Advertisement

RNAi Therapeutic Delivery by Exosomes

  • Samira Lakhal
  • Samir El Andaloussi
  • Aisling J. O’Loughlin
  • Jinghuan Li
  • Matthew M. J. Wood
Chapter
Part of the Advances in Delivery Science and Technology book series (ADST)

Abstract

Since the discovery of short interfering RNAs (siRNAs), their potential as a therapeutic platform has been widely recognized. However, clinical translation has been stalled by inefficient delivery in vivo. While some success has been achieved with cationic lipids and lipid-like materials for therapeutic RNAi delivery to liver, delivery across the blood–brain barrier (BBB) to the central nervous system for the treatment of neurological disorders such as Parkinson’s, Alzheimer’s, and Huntington’s disease remains a challenge. To address the problem of inefficient delivery across the BBB, our laboratory exploited one of nature’s mechanisms for intercellular communication, named exosomes. They are a class of membrane vesicles derived from the endolysosomal compartment implicated in cell–cell communication by shuttling various proteins, lipids, and RNAs between cells. We have developed a method to target exosomes with brain-specific peptides and subsequently load them with siRNA for targeted delivery to brain. This chapter aims at providing an insight into membrane vesicle-mediated RNA delivery and how these vectors can be utilized for RNAi therapy.

Keywords

Membrane Vesicle Recipient Cell Human Brain Microvascular Endothelial Cell Drug Delivery Vehicle Rabies Virus Glycoprotein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33PubMedCrossRefGoogle Scholar
  2. 2.
    Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366PubMedCrossRefGoogle Scholar
  3. 3.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811PubMedCrossRefGoogle Scholar
  4. 4.
    Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8:129–138PubMedCrossRefGoogle Scholar
  5. 5.
    Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, Lee KM, Kim JI, Markmann JF, Marinelli B, Panizzi P, Lee WW, Iwamoto Y, Milstein S, Epstein-Barash H, Cantley W, Wong J, Cortez-Retamozo V, Newton A, Love K, Libby P, Pittet MJ, Swirski FK, Koteliansky V, Langer R, Weissleder R, Anderson DG, Nahrendorf M (2011) Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol 29:1005–1010PubMedCrossRefGoogle Scholar
  6. 6.
    Akinc A, Goldberg M, Qin J, Dorkin JR, Gamba-Vitalo C, Maier M, Jayaprakash KN, Jayaraman M, Rajeev KG, Manoharan M, Koteliansky V, Rohl I, Leshchiner ES, Langer R, Anderson DG (2009) Development of lipidoid-siRNA formulations for systemic delivery to the liver. Mol Ther 17:872–879PubMedCrossRefGoogle Scholar
  7. 7.
    Ezzat K, El Andaloussi S, Abdo R, Langel U (2010) Peptide-based matrices as drug delivery vehicles. Curr Pharm Des 16:1167–1178PubMedCrossRefGoogle Scholar
  8. 8.
    Andaloussi SE, Lehto T, Mager I, Rosenthal-Aizman K, Oprea II, Simonson OE, Sork H, Ezzat K, Copolovici DM, Kurrikoff K, Viola JR, Zaghloul EM, Sillard R, Johansson HJ, Said Hassane F, Guterstam P, Suhorutsenko J, Moreno PM, Oskolkov N, Halldin J, Tedebark U, Metspalu A, Lebleu B, Lehtio J, Smith CI, Langel U (2011) Design of a peptide-based vector, PepFect6, for efficient delivery of siRNA in cell culture and systemically in vivo. Nucleic Acids Res 39:3972–3987PubMedCrossRefGoogle Scholar
  9. 9.
    Crombez L, Catherine Morris M, Dufort S, Aldrian-Herrada G, Nguyen Q, Mc Master G, Coll JL, Heitz F, Divita G (2009) Targeting cyclin B1 through peptide-based delivery of siRNA prevents tumour growth. Nucleic Acids Res 37(14):4559–4569PubMedCrossRefGoogle Scholar
  10. 10.
    Zimmermann TS, Lee AC, Akinc A, Bramlage B, Bumcrot D, Fedoruk MN, Harborth J, Heyes JA, Jeffs LB, John M, Judge AD, Lam K, McClintock K, Nechev LV, Palmer LR, Racie T, Rohl I, Seiffert S, Shanmugam S, Sood V, Soutschek J, Toudjarska I, Wheat AJ, Yaworski E, Zedalis W, Koteliansky V, Manoharan M, Vornlocher HP, MacLachlan I (2006) RNAi-mediated gene silencing in non-human primates. Nature 441:111–114PubMedCrossRefGoogle Scholar
  11. 11.
    Mae M, Armulik A, Betsholtz C (2011) Getting to know the cast – cellular interactions and signaling at the neurovascular unit. Curr Pharm Des 17:2750–2754PubMedGoogle Scholar
  12. 12.
    Nag S (2011) Morphology and properties of brain endothelial cells. Methods Mol Biol 686:3–47PubMedCrossRefGoogle Scholar
  13. 13.
    Miller DS (2010) Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol Sci 31:246–254PubMedCrossRefGoogle Scholar
  14. 14.
    Armulik A, Genove G, Mae M, Nisancioglu MH, Wallgard E, Niaudet C, He L, Norlin J, Lindblom P, Strittmatter K, Johansson BR, Betsholtz C (2010) Pericytes regulate the blood-brain barrier. Nature 468:557–561PubMedCrossRefGoogle Scholar
  15. 15.
    Daneman R, Zhou L, Kebede AA, Barres BA (2010) Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468:562–566PubMedCrossRefGoogle Scholar
  16. 16.
    Araya R, Kudo M, Kawano M, Ishii K, Hashikawa T, Iwasato T, Itohara S, Terasaki T, Oohira A, Mishina Y, Yamada M (2008) BMP signaling through BMPRIA in astrocytes is essential for proper cerebral angiogenesis and formation of the blood-brain-barrier. Mol Cell Neurosci 38:417–430PubMedCrossRefGoogle Scholar
  17. 17.
    Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314–1318PubMedCrossRefGoogle Scholar
  18. 18.
    Pakzaban P, Geller AI, Isacson O (1994) Effect of exogenous nerve growth factor on neurotoxicity of and neuronal gene delivery by a herpes simplex amplicon vector in the rat brain. Hum Gene Ther 5:987–995PubMedCrossRefGoogle Scholar
  19. 19.
    Thorne RG, Pronk GJ, Padmanabhan V, Frey WH 2nd (2004) Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience 127:481–496PubMedCrossRefGoogle Scholar
  20. 20.
    Neuwelt EA, Barnett PA, McCormick CI, Frenkel EP, Minna JD (1985) Osmotic blood-brain barrier modification: monoclonal antibody, albumin, and methotrexate delivery to cerebrospinal fluid and brain. Neurosurgery 17:419–423PubMedCrossRefGoogle Scholar
  21. 21.
    Hu J, Yuan X, Ko MK, Yin D, Sacapano MR, Wang X, Konda BM, Espinoza A, Prosolovich K, Ong JM, Irvin D, Black KL (2007) Calcium-activated potassium channels mediated blood-brain tumor barrier opening in a rat metastatic brain tumor model. Mol Cancer 6:22PubMedCrossRefGoogle Scholar
  22. 22.
    Pardridge WM (2006) Molecular Trojan horses for blood-brain barrier drug delivery. Discov Med 6:139–143PubMedGoogle Scholar
  23. 23.
    Pardridge WM (2007) Drug targeting to the brain. Pharm Res 24:1733–1744PubMedCrossRefGoogle Scholar
  24. 24.
    Boado RJ, Hui EK, Lu JZ, Pardridge WM (2010) Drug targeting of erythropoietin across the primate blood-brain barrier with an IgG molecular Trojan horse. J Pharmacol Exp Ther 333:961–969PubMedCrossRefGoogle Scholar
  25. 25.
    Boado RJ, Lu JZ, Hui EK, Pardridge WM (2010) IgG-single chain Fv fusion protein therapeutic for Alzheimer’s disease: expression in CHO cells and pharmacokinetics and brain delivery in the rhesus monkey. Biotechnol Bioeng 105:627–635PubMedCrossRefGoogle Scholar
  26. 26.
    Pardridge WM (2010) Biologic TNF alpha-inhibitors that cross the human blood-brain barrier. Bioeng Bugs 1:231–234PubMedCrossRefGoogle Scholar
  27. 27.
    Pardridge WM, Boado RJ (2009) Pharmacokinetics and safety in rhesus monkeys of a monoclonal antibody-GDNF fusion protein for targeted blood-brain barrier delivery. Pharm Res 26:2227–2236PubMedCrossRefGoogle Scholar
  28. 28.
    Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, Lee SK, Shankar P, Manjunath N (2007) Transvascular delivery of small interfering RNA to the central nervous system. Nature 448:39–43PubMedCrossRefGoogle Scholar
  29. 29.
    Lentz TL (1990) Rabies virus binding to an acetylcholine receptor alpha-subunit peptide. J Mol Recognit 3:82–88PubMedCrossRefGoogle Scholar
  30. 30.
    Moschos SA, Williams AE, Lindsay MA (2007) Cell-penetrating-peptide-mediated siRNA lung delivery. Biochem Soc Trans 35:807–810PubMedCrossRefGoogle Scholar
  31. 31.
    Harris TJ, Green JJ, Fung PW, Langer R, Anderson DG, Bhatia SN (2010) Tissue-specific gene delivery via nanoparticle coating. Biomaterials 31:998–1006PubMedCrossRefGoogle Scholar
  32. 32.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659PubMedCrossRefGoogle Scholar
  33. 33.
    Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51PubMedCrossRefGoogle Scholar
  34. 34.
    Sanderson MP, Keller S, Alonso A, Riedle S, Dempsey PJ, Altevogt P (2008) Generation of novel, secreted epidermal growth factor receptor (EGFR/ErbB1) isoforms via metalloprotease-dependent ectodomain shedding and exosome secretion. J Cell Biochem 103: 1783–1797PubMedCrossRefGoogle Scholar
  35. 35.
    Svensson KJ, Kucharzewska P, Christianson HC, Skold S, Lofstedt T, Johansson MC, Morgelin M, Bengzon J, Ruf W, Belting M (2011) Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proc Natl Acad Sci U S A 108:13147–13152PubMedCrossRefGoogle Scholar
  36. 36.
    Zakharova L, Svetlova M, Fomina AF (2007) T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. J Cell Physiol 212:174–181PubMedCrossRefGoogle Scholar
  37. 37.
    Dainiak N, Sorba S (1991) Intracellular regulation of the production and release of human erythroid-directed lymphokines. J Clin Invest 87:213–220PubMedCrossRefGoogle Scholar
  38. 38.
    Enjeti AK, Lincz LF, Seldon M (2007) Detection and measurement of microparticles: an evolving research tool for vascular biology. Semin Thromb Hemost 33:771–779PubMedCrossRefGoogle Scholar
  39. 39.
    Aupeix K, Hugel B, Martin T, Bischoff P, Lill H, Pasquali JL, Freyssinet JM (1997) The significance of shed membrane particles during programmed cell death in vitro, and in vivo, in HIV-1 infection. J Clin Invest 99:1546–1554PubMedCrossRefGoogle Scholar
  40. 40.
    Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166:7309–7318PubMedGoogle Scholar
  41. 41.
    Hristov M, Erl W, Linder S, Weber PC (2004) Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 104:2761–2766PubMedCrossRefGoogle Scholar
  42. 42.
    Ashman RF, Peckham D, Alhasan S, Stunz LL (1995) Membrane unpacking and the rapid disposal of apoptotic cells. Immunol Lett 48:159–166PubMedCrossRefGoogle Scholar
  43. 43.
    Taylor MP, Kirkegaard K (2008) Potential subversion of autophagosomal pathway by picornaviruses. Autophagy 4:286–289PubMedGoogle Scholar
  44. 44.
    Simpson RJ, Jensen SS, Lim JW (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8:4083–4099PubMedCrossRefGoogle Scholar
  45. 45.
    Hoepfner S, Severin F, Cabezas A, Habermann B, Runge A, Gillooly D, Stenmark H, Zerial M (2005) Modulation of receptor recycling and degradation by the endosomal kinesin KIF16B. Cell 121:437–450PubMedCrossRefGoogle Scholar
  46. 46.
    Nielsen E, Severin F, Backer JM, Hyman AA, Zerial M (1999) Rab5 regulates motility of early endosomes on microtubules. Nat Cell Biol 1:376–382PubMedCrossRefGoogle Scholar
  47. 47.
    Stoorvogel W, Strous GJ, Geuze HJ, Oorschot V, Schwartz AL (1991) Late endosomes derive from early endosomes by maturation. Cell 65:417–427PubMedCrossRefGoogle Scholar
  48. 48.
    Futter CE, Collinson LM, Backer JM, Hopkins CR (2001) Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J Cell Biol 155:1251–1264PubMedCrossRefGoogle Scholar
  49. 49.
    Hurley JH (2008) ESCRT complexes and the biogenesis of multivesicular bodies. Curr Opin Cell Biol 20:4–11PubMedCrossRefGoogle Scholar
  50. 50.
    Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247PubMedCrossRefGoogle Scholar
  51. 51.
    Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB, Papworth GD, Zahorchak AF, Logar AJ, Wang Z, Watkins SC, Falo LD Jr, Thomson AW (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104:3257–3266PubMedCrossRefGoogle Scholar
  52. 52.
    Zwaal RF, Comfurius P, Bevers EM (2004) Scott syndrome, a bleeding disorder caused by defective scrambling of membrane phospholipids. Biochim Biophys Acta 1636:119–128PubMedCrossRefGoogle Scholar
  53. 53.
    Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183:1161–1172PubMedCrossRefGoogle Scholar
  54. 54.
    Taylor DD, Akyol S, Gercel-Taylor C (2006) Pregnancy-associated exosomes and their modulation of T cell signaling. J Immunol 176:1534–1542PubMedGoogle Scholar
  55. 55.
    Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10:619–624PubMedCrossRefGoogle Scholar
  56. 56.
    Liu C, Yu S, Zinn K, Wang J, Zhang L, Jia Y, Kappes JC, Barnes S, Kimberly RP, Grizzle WE, Zhang HG (2006) Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cell function. J Immunol 176:1375–1385PubMedGoogle Scholar
  57. 57.
    Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, Ryu KW, Bae JM, Kim S (2003) Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 39:184–191PubMedCrossRefGoogle Scholar
  58. 58.
    Nguyen DG, Booth A, Gould SJ, Hildreth JE (2003) Evidence that HIV budding in primary macrophages occurs through the exosome release pathway. J Biol Chem 278:52347–52354PubMedCrossRefGoogle Scholar
  59. 59.
    Robertson C, Booth SA, Beniac DR, Coulthart MB, Booth TF, McNicol A (2006) Cellular prion protein is released on exosomes from activated platelets. Blood 107:3907–3911PubMedCrossRefGoogle Scholar
  60. 60.
    Koga K, Matsumoto K, Akiyoshi T, Kubo M, Yamanaka N, Tasaki A, Nakashima H, Nakamura M, Kuroki S, Tanaka M, Katano M (2005) Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res 25:3703–3707PubMedGoogle Scholar
  61. 61.
    Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield XO, Widmark A (2009) Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer 100:1603–1607PubMedCrossRefGoogle Scholar
  62. 62.
    Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305PubMedCrossRefGoogle Scholar
  63. 63.
    Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S, Flament C, Leboulaire C, Borg C, Amigorena S, Boccaccio C, Bonnerot C, Dhellin O, Movassagh M, Piperno S, Robert C, Serra V, Valente N, Le Pecq JB, Spatz A, Lantz O, Tursz T, Angevin E, Zitvogel L (2005) Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of the first phase I clinical trial. J Transl Med 3:10PubMedCrossRefGoogle Scholar
  64. 64.
    Lai R, Arslan R, Lee M, Sze N, Choo A, Chrn T, Salto-Tellez M, Timmers L, Lee C, El Oalkey R, Pasterkamp G, de Kleijn D, Lim S (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222PubMedCrossRefGoogle Scholar
  65. 65.
    Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A, Nagy G, Falus A, Buzas EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68:2667–2688PubMedCrossRefGoogle Scholar
  66. 66.
    Ramachandran S, Palanisamy V (2012) Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley Interdiscip Rev RNA 3:286–293PubMedCrossRefGoogle Scholar
  67. 67.
    Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101:13368–13373PubMedCrossRefGoogle Scholar
  68. 68.
    de Gassart A, Geminard C, Fevrier B, Raposo G, Vidal M (2003) Lipid raft-associated protein sorting in exosomes. Blood 102:4336–4344PubMedCrossRefGoogle Scholar
  69. 69.
    Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V, Tetta C (2011) Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 1:98–110PubMedGoogle Scholar
  70. 70.
    Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33:967–978PubMedCrossRefGoogle Scholar
  71. 71.
    Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, Baran J, Urbanowicz B, Branski P, Ratajczak MZ, Zembala M (2006) Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol Immunother 55:808–818PubMedCrossRefGoogle Scholar
  72. 72.
    Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, Muramatsu K, Fukuda Y, Ogura S, Yamaguchi K, Mochizuki T (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 5:e13247PubMedCrossRefGoogle Scholar
  73. 73.
    Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A, Trendelenburg M, Lochnit G, Preissner KT, Zoller M (2010) Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res 70:1668–1678PubMedCrossRefGoogle Scholar
  74. 74.
    Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, Bernad A, Sanchez-Madrid F (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282PubMedCrossRefGoogle Scholar
  75. 75.
    Montecalvo A, Larregina AT, Shufesky WJ, Beer Stolz D, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE (2011) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119(3):756–766PubMedCrossRefGoogle Scholar
  76. 76.
    Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476PubMedCrossRefGoogle Scholar
  77. 77.
    Gibbings DJ, Ciaudo C, Erhardt M, Voinnet O (2009) Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol 11:1143–1149PubMedCrossRefGoogle Scholar
  78. 78.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345PubMedCrossRefGoogle Scholar
  79. 79.
    Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang HG (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19:1769–1779PubMedCrossRefGoogle Scholar
  80. 80.
    Record M, Subra C, Silvente-Poirot S, Poirot M (2011) Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 81:1171–1182PubMedCrossRefGoogle Scholar
  81. 81.
    Subra C, Laulagnier K, Perret B, Record M (2007) Exosome lipidomics unravels lipid sorting at the level of multivesicular bodies. Biochimie 89:205–212PubMedCrossRefGoogle Scholar
  82. 82.
    Fairchild PJ, Nolan KF, Waldmann H (2007) Genetic modification of dendritic cells through the directed differentiation of embryonic stem cells. Methods Mol Biol 380:59–72PubMedCrossRefGoogle Scholar
  83. 83.
    Aasen T, Izpisua Belmonte JC (2010) Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc 5:371–382PubMedCrossRefGoogle Scholar
  84. 84.
    Karumbayaram S, Novitch BG, Patterson M, Umbach JA, Richter L, Lindgren A, Conway AE, Clark AT, Goldman SA, Plath K, Wiedau-Pazos M, Kornblum HI, Lowry WE (2009) Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 27:806–811PubMedCrossRefGoogle Scholar
  85. 85.
    Bettens K, Brouwers N, Engelborghs S, Van Miegroet H, De Deyn PP, Theuns J, Sleegers K, Van Broeckhoven C (2009) APP and BACE1 miRNA genetic variability has no major role in risk for Alzheimer disease. Hum Mutat 30:1207–1213PubMedCrossRefGoogle Scholar
  86. 86.
    Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, Raychaudhury A, Newton HB, Chiocca EA, Lawler S (2008) Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 68:9125–9130PubMedCrossRefGoogle Scholar
  87. 87.
    Kefas B, Godlewski J, Comeau L, Li Y, Abounader R, Hawkinson M, Lee J, Fine H, Chiocca EA, Lawler S, Purow B (2008) microRNA-7 inhibits the epidermal growth factor receptor and the Akt pathway and is down-regulated in glioblastoma. Cancer Res 68:3566–3572PubMedCrossRefGoogle Scholar
  88. 88.
    Martinez-Lostao L, Garcia-Alvarez F, Basanez G, Alegre-Aguaron E, Desportes P, Larrad L, Naval J, Martinez-Lorenzo MJ, Anel A (2010) Liposome-bound APO2L/TRAIL is an effective treatment in a rabbit model of rheumatoid arthritis. Arthritis Rheum 62:2272–2282PubMedCrossRefGoogle Scholar
  89. 89.
    Kaneda M, Nomura SM, Ichinose S, Kondo S, Nakahama K, Akiyoshi K, Morita I (2009) Direct formation of proteo-liposomes by in vitro synthesis and cellular cytosolic delivery with connexin-expressing liposomes. Biomaterials 30:3971–3977PubMedCrossRefGoogle Scholar
  90. 90.
    De La Pena H, Madrigal JA, Rusakiewicz S, Bencsik M, Cave GW, Selman A, Rees RC, Travers PJ, Dodi IA (2009) Artificial exosomes as tools for basic and clinical immunology. J Immunol Methods 344:121–132CrossRefGoogle Scholar
  91. 91.
    Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitas A, Peterlin BM (2010) HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11:110–122PubMedCrossRefGoogle Scholar
  92. 92.
    Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF (2008) The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J 37:323–332PubMedCrossRefGoogle Scholar
  93. 93.
    Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9:871–881PubMedCrossRefGoogle Scholar
  94. 94.
    Skriner K, Adolph K, Jungblut PR, Burmester GR (2006) Association of citrullinated proteins with synovial exosomes. Arthritis Rheum 54:3809–3814PubMedCrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2013

Authors and Affiliations

  • Samira Lakhal
    • 1
  • Samir El Andaloussi
    • 1
  • Aisling J. O’Loughlin
    • 1
  • Jinghuan Li
    • 1
  • Matthew M. J. Wood
    • 1
  1. 1.Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK

Personalised recommendations