients. Thyroid. 2010;20(11):1253–61.

    Article  PubMed  CAS  Google Scholar 

  38. Di Rienzo G, Surrente C, Lopez C, Quercia R. Tracheal laceration after laser ablation of nodular goitre. Interact Cardiovasc Thorac Surg. 2012;14(1):115–6.

    Article  PubMed  Google Scholar 

  39. Døssing H, Bennedbaek FN, Karstrup S, Hegedüs L. Benign solitary solid cold thyroid nodules: US-guided interstitial laser photocoagulation—initial experience. Radiology. 2002;225(1):53–7.

    Article  PubMed  Google Scholar 

  40. Døssing H, Bennedbaek FN, Hegedüs L. Ultrasound-guided interstitial laser photocoagulation of an autonomous thyroid nodule: the introduction of a novel alternative. Thyroid. 2003;13(9):885–8.

    Article  PubMed  Google Scholar 

  41. Døssing H, Bennedbæk FN, Hegedüs L. Long-term outcome following interstitial laser photocoagulation of benign cold thyroid nodules. Eur J Endocrinol. 2011;165(1):123–8.

    Article  PubMed  Google Scholar 

  42. Amabile G, Rotondi M, Pirali B, Dionisio R, Agozzino L, Lanza M, et al. Interstitial laser photocoagulation for benign thyroid nodules: time to treat large nodules. Lasers Surg Med. 2011;43(8):797–803. doi:10.1002/lsm.21114.

    Article  PubMed  Google Scholar 

  43. Siperstein AE, Gitomirsky A. History and technonological aspects of radiofrequency thermoablation. Cancer J. 2000;6:2293–303.

    Google Scholar 

  44. McGahan JP, Browning PD, Brock JM, et al. Hepatic ablation using radiofrequency electrocautery. Invest Radiol. 1990;25:267–70.

    Article  PubMed  CAS  Google Scholar 

  45. McGahan JP, Brock JM, Tesluk H, et al. Hepatic ablation with use of radio-frequency electrocautery in the animal model. J Vasc Interv Radiol. 1992;3:291–7.

    Article  PubMed  CAS  Google Scholar 

  46. Goldberg SN, Gazelle GS, Dawson SL, et al. Tissue ablation with radiofrequency: effect of probe size, gauge, duration, and temperature on lesion volume. Acad Radiol. 1995;2:399–404.

    Article  PubMed  CAS  Google Scholar 

  47. Spiezia S, Garberoglio R, Di Somma C, et al. Efficacy and safety of radiofrequency thermal ablation in the treatment of thyroid nodules with pressure symptoms in elderly patients. J Am Geriatr Soc. 2007;55:1478–9.

    Article  PubMed  Google Scholar 

  48. Baek JH, Moon WJ, Kim YS, et al. Radiofrequency ablation for the treatment of autonomously functioning thyroid nodules. World J Surg. 2009;33:1971–7.

    Article  PubMed  Google Scholar 

  49. Deandrea M, Limone P, Basso E, et al. US-guided percutaneous radiofrequency thermal ablation for the treatment of solid benign hyperfunctioning or compressive thyroid nodules. Ultrasound Med Biol. 2008;34:784–91.

    Article  PubMed  Google Scholar 

  50. Kim YS, Rhim H, Tae K, et al. Radiofrequency ablation of benign cold thyroid nodules: initial clinical experience. Thyroid. 2006;16:361–7.

    Article  PubMed  Google Scholar 

  51. Jeong WK, Baek JH, Rhim H, et al. Radiofrequency ablation of benign thyroid nodules: safety and imaging follow-up in 236 patients. Eur Radiol. 2008;18:1244–50.

    Article  PubMed  Google Scholar 

  52. Spiezia S, Garberoglio R, Milone F, et al. Thyroid nodules and related symptoms are stably controlled two years after radiofrequency thermal ablation. Thyroid. 2009;19:219–25.

    Article  PubMed  Google Scholar 

  53. Baek JH, Kim YS, Lee D, et al. Benign predominantly solid thyroid nodules: prospective study of efficacy of sonographically guided radiofrequency ablation versus control condition. AJR Am J Roentgenol. 2010;194:1137–42.

    Article  PubMed  Google Scholar 

  54. Baek JH, Lee JH, Sung JY, Bae JI, Kim KT, Sim J, et al. Complications encountered in the treatment of benign thyroid nodules with US-guided radiofrequency ablation: a multicenter study. Radiology. 2012;262(1):335–42.

    Article  PubMed  Google Scholar 

  55. Guglielmi R, Pacella CM, Bianchini A, et al. Percutaneous ethanol injection treatment in benign thyroid lesions: role and efficacy. Thyroid. 2004;14:125–31.

    Article  PubMed  CAS  Google Scholar 

  56. Burns PN, Wilson SR. Microbubble contrast for radiological imaging: 1. Principles. Ultrasound Q. 2006;22:5–13.

    PubMed  Google Scholar 

  57. Wilson SR, Burns PN. Microbubble contrast for radiological imaging: 2. Applications. Ultrasound Q. 2006;22:15–8.

    PubMed  Google Scholar 

  58. Papini E, Bizzarri G, Bianchini A, et al. Contrast-enhanced ultrasound in the management of thyroid nodules. In: Baskin BJ, Duick DS, Levine RA, editors. Thyroid ultrasound and ultrasound-guided FNA. 2nd ed. New York: Springer; 2008. p. 151–71.

    Chapter  Google Scholar 

  59. Monchik JM, Donatini G, Iannuccilli J, et al. Radiofrequency ablation and percutaneous ethanol injection treatment for recurrent local and distant well-differentiated thyroid carcinoma. Ann Surg. 2006;244:296–304.

    Article  PubMed  Google Scholar 

  60. Papini E, Bizzarri G, Pacella CM. Percutaneous laser ablation of benign and malignant thyroid nodules. Curr Opin Endocrinol Diabetes Obes. 2008;15:434–9.

    Article  PubMed  Google Scholar 

  61. Hay ID. Management of patients with low-risk papillary thyroid carcinoma. Endocr Pract. 2007;13:521–33.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Valcavi MD, FACE .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Valcavi, R., Bortolani, G.S., Riganti, F. (2013). Laser and Radiofrequency Ablation Procedures. In: Baskin, Sr., H., Duick, D., Levine, R. (eds) Thyroid Ultrasound and Ultrasound-Guided FNA. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4785-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4785-6_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4784-9

  • Online ISBN: 978-1-4614-4785-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics