The Relationship Between DNA-Repair Genes, Cellular Radiosensitivity, and the Response of Tumors and Normal Tissues to Radiotherapy

Chapter
Part of the Cancer Drug Discovery and Development book series (CDD&D, volume 72)

Abstract

Radiation therapy (XRT) continues to be an important component in the management of many cancer patients. The dose delivered to a tumor is calculated on the basis of the anticipated tolerance of the normal tissues within the irradiated field, which is determined empirically on the basis of population-averaged clinical data [1]. These calculations, which typically accept a severe late complication rate of ≤5 %, do not account for the different susceptibilities of XRT patients to late normal tissue effects [2], which can be severe and sometimes life threatening. Such interindividual variations are substantial even though major advances have been made with respect to the conformality of XRT delivery. Similarly, the clinical responsiveness of tumors to XRT is often quite different even among tumors of the same pathology. One approach to further improving the therapeutic outcome of XRT is to develop individualized treatment plans that utilize pretreatment biomarkers that would predict both normal tissue tolerance levels and/or tumor responsiveness to therapy on a patient-by-patient basis. For such biomarkers to become used routinely in the clinic, they will have to be capable of rapidly and reliably identifying unusually or even moderately radiosensitive patients or radioresistant tumors prior to treatment. This need has, for many years, driven intensive research into the development of assays and biomarkers for predicting individual radiosensitivity [3].

Keywords

Toxicity Codon Fractionation Glutamine Methionine 

Notes

Acknowledgments

We are grateful for support by the Alberta Cancer Foundation.

References

  1. 1.
    Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 15:109–122CrossRefGoogle Scholar
  2. 2.
    Murray D, Begg A (2004) DNA repair genes and radiosensitivity. In: Panasci LC, Alaoui-Jamali MA (eds) DNA repair in cancer therapy. Humana Press, Totawa, NJ, pp 211–256Google Scholar
  3. 3.
    Peters LJ (1996) Radiation therapy tolerance limits. For one or for all?—Janeway lecture. Cancer 77:2379–2385PubMedCrossRefGoogle Scholar
  4. 4.
    Burnet NG, Johansen J, Turesson I, Nyman J, Peacock JH (1998) Describing patients’ normal tissue reactions: concerning the possibility of individualising radiotherapy dose prescriptions based on potential predictive assays of normal tissue radiosensitivity. Steering Committee of the BioMed2 European Union Concerted Action Programme on the Development of Predictive Tests of Normal Tissue Response to Radiation Therapy. Int J Cancer 79:606–613PubMedCrossRefGoogle Scholar
  5. 5.
    West CM (1995) Invited review: intrinsic radiosensitivity as a predictor of patient response to radiotherapy. Br J Radiol 68:827–837PubMedCrossRefGoogle Scholar
  6. 6.
    Budach W, Classen J, Belka C, Bamberg M (1998) Clinical impact of predictive assays for acute and late radiation morbidity. Strahlenther Onkol 174(suppl 3):20–24PubMedGoogle Scholar
  7. 7.
    Tucker SL, Geara FB, Peters LJ, Brock WA (1996) How much could the radiotherapy dose be altered for individual patients based on a predictive assay of normal-tissue radiosensitivity? Radiother Oncol 38:103–113PubMedCrossRefGoogle Scholar
  8. 8.
    West CM, Davidson SE, Roberts SA, Hunter RD (1997) The independence of intrinsic radiosensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix. Br J Cancer 76:1184–1190PubMedCrossRefGoogle Scholar
  9. 9.
    Girinsky T, Lubin R, Pignon JP, Chavaudra N, Gazeau J, Dubray B, Cosset JM, Socie G, Fertil B (1993) Predictive value of in vitro radiosensitivity parameters in head and neck cancers and cervical carcinomas: preliminary correlations with local control and overall survival. Int J Radiat Oncol Biol Phys 25:3–7PubMedCrossRefGoogle Scholar
  10. 10.
    Olive PL (1998) The role of DNA single- and double-strand breaks in cell killing by ionizing radiation. Radiat Res 150(5 Suppl):S42–S51PubMedCrossRefGoogle Scholar
  11. 11.
    Badie C, Iliakis G, Foray N, Alsbeih G, Pantellias GE, Okayasu R, Cheong N, Russell NS, Begg AC, Arlett CF, Malaise EP (1995) Defective repair of DNA double-strand breaks and chromosome damage in fibroblasts from a radiosensitive leukemia patient. Cancer Res 55:1232–1234PubMedGoogle Scholar
  12. 12.
    Muller WU, Bauch T, Stuben G, Sack H, Streffer C (2001) Radiation sensitivity of lymphocytes from healthy individuals and cancer patients as measured by the comet assay. Radiat Environ Biophys 40:83–89PubMedCrossRefGoogle Scholar
  13. 13.
    Muller WU, Bauch T, Streffer C, von Mallek D (2002) Does radiotherapy affect the outcome of the comet assay? Br J Radiol 75:608–614PubMedGoogle Scholar
  14. 14.
    Borgmann K, Roper B, El-Awady R, Brackrock S, Bigalke M, Dörk T, Alberti W, Dikomey E, Dahm-Daphi J (2002) Indicators of late normal tissue response after radiotherapy for head and neck cancer: fibroblasts, lymphocytes, genetics, DNA repair, and chromosome aberrations. Radiother Oncol 64:141–152PubMedCrossRefGoogle Scholar
  15. 15.
    Marcou Y, D’Andrea A, Jeggo P, Plowman PN (2001) Normal cellular radiosensitivity in an adult Fanconi anaemia patient with marked clinical radiosensitivity. Radiother Oncol 60:75–79PubMedCrossRefGoogle Scholar
  16. 16.
    Kiltie AE, Ryan AJ, Swindell R, Barber JB, West CM, Magee B, Hendry JH (1999) A correlation between residual radiation-induced DNA double-strand breaks in cultured fibroblasts and late radiotherapy reactions in breast cancer patients. Radiother Oncol 51:55–65PubMedCrossRefGoogle Scholar
  17. 17.
    Dickson J, Magee B, Stewart A, West CM (2002) Relationship between residual radiation-induced DNA double-strand breaks in cultured fibroblasts and late radiation reactions: a comparison of training and validation cohorts of breast cancer patients. Radiother Oncol 62:321–326PubMedCrossRefGoogle Scholar
  18. 18.
    El-Awady RA, Mahmoud M, Saleh EM, El-Baky HA, Lotayef M, Dahm-Daphi J, Dikomey E (2005) No correlation between radiosensitivity or double-strand break repair capacity of normal fibroblasts and acute normal tissue reaction after radiotherapy of breast cancer patients. Int J Radiat Biol 81:501–508PubMedCrossRefGoogle Scholar
  19. 19.
    Wojewódzka M, Buraczewska I, Kruszewski M (2002) A modified neutral comet assay: elimination of lysis at high temperature and validation of the assay with anti-single-stranded DNA antibody. Mutat Res 518:9–20PubMedCrossRefGoogle Scholar
  20. 20.
    Mirzayans R, Severin D, Murray D (2006) Relationship between DNA double strand break rejoining and cell survival following exposure to ionizing radiation in human fibroblast strains with differing ATM/p53 status: implications for the evaluation of clinical radiosensitivity. Int J Radiat Oncol Biol Phys 66:1498–1505PubMedCrossRefGoogle Scholar
  21. 21.
    Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double- strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA 100:5057–5062PubMedCrossRefGoogle Scholar
  22. 22.
    Kato TA, Nagasawa H, Weil MM, Genik PC, Little JB, Bedford JS (2006) γ-H2AX foci after low-dose-rate irradiation reveal atm haploinsufficiency in mice. Radiat Res 166:47–54PubMedCrossRefGoogle Scholar
  23. 23.
    Rübe CE, Grudzenski S, Kühne M, Dong X, Rief N, Löbrich M, Rübe C (2008) DNA double-strand break repair of blood lymphocytes and normal tissues analysed in a preclinical mouse model: implications for radiosensitivity testing. Clin Cancer Res 14:6546–6555PubMedCrossRefGoogle Scholar
  24. 24.
    Kato TA, Nagasawa H, Weil MM, Little JB, Bedford JS (2006) Levels of γ-H2AX foci after low-dose-rate irradiation reveal a DNA DSB rejoining defect in cells from human ATM heterozygotes in two at families and in another apparently normal individual. Radiat Res 166:443–453PubMedCrossRefGoogle Scholar
  25. 25.
    Meyn MS (1995) Ataxia-telangiectasia and cellular responses to DNA damage. Cancer Res 55:5991–6001PubMedGoogle Scholar
  26. 26.
    Foray N, Arlett CF, Malaise EP (1997) Radiation-induced DNA double-strand breaks and the radiosensitivity of human cells: a closer look. Biochimie 79:567–575PubMedCrossRefGoogle Scholar
  27. 27.
    Chavaudra N, Bourhis J, Foray N (2004) Quantified relationship between cellular radiosensitivity, DNA repair defects and chromatin relaxation: a study of 19 human tumor cell lines from different origin. Radiother Oncol 73:373–382PubMedCrossRefGoogle Scholar
  28. 28.
    Sak A, Grehl S, Erichsen P, Engelhard M, Grannass A, Levegrün S, Pöttgen C, Groneberg M, Stuschke M (2007) γ-H2AX foci formation in peripheral blood lymphocytes of tumor patients after local radiotherapy to different sites of the body: dependence on the dose-distribution, irradiated site and time from start of treatment. Int J Radiat Biol 83:639–652PubMedCrossRefGoogle Scholar
  29. 29.
    Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM (2000) A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895PubMedCrossRefGoogle Scholar
  30. 30.
    Löbrich M, Shibata A, Beucher A, Fisher A, Ensminger M, Goodarzi AA, Barton O, Jeggo PA (2010) γH2AX foci analysis for monitoring DNA double-strand break repair: strengths, limitations and optimization. Cell Cycle 9:662–669PubMedCrossRefGoogle Scholar
  31. 31.
    Pilch DR, Sedelnikova OA, Redon C, Celeste A, Nussenzweig A, Bonner WM (2003) Characteristics of γ-H2AX foci at DNA double-strand breaks sites. Biochem Cell Biol 81:123–129PubMedCrossRefGoogle Scholar
  32. 32.
    Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, Bartek J, Lukas J (2006) Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 173:195–206PubMedCrossRefGoogle Scholar
  33. 33.
    Raderschall E, Golub EI, Haaf T (1999) Nuclear foci of mammalian recombination proteins are located at single-stranded DNA regions formed after DNA damage. Proc Natl Acad Sci USA 96:1921–1926PubMedCrossRefGoogle Scholar
  34. 34.
    Raderschall E, Bazarov A, Cao J, Lurz R, Smith A, Mann W, Ropers HH, Sedivy JM, Golub EI, Fritz E, Haaf T (2002) Formation of higher-order nuclear Rad51 structures is functionally linked to p21 expression and protection from DNA damage-induced apoptosis. J Cell Sci 115:153–164PubMedGoogle Scholar
  35. 35.
    Liu SK, Olive PL, Bristow RG (2008) Biomarkers for DNA DSB inhibitors and radiotherapy clinical trials. Cancer Metastasis Rev 27:445–458PubMedCrossRefGoogle Scholar
  36. 36.
    Banáth JP, Macphail SH, Olive PL (2004) Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines. Cancer Res 64:7144–7149PubMedCrossRefGoogle Scholar
  37. 37.
    Olive PL, Banáth JP (2004) Phosphorylation of histone H2AX as a measure of radiosensitivity. Int J Radiat Oncol Biol Phys 58:331–335PubMedCrossRefGoogle Scholar
  38. 38.
    Taneja N, Davis M, Choy JS, Beckett MA, Singh R, Kron SJ, Weichselbaum RR (2004) Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy. J Biol Chem 279:2273–2280PubMedCrossRefGoogle Scholar
  39. 39.
    MacPhail SH, Banáth JP, Yu TY, Chu EH, Lambur H, Olive PL (2003) Expression of phosphorylated histone H2AX in cultured cell lines following exposure to X-rays. Int J Radiat Biol 79:351–358PubMedCrossRefGoogle Scholar
  40. 40.
    Klokov D, MacPhail SM, Banáth JP, Byrne JP, Olive PL (2006) Phosphorylated histone H2AX in relation to cell survival in tumor cells and xenografts exposed to single and fractionated doses of X-rays. Radiother Oncol 80:223–229PubMedCrossRefGoogle Scholar
  41. 41.
    Menegakis A, Yaromina A, Eicheler W, Dörfler A, Beuthien-Baumann B, Thames HD, Baumann M, Krause M (2009) Prediction of clonogenic cell survival curves based on the number of residual DNA double strand breaks measured by γH2AX staining. Int J Radiat Biol 85:1032–1041PubMedCrossRefGoogle Scholar
  42. 42.
    Kao J, Milano MT, Javaheri A, Garofalo MC, Chmura SJ, Weichselbaum RR, Kron SJ (2006) γ-H2AX as a therapeutic target for improving the efficacy of radiation therapy. Curr Cancer Drug Targets 6:197–205PubMedCrossRefGoogle Scholar
  43. 43.
    Mahrhofer H, Bürger S, Oppitz U, Flentje M, Djuzenova CS (2006) Radiation induced DNA damage and damage repair in human tumor and fibroblast cell lines assessed by histone H2AX phosphorylation. Int J Radiat Oncol Biol Phys 64:573–580PubMedCrossRefGoogle Scholar
  44. 44.
    Yoshikawa T, Kashino G, Ono K, Watanabe M (2009) Phosphorylated H2AX foci in tumor cells have no correlation with their radiation sensitivities. J Radiat Res 50:151–160PubMedCrossRefGoogle Scholar
  45. 45.
    Porcedda P, Turinetto V, Brusco A, Cavalieri S, Lantelme E, Orlando L, Ricardi U, Amoroso A, Gregori D, Giachino C (2008) A rapid flow cytometry test based on histone H2AX phosphorylation for the sensitive and specific diagnosis of ataxia telangiectasia. Cytometry A 73:508–516PubMedGoogle Scholar
  46. 46.
    Ismail IH, Wadhra TI, Hammarsten O (2007) An optimized method for detecting γ-H2AX in blood cells reveals a significant interindividual variation in the γ-H2AX response among humans. Nucleic Acids Res 35(5):e36PubMedCrossRefGoogle Scholar
  47. 47.
    Hamasaki K, Imai K, Nakachi K, Takahashi N, Kodama Y, Kusunoki Y (2007) Short-term culture and γH2AX flow cytometry determine differences in individual radiosensitivity in human peripheral T lymphocytes. Environ Mol Mutagen 48:38–47PubMedCrossRefGoogle Scholar
  48. 48.
    Bhogal N, Jalali F, Bristow RG (2009) Microscopic imaging of DNA repair foci in irradiated normal tissues. Int J Radiat Biol 85:732–746PubMedCrossRefGoogle Scholar
  49. 49.
    Pospelova TV, Demidenko ZN, Bukreeva EI, Pospelov VA, Gudkov AV, Blagosklonny MV (2009) Pseudo-DNA damage response in senescent cells. Cell Cycle 8:4112–4118PubMedCrossRefGoogle Scholar
  50. 50.
    Sedelnikova OA, Bonner WM (2006) γH2AX in cancer cells: a potential biomarker for cancer diagnostics, prediction and recurrence. Cell Cycle 5:2909–2913PubMedCrossRefGoogle Scholar
  51. 51.
    Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y (2008) γH2AX and cancer. Nat Rev Cancer 8:957–967PubMedCrossRefGoogle Scholar
  52. 52.
    Kinner A, Wu W, Staudt C, Iliakis G (2008) γ-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36:5678–5694PubMedCrossRefGoogle Scholar
  53. 53.
    Qvarnstrom OF, Simonsson M, Johansson KA, Nyman J, Turesson I (2004) DNA double strand break quantification in skin biopsies. Radiother Oncol 72:311–317PubMedCrossRefGoogle Scholar
  54. 54.
    Lobrich M, Rief N, Kuhne M, Heckmann M, Fleckenstein J, Rübe C, Uder M (2005) In vivo formation and repair of DNA double-strand breaks after computed tomography examinations. Proc Natl Acad Sci USA 102:8984–8989PubMedCrossRefGoogle Scholar
  55. 55.
    Rothkamm K, Balroop S, Shekhdar J, Fernie P, Goh V (2007) Leukocyte DNA damage after multi-detector row CT: a quantitative biomarker of low-level radiation exposure. Radiology 242:244–251PubMedCrossRefGoogle Scholar
  56. 56.
    Simonsson M, Qvarnström F, Nyman J, Johansson KA, Garmo H, Turesson I (2008) Low-dose hypersensitive γH2AX response and infrequent apoptosis in epidermis from radiotherapy patients. Radiother Oncol 88:388–397PubMedCrossRefGoogle Scholar
  57. 57.
    Kuefner MA, Grudzenski S, Schwab SA, Wiederseiner M, Heckmann M, Bautz W, Lobrich M, Uder M (2009) DNA double-strand breaks and their repair in blood lymphocytes of patients undergoing angiographic procedures. Invest Radiol 44:440–446PubMedCrossRefGoogle Scholar
  58. 58.
    Olive PL, Banáth JP, Keyes M (2008) Residual γH2AX after irradiation of human lymphocytes and monocytes in vitro and its relation to late effects after prostate brachytherapy. Radiother Oncol 86:336–346PubMedCrossRefGoogle Scholar
  59. 59.
    Werbrouck J, De Ruyck K, Beels L, Vral A, Van Eijkeren M, De Neve W, Thierens H (2010) Prediction of late normal tissue complications in RT treated gynaecological cancer patients: potential of the γ-H2AX foci assay and association with chromosomal radiosensitivity. Oncol Rep 23:571–578PubMedGoogle Scholar
  60. 60.
    Vasireddy RS, Sprung CN, Cempaka NL, Chao M, McKay MJ (2010) H2AX phosphorylation screen of cells from radiosensitive cancer patients reveals a novel DNA double-strand break repair cellular phenotype. Br J Cancer 102:1511–1518PubMedCrossRefGoogle Scholar
  61. 61.
    Pollard JM, Gatti RA (2009) Clinical radiation sensitivity with DNA repair disorders: an overview. Int J Radiat Oncol Biol Phys 74:1323–1331PubMedCrossRefGoogle Scholar
  62. 62.
    Meyn MS (1999) Ataxia-telangiectasia, cancer and the pathobiology of the ATM gene. Clin Genet 55:289–304PubMedCrossRefGoogle Scholar
  63. 63.
    Gatti R (2001) The inherited basis of human radiosensitivity. Acta Oncol 40:702–711PubMedCrossRefGoogle Scholar
  64. 64.
    Girard PM, Foray N, Stumm M (2000) Radiosensitivity in Nijmegen Breakage Syndrome cells is attributable to a repair defect and not cell cycle checkpoint defects. Cancer Res 60:4881–4888PubMedGoogle Scholar
  65. 65.
    Girard PM, Kysela B, Härer CJ, Doherty AJ, Jeggo PA (2004) Analysis of DNA ligase IV mutations found in LIG4 syndrome patients: the impact of two linked polymorphisms. Hum Mol Genet 13:2369–2376PubMedCrossRefGoogle Scholar
  66. 66.
    Hall EJ, Schiff PB, Hanks GE (1998) A preliminary report: frequency of A-T heterozygotes among prostate cancer patients with severe late responses to radiation therapy. Cancer J Sci Am 4:385–389PubMedGoogle Scholar
  67. 67.
    Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696PubMedCrossRefGoogle Scholar
  68. 68.
    Kurz EU, Lees-Miller SP (2004) DNA damage induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amst) 3:889–900PubMedCrossRefGoogle Scholar
  69. 69.
    Almeida KH, Sobol RW (2007) A unified view of base excision repair: lesion-dependent protein complexes regulated by post-translational modification. DNA Repair (Amst) 6:695–711CrossRefGoogle Scholar
  70. 70.
    Hoeijmakers JHJ (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374PubMedCrossRefGoogle Scholar
  71. 71.
    Jilani A, Ramotar D, Slack C, Ong C, Yang XM, Scherer SW, Lasko DD (1999) Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3′-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J Biol Chem 274:24176–24186PubMedCrossRefGoogle Scholar
  72. 72.
    Karimi-Busheri F, Daly G, Robins P, Canas B, Pappin DJ, Sgouros J, Miller GG, Fakhrai H, Davis EM, Le Beau MM, Weinfeld M (1999) Molecular characterization of a human DNA kinase. J Biol Chem 274:24187–24194PubMedCrossRefGoogle Scholar
  73. 73.
    Takahashi T, Tada M, Igarashi S, Koyama A, Date H, Yokoseki A, Shiga A, Yoshida Y, Tsuji S, Nishizawa M, Onodera O (2007) Aprataxin, causative gene product for EAOH/AOA1, repairs DNA single-strand breaks with damaged 3′-phosphate and 3′-phosphoglycolate ends. Nucleic Acids Res 35:3797–3809PubMedCrossRefGoogle Scholar
  74. 74.
    Izumi T, Hazra TK, Boldogh I, Tomkinson AE, Park MS, Ikeda S, Mitra S (2000) Requirement for human AP endonuclease 1 for repair of 3′-blocking damage at DNA single-strand breaks induced by reactive oxygen species. Carcinogenesis 21:1329–1334PubMedCrossRefGoogle Scholar
  75. 75.
    Dianov GL, Sleeth KM, Dianova II, Allinson SL (2003) Repair of abasic sites in DNA. Mutat Res 531:157–163PubMedCrossRefGoogle Scholar
  76. 76.
    Lindahl T (2001) Keynote: past, present, and future aspects of base excision repair. Prog Nucleic Acid Res Mol Biol 68:xvii–xxxPubMedCrossRefGoogle Scholar
  77. 77.
    Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G (1998) XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 18:3563–3571PubMedGoogle Scholar
  78. 78.
    Tomkinson AE, Chen L, Dong Z, Leppard JB, Levin DS, Mackey ZB, Motycka TA (2001) Completion of base excision repair by mammalian DNA ligases. Prog Nucleic Acid Res Mol Biol 68:151–164PubMedCrossRefGoogle Scholar
  79. 79.
    Whitehouse CJ, Taylor RM, Thistlethwaite A, Zhang H, Karimi-Busheri F, Lasko DD, Weinfeld M, Caldecott KW (2001) XRCC1 stimulates human polynucleotide kinase activity at damaged DNA termini and accelerates DNA single-strand break repair. Cell 104:107–117PubMedCrossRefGoogle Scholar
  80. 80.
    Mani RS, Fanta M, Karimi-Busheri F, Silver E, Virgen CA, Caldecott KW, Cass CE, Weinfeld M (2007) XRCC1 stimulates polynucleotide kinase by enhancing its damage discrimination and displacement from DNA repair intermediates. J Biol Chem 282:28004–28013PubMedCrossRefGoogle Scholar
  81. 81.
    Bessho T (1999) Nucleotide excision repair 3′ endonuclease XPG stimulates the activity of base excision repair enzyme thymine glycol DNA glycosylase. Nucleic Acids Res 27:979–983PubMedCrossRefGoogle Scholar
  82. 82.
    Okano S, Lan L, Caldecott KW, Mori T, Yasui A (2003) Spatial and temporal cellular responses to single-strand breaks in human cells. Mol Cell Biol 23:3974–3981PubMedCrossRefGoogle Scholar
  83. 83.
    Satoh MS, Lindahl T (1992) Role of poly(ADP-ribose) formation in DNA repair. Nature 356:356–358PubMedCrossRefGoogle Scholar
  84. 84.
    Woodhouse BC, Dianova II, Parsons JL, Dianov GL (2008) Poly(ADP-ribose) polymerase-1 modulates DNA repair capacity and prevents formation of DNA double strand breaks. DNA Repair (Amst) 7:932–940CrossRefGoogle Scholar
  85. 85.
    Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211PubMedCrossRefGoogle Scholar
  86. 86.
    Kuschel B, Auranen A, McBride S, Novik KL, Antoniou A, Lipscombe JM, Day NE, Easton DF, Ponder BA, Pharoah PD, Dunning A (2002) Variants in DNA double-strand break repair genes and breast cancer susceptibility. Hum Mol Genet 11:1399–1407PubMedCrossRefGoogle Scholar
  87. 87.
    Valerie K, Povirk LF (2003) Regulation and mechanisms of mammalian double-strand break repair. Oncogene 22:5792–5812PubMedCrossRefGoogle Scholar
  88. 88.
    Petrini JH, Stracker TH (2003) The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol 13:458–462PubMedCrossRefGoogle Scholar
  89. 89.
    Shrivastav M, De Haro LP, Nickoloff JA (2008) Regulation of DNA double-strand break repair pathway choice. Cell Res 18:134–147PubMedCrossRefGoogle Scholar
  90. 90.
    Downs JA (2007) Chromatin structure and DNA double-strand break responses in cancer progression and therapy. Oncogene 26:7765–7772PubMedCrossRefGoogle Scholar
  91. 91.
    Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N, Kron SJ, Jackson SP, Côté J (2004) Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16:979–990PubMedCrossRefGoogle Scholar
  92. 92.
    Utley RT, Lacoste N, Jobin-Robitaille O, Allard S, Côté J (2005) Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol Cell Biol 25:8179–8190PubMedCrossRefGoogle Scholar
  93. 93.
    Lieber MR (2008) The mechanism of human nonhomologous DNA end joining. J Biol Chem 283:1–5PubMedCrossRefGoogle Scholar
  94. 94.
    Weterings E, Chen DJ (2008) The endless tale of non-homologous end-joining. Cell Res 18:114–124PubMedCrossRefGoogle Scholar
  95. 95.
    Goedecke W, Eijpe M, Offenberg HH, van Aalderen M, Heyting C (1999) Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat Genet 23:194–198PubMedCrossRefGoogle Scholar
  96. 96.
    Paull TT, Gellert M (2000) A mechanistic basis for Mre11-directed DNA joining at microhomologies. Proc Natl Acad Sci USA 97:6409–6414PubMedCrossRefGoogle Scholar
  97. 97.
    Jeggo PA (1998) Identification of genes involved in repair of DNA double-strand breaks in mammalian cells. Radiat Res 150(5 Suppl):S80–S91PubMedCrossRefGoogle Scholar
  98. 98.
    Koch CA, Agyei R, Galicia S, Metalnikov P, O’Donnell P, Starostine A, Weinfeld M, Durocher D (2004) Xrcc4 physically links DNA end processing by polynucleotide kinase to DNA ligation by DNA ligase IV. EMBO J 23:3874–3885PubMedCrossRefGoogle Scholar
  99. 99.
    Jeggo PA, Lobrich M (2005) Artemis links ATM to double strand break rejoining. Cell Cycle 4:359–862PubMedCrossRefGoogle Scholar
  100. 100.
    Ruscetti T, Lehnert BE, Halbrook J, Le Trong H, Hoekstra MF, Chen DJ, Peterson SR (1998) Stimulation of the DNA-dependent protein kinase by poly(ADP-ribose) polymerase. J Biol Chem 273:14461–14467PubMedCrossRefGoogle Scholar
  101. 101.
    Li X, Heyer WD (2008) Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 18:99–113PubMedCrossRefGoogle Scholar
  102. 102.
    Zhang J, Powell SN (2005) The role of the BRCA1 tumor suppressor in DNA double-strand break repair. Mol Cancer Res 3:531–539PubMedCrossRefGoogle Scholar
  103. 103.
    Zhuang J, Zhang J, Willers H, Wang H, Chung JH, van Gent DC, Hallahan DE, Powell SN, Xia F (2006) Checkpoint kinase 2-mediated phosphorylation of BRCA1 regulates the fidelity of nonhomologous end-joining. Cancer Res 66:1401–1408PubMedCrossRefGoogle Scholar
  104. 104.
    Baumann P, Benson FE, West SC (1996) Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87:757–766PubMedCrossRefGoogle Scholar
  105. 105.
    Benson FE, Baumann P, West SC (1998) Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature 391:401–404PubMedCrossRefGoogle Scholar
  106. 106.
    McIlwraith MJ, Van Dyck E, Masson JY, Stasiak AZ, Stasiak A, West SC (2000) Reconstitution of the strand invasion step of double-strand break repair using human Rad51 Rad52 and RPA proteins. J Mol Biol 304:151–164PubMedCrossRefGoogle Scholar
  107. 107.
    Chen G, Yuan SS, Liu W, Xu Y, Trujillo K, Song B, Cong F, Goff SP, Wu Y, Arlinghaus R, Baltimore D, Gasser PJ, Park MS, Sung P, Lee EY (1999) Radiation-induced assembly of Rad51 and Rad52 recombination complex requires ATM and c-Abl. J Biol Chem 274:12748–12752PubMedCrossRefGoogle Scholar
  108. 108.
    Kingston RE, Bunker CA, Imbalzano AN (1996) Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev 10:905–920PubMedCrossRefGoogle Scholar
  109. 109.
    Swagemakers SM, Essers J, de Wit J, Hoeijmakers JH, Kanaar R (1998) The human RAD54 recombinational DNA repair protein is a double-stranded DNA-dependent ATPase. J Biol Chem 273:28292–28297PubMedCrossRefGoogle Scholar
  110. 110.
    McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, Giavara S, O’Connor MJ, Tutt AN, Zdzienicka MZ, Smith GC, Ashworth A (2006) Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res 66:8109–8115PubMedCrossRefGoogle Scholar
  111. 111.
    Chen Y, Lee WH, Chew HK (1999) Emerging roles of BRCA1 in transcriptional regulation and DNA repair. J Cell Physiol 181:385–392PubMedCrossRefGoogle Scholar
  112. 112.
    Rassool FV, Tomkinson AE (2010) Targeting abnormal DNA double strand break repair in cancer. Cell Mol Life Sci 67:3699–3710, Epub ahead of printPubMedCrossRefGoogle Scholar
  113. 113.
    Nagaraju G, Scully R (2007) Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks. DNA Repair (Amst) 6:1018–1031CrossRefGoogle Scholar
  114. 114.
    Eriksson D, Stigbrand T (2010) Radiation-induced cell death mechanisms. Tumour Biol 31:363–372PubMedCrossRefGoogle Scholar
  115. 115.
    Hait WN, Jin S, Yang JM (2006) A matter of life or death (or both): understanding autophagy in cancer. Clin Cancer Res 12:1961–1965PubMedCrossRefGoogle Scholar
  116. 116.
    Ito H, Daido S, Kanzawa T, Kondo S, Kondo Y (2005) Radiation-induced autophagy is associated with LC3 and its inhibition sensitizes malignant glioma cells. Int J Oncol 26:1401–1410PubMedGoogle Scholar
  117. 117.
    Paglin S, Yahalom J (2006) Pathways that regulate autophagy and their role in mediating tumor response to treatment. Autophagy 2:291–293PubMedGoogle Scholar
  118. 118.
    Williams RS, Dodson GE, Limbo O, Yamada Y, Williams JS, Guenther G, Classen S, Glover JN, Iwasaki H, Russell P, Tainer JA (2009) Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139:87–99PubMedCrossRefGoogle Scholar
  119. 119.
    Altmannova V, Eckert-Boulet N, Arneric M, Kolesar P, Chaloupkova R, Damborsky J, Sung P, Zhao X, Lisby M, Krejci L (2010) Rad52 SUMOylation affects the efficiency of the DNA repair. Nucleic Acids Res 38:4708–4721PubMedCrossRefGoogle Scholar
  120. 120.
    Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166PubMedCrossRefGoogle Scholar
  121. 121.
    Shiloh Y (2003) ATM: ready, set, go. Cell Cycle 2:116–117PubMedCrossRefGoogle Scholar
  122. 122.
    Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506PubMedCrossRefGoogle Scholar
  123. 123.
    Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y (2003) Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22:5612–5621PubMedCrossRefGoogle Scholar
  124. 124.
    Lee JH, Paull TT (2004) Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science 304:93–96PubMedCrossRefGoogle Scholar
  125. 125.
    Sun Y, Jiang X, Chen S, Fernandes N, Price BD (2005) A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Proc Natl Acad Sci USA 102:13182–13187PubMedCrossRefGoogle Scholar
  126. 126.
    Niida H, Nakanishi M (2006) DNA damage checkpoints in mammals. Mutagenesis 21:3–9PubMedCrossRefGoogle Scholar
  127. 127.
    Bartek J, Lukas J (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3:421–429PubMedCrossRefGoogle Scholar
  128. 128.
    Kastan MB, Lim DS, Kim ST, Yang D (2001) ATM–a key determinant of multiple cellular responses to irradiation. Acta Oncol 40:686–688PubMedCrossRefGoogle Scholar
  129. 129.
    Sengupta S, Harris CC (2005) p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 6:44–55PubMedCrossRefGoogle Scholar
  130. 130.
    Appella E, Anderson CW (2001) Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772PubMedCrossRefGoogle Scholar
  131. 131.
    Brooks CL, Gu W (2003) Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation. Curr Opin Cell Biol 15:164–171PubMedCrossRefGoogle Scholar
  132. 132.
    Murray D, Mirzayans R (2007) Role of p53 in the repair of ionizing radiation-induced DNA damage. In: Landseer BR (ed) New research on DNA repair. Nova, Hauppauge, New York, pp 325–373Google Scholar
  133. 133.
    Willis N, Rhind N (2009) Regulation of DNA replication by the S-phase DNA damage checkpoint. Cell Div 4:13PubMedCrossRefGoogle Scholar
  134. 134.
    Taylor WR, Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20:1803–1815PubMedCrossRefGoogle Scholar
  135. 135.
    Xu B, Kim ST, Lim DS, Kastan MB (2002) Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol 22:1049–1059PubMedCrossRefGoogle Scholar
  136. 136.
    Vangestel C, Van de Wiele C, Mees G, Peeters M (2009) Forcing cancer cells to commit suicide. Cancer Biother Radiopharm 24:395–407PubMedCrossRefGoogle Scholar
  137. 137.
    Jin Z, El-Deiry WS (2005) Overview of cell death signaling pathways. Cancer Biol Ther 4:139–163PubMedCrossRefGoogle Scholar
  138. 138.
    Kolesnick R, Fuks Z (2003) Radiation and ceramide-induced apoptosis. Oncogene 22:5897–5906PubMedCrossRefGoogle Scholar
  139. 139.
    Corre I, Niaudet C, Paris F (2010) Plasma membrane signaling induced by ionizing radiation. Mutat Res 704:61–67PubMedCrossRefGoogle Scholar
  140. 140.
    Suzuki M, Boothman DA (2008) Stress-induced premature senescence (SIPS)—influence of SIPS on radiotherapy. J Radiat Res 49:105–112PubMedCrossRefGoogle Scholar
  141. 141.
    Mirzayans R, Scott A, Cameron M, Murray D (2005) Induction of accelerated senescence by γ radiation in human solid tumor-derived cell lines expressing wild-type TP53. Radiat Res 163:53–62PubMedCrossRefGoogle Scholar
  142. 142.
    Gewirtz DA, Holt SE, Elmore LW (2008) Accelerated senescence: an emerging role in tumor cell response to chemotherapy and radiation. Biochem Pharmacol 76:947–957PubMedCrossRefGoogle Scholar
  143. 143.
    Mirzayans R, Murray D (2007) Cellular senescence: implications for cancer therapy. In: Garvey RB (ed) New research on cell aging. Nova Science Publishers, Inc., Hauppauge, New York, pp 1–64Google Scholar
  144. 144.
    Roninson IB, Broude EV, Chang BD (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist Updat 4:303–313PubMedCrossRefGoogle Scholar
  145. 145.
    Jonathan EC, Bernhard EJ, McKenna WG (1999) How does radiation kill cells? Curr Opin Chem Biol 3:77–83PubMedCrossRefGoogle Scholar
  146. 146.
    Brown JM, Wouters BG (2001) Apoptosis: mediator or mode of cell killing by anticancer agents? Drug Resist Updat 4:135–135PubMedCrossRefGoogle Scholar
  147. 147.
    Daido S, Yamamoto A, Fujiwara K, Sawaya R, Kondo S, Kondo Y (2005) Inhibition of the DNA-dependent protein kinase catalytic subunit radiosensitizes malignant glioma cells by inducing autophagy. Cancer Res 65:4368–4375PubMedCrossRefGoogle Scholar
  148. 148.
    Schmidt-Ullrich RK, Dent P, Grant S (2000) Signal transduction and cellular radiation responses. Radiat Res 153:245–257PubMedCrossRefGoogle Scholar
  149. 149.
    Herring CJ, West CM, Wilks DP, Davidson SE, Hunter RD, Berry P, Forster G, MacKinnon J, Rafferty JA, Elder RH, Hendry JH, Margison GP (1998) Levels of the DNA repair enzyme human apurinic/apyrimidinic endonuclease (APE1, APEX, Ref-1) are associated with the intrinsic radiosensitivity of cervical cancers. Br J Cancer 78:1128–1133PubMedCrossRefGoogle Scholar
  150. 150.
    Koukourakis MI, Giatromanolaki A, Kakolyris S, Sivridis E, Georgoulias V, Funtzilas G, Hickson ID, Gatter KC, Harris AL (2001) Nuclear expression of human apurinic/apyrimidinic endonuclease (HAP1/Ref-1) in head-and-neck cancer is associated with resistance to chemoradiotherapy and poor outcome. Int J Radiat Oncol Biol Phys 50:27–36PubMedCrossRefGoogle Scholar
  151. 151.
    Bobola MS, Blank A, Berger MS, Stevens BA, Silber JR (2001) Apurinic/apyrimidinic endonuclease activity is elevated in human adult gliomas. Clin Cancer Res 7:3510–3518PubMedGoogle Scholar
  152. 152.
    Bobola MS, Emond MJ, Blank A, Meade EH, Kolstoe DD, Berger MS, Rostomily RC, Silbergeld DL, Spence AM, Silber JR (2004) Apurinic endonuclease activity in adult gliomas and time to tumor progression after alkylating agent-based chemotherapy and after radiotherapy. Clin Cancer Res 10:7875–7883PubMedCrossRefGoogle Scholar
  153. 153.
    Bobola MS, Finn LS, Ellenbogen RG, Geyer JR, Berger MS, Braga JM, Meade EH, Gross ME, Silber JR (2005) Apurinic/apyrimidinic endonuclease activity is associated with response to radiation and chemotherapy in medulloblastoma and primitive neuroectodermal tumors. Clin Cancer Res 11:7405–7414PubMedCrossRefGoogle Scholar
  154. 154.
    Robertson KA, Bullock HA, Xu Y, Tritt R, Zimmerman E, Ulbright TM, Foster RS, Einhorn LH, Kelley MR (2001) Altered expression of Ape1/ref-1 in germ cell tumors and overexpression in NT2 cells confers resistance to bleomycin and radiation. Cancer Res 61:2220–2225PubMedGoogle Scholar
  155. 155.
    Kelley MR, Cheng L, Foster R, Tritt R, Jiang J, Broshears J, Koch M (2001) Elevated and altered expression of the multifunctional DNA base excision repair and redox enzyme Ape1/ref-1 in prostate cancer. Clin Cancer Res 7:824–830PubMedGoogle Scholar
  156. 156.
    Skvortsova I, Skvortsov S, Stasyk T, Raju U, Popper BA, Schiestl B, von Guggenberg E, Neher A, Bonn GK, Huber LA, Lukas P (2008) Intracellular signaling pathways regulating radioresistance of human prostate carcinoma cells. Proteomics 8:4521–4533PubMedCrossRefGoogle Scholar
  157. 157.
    Qing Y, Wang D, Lei X, Xiang DB, Li MX, Li ZP, Shan JL (2009) The expression of APE1 and its correlation with prognostic significance after 252Cf radiotherapy in cervical cancer. Sichuan Da Xue Xue Bao Yi Xue Ban 40:125–128PubMedGoogle Scholar
  158. 158.
    Wang D, Luo M, Kelley MR (2004) Human apurinic endonuclease 1 (APE1) expression and prognostic significance in osteosarcoma: enhanced sensitivity of osteosarcoma to DNA damaging agents using silencing RNA APE1 expression inhibition. Mol Cancer Ther 3:679–686PubMedCrossRefGoogle Scholar
  159. 159.
    Li D, Li Y, Jiao L, Chang DZ, Beinart G, Wolff RA, Evans DB, Hassan MM, Abbruzzese JL (2007) Effects of base excision repair gene polymorphisms on pancreatic cancer survival. Int J Cancer 120:1748–1754PubMedCrossRefGoogle Scholar
  160. 160.
    Al-Attar A, Gossage L, Fareed KR, Shehata M, Mohammed M, Zaitoun AM, Soomro I, Lobo DN, Abbotts R, Chan S, Madhusudan S (2010) Human apurinic/apyrimidinic endonuclease (APE1) is a prognostic factor in ovarian, gastro-oesophageal and pancreatico-biliary cancers. Br J Cancer 102:704–709PubMedCrossRefGoogle Scholar
  161. 161.
    Herring CJ, Deans B, Elder RH, Rafferty JA, MacKinnon J, Barzilay G, Hickson ID, Hendry JH, Margison GP (1999) Expression levels of the DNA repair enzyme HAP1 do not correlate with the radiosensitivities of human or HAP1-transfected rat cell lines. Br J Cancer 80:940–945PubMedCrossRefGoogle Scholar
  162. 162.
    Schindl M, Oberhuber G, Pichlbauer EG, Obermair A, Birner P, Kelley MR (2001) DNA repair-redox enzyme apurinic endonuclease in cervical cancer: evaluation of redox control of HIF-1α and prognostic significance. Int J Oncol 19:799–802PubMedGoogle Scholar
  163. 163.
    Sak SC, Harnden P, Johnston CF, Paul AB, Kiltie AE (2005) APE1 and XRCC1 protein expression levels predict cancer-specific survival following radical radiotherapy in bladder cancer. Clin Cancer Res 11:6205–6211PubMedCrossRefGoogle Scholar
  164. 164.
    Tell G, Quadrifoglio F, Tiribelli C, Kelley MR (2009) The many functions of APE1/Ref-1: not only a DNA repair enzyme. Antioxid Redox Signal 11:601–620PubMedCrossRefGoogle Scholar
  165. 165.
    Di Maso V, Avellini C, Crocè LS, Rosso N, Quadrifoglio F, Cesaratto L, Codarin E, Bedogni G, Beltrami CA, Tell G, Tiribelli C (2007) Subcellular localization of APE1/Ref-1 in human hepatocellular carcinoma: possible prognostic significance. Mol Med 13:89–96PubMedGoogle Scholar
  166. 166.
    Dunphy EJ, Beckett MA, Thompson LH, Weichselbaum RR (1992) Expression of the polymorphic human DNA repair gene XRCC1 does not correlate with radiosensitivity in the cells of human head and neck tumor cell lines. Radiat Res 130:166–170PubMedCrossRefGoogle Scholar
  167. 167.
    Polischouk AG, Cedervall B, Ljungquist S, Flygare J, Hellgren D, Grénman R, Lewensohn R (1999) DNA double-strand break repair, DNA-PK, and DNA ligases in two human squamous carcinoma cell lines with different radiosensitivity. Int J Radiat Oncol Biol Phys 43:191–198PubMedCrossRefGoogle Scholar
  168. 168.
    Zhao HJ, Hosoi Y, Miyachi H, Ishii K, Yoshida M, Nemoto K, Takai Y, Yamada S, Suzuki N, Ono T (2000) DNA-dependent protein kinase activity correlates with Ku70 expression and radiation sensitivity in esophageal cancer cell lines. Clin Cancer Res 6:1073–1078PubMedGoogle Scholar
  169. 169.
    Sirzen F, Nilsson A, Zhivotovsky B, Lewensohn R (1999) DNA-dependent protein kinase content and activity in lung carcinoma cell lines: correlation with intrinsic radiosensitivity. Eur J Cancer 35:111–116PubMedCrossRefGoogle Scholar
  170. 170.
    Hansen LT, Lundin C, Helleday T, Poulsen HS, Sørensen CS, Petersen LN, Spang-Thomsen M (2003) DNA repair rate and etoposide (VP16) resistance of tumor cell subpopulations derived from a single human small cell lung cancer. Lung Cancer 40:157–164PubMedCrossRefGoogle Scholar
  171. 171.
    Allalunis-Turner MJ, Lintott LG, Barron GM, Day RS, Lees-Miller SP (1995) Lack of correlation between DNA-dependent protein kinase activity and tumor cell radiosensitivity. Cancer Res 55:5200–5202PubMedGoogle Scholar
  172. 172.
    Bjork-Eriksson T, West C, Nilsson A, Magnusson B, Svensson M, Karlsson E, Slevin N, Lewensohn R, Mercke C (1999) The immunohistochemical expression of DNA-PKcs and Ku (p70/p80) in head and neck cancers: relationships with radiosensitivity. Int J Radiat Oncol Biol Phys 45:1005–1010PubMedCrossRefGoogle Scholar
  173. 173.
    Komuro Y, Watanabe T, Hosoi Y, Matsumoto Y, Nakagawa K, Tsuno N, Kazama S, Kitayama J, Suzuki N, Nagawa H (2002) The expression pattern of Ku correlates with tumor radiosensitivity and disease free survival in patients with rectal carcinoma. Cancer 95:1199–1205PubMedCrossRefGoogle Scholar
  174. 174.
    Komuro Y, Watanabe T, Hosoi Y, Matsumoto Y, Nakagawa K, Saito S, Ishihara S, Kazama S, Tsuno N, Kitayama J, Suzuki N, Tsurita G, Muto T, Nagawa H (2003) Prediction of tumor radiosensitivity in rectal carcinoma based on p53 and Ku70 expression. J Exp Clin Cancer Res 22:223–228PubMedGoogle Scholar
  175. 175.
    Komuro Y, Watanabe T, Hosoi Y, Matsumoto Y, Nakagawa K, Suzuki N, Nagawa H (2005) Prognostic significance of Ku70 protein expression in patients with advanced colorectal cancer. Hepatogastroenterology 52:995–998PubMedGoogle Scholar
  176. 176.
    Komuro Y, Watanabe T, Tsurita G, Muto T, Nagawa H (2005) Evaluating the combination of molecular prognostic factors in tumor radiosensitivity in rectal cancer. Hepatogastroenterology 52:666–671PubMedGoogle Scholar
  177. 177.
    Sakata K, Matsumoto Y, Satoh M, Oouchi A, Nagakura H, Koito K, Hosoi Y, Hareyama M, Suzuki N (2001) Clinical studies of immunohistochemical staining of DNA-dependent protein kinase in oropharyngeal and hypopharyngeal carcinomas. Radiat Med 19:93–97PubMedGoogle Scholar
  178. 178.
    Lee SW, Cho KJ, Park JH, Kim SY, Nam SY, Lee BJ, Kim SB, Choi SH, Kim JH, Ahn SD, Shin SS, Choi EK, Yu E (2005) Expressions of Ku70 and DNA-PKcs as prognostic indicators of local control in nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 62:1451–1457PubMedCrossRefGoogle Scholar
  179. 179.
    Yan SS, Liu L, Liu ZG, Zeng MS, Song LB, Xia YF (2008) Expression and clinical significance of DNA-PKcs in nasopharyngeal carcinoma. Ai Zheng 27:979–983PubMedGoogle Scholar
  180. 180.
    Saygili U, Gorkay IB, Koyuncuoglu M, Gol M, Uslu T, Erten O (2004) The relationship between expression of Ku70 and survival in irradiated patients with endometrial carcinoma. Gynecol Oncol 95:518–522PubMedCrossRefGoogle Scholar
  181. 181.
    Xing J, Wu X, Vaporciyan AA, Spitz MR, Gu J (2008) Prognostic significance of ataxia-telangiectasia mutated, DNA-dependent protein kinase catalytic subunit, and Ku heterodimeric regulatory complex 86-kD subunit expression in patients with nonsmall cell lung cancer. Cancer 112:2756–2764PubMedCrossRefGoogle Scholar
  182. 182.
    Shintani S, Mihara M, Li C, Nakahara Y, Hino S, Nakashiro K, Hamakawa H (2003) Up-regulation of DNA-dependent protein kinase correlates with radiation resistance in oral squamous cell carcinoma. Cancer Sci 94:894–900PubMedCrossRefGoogle Scholar
  183. 183.
    Sakata K, Matsumoto Y, Tauchi H, Satoh M, Oouchi A, Nagakura H, Koito K, Hosoi Y, Suzuki N, Komatsu K, Hareyama M (2001) Expression of genes involved in repair of DNA double-strand breaks in normal and tumor tissues. Int J Radiat Oncol Biol Phys 49:161–167PubMedCrossRefGoogle Scholar
  184. 184.
    Sakata K, Someya M, Matsumoto Y, Hareyama M (2007) Ability to repair DNA double-strand breaks related to cancer susceptibility and radiosensitivity. Radiat Med 25:433–438PubMedCrossRefGoogle Scholar
  185. 185.
    Noguchi T, Shibata T, Fumoto S, Uchida Y, Mueller W, Takeno S (2002) DNA-PKcs expression in esophageal cancer as a predictor for chemoradiation therapeutic sensitivity. Ann Surg Oncol 9:1017–1022PubMedCrossRefGoogle Scholar
  186. 186.
    Friesland S, Kanter-Lewensohn L, Tell R, Munck-Wikland E, Lewensohn R, Nilsson A (2003) Expression of Ku86 confers favorable outcome of tonsillar carcinoma treated with radiotherapy. Head Neck 25:313–321PubMedCrossRefGoogle Scholar
  187. 187.
    Pavón MA, Parreño M, León X, Sancho FJ, Céspedes MV, Casanova I, Lopez-Pousa A, Mangues MA, Quer M, Barnadas A, Mangues R (2008) Ku70 predicts response and primary tumor recurrence after therapy in locally advanced head and neck cancer. Int J Cancer 123:1068–1079PubMedCrossRefGoogle Scholar
  188. 188.
    Wilson CR, Davidson SE, Margison GP, Jackson SP, Hendry JH, West CM (2000) Expression of Ku70 correlates with survival in carcinoma of the cervix. Br J Cancer 83:1702–1706PubMedCrossRefGoogle Scholar
  189. 189.
    Harima Y, Sawada S, Miyazaki Y, Kin K, Ishihara H, Imamura M, Sougawa M, Shikata N, Ohnishi T (2003) Expression of Ku80 in cervical cancer correlates with response to radiotherapy and survival. Am J Clin Oncol 26:e80–e85PubMedGoogle Scholar
  190. 190.
    Beskow C, Kanter L, Holgersson A, Nilsson B, Frankendal B, Avall-Lundqvist E, Lewensohn R (2006) Expression of DNA damage response proteins and complete remission after radiotherapy of stage IB-IIA of cervical cancer. Br J Cancer 94:1683–1689PubMedGoogle Scholar
  191. 191.
    Beskow C, Skikuniene J, Holgersson A, Nilsson B, Lewensohn R, Kanter L, Viktorsson K (2009) Radioresistant cervical cancer shows upregulation of the NHEJ proteins DNA-PKcs, Ku70 and Ku86. Br J Cancer 101:816–821PubMedCrossRefGoogle Scholar
  192. 192.
    Carlomagno F, Burnet NG, Turesson I, Nyman J, Peacock JH, Dunning AM, Ponder BA, Jackson SP (2000) Comparison of DNA repair protein expression and activities between human fibroblast cell lines with different radiosensitivities. Int J Cancer 85:845–849PubMedCrossRefGoogle Scholar
  193. 193.
    Loong SL, Korzh S, Price A (2004) Reduced DNA-dependent protein kinase activity in two cell lines derived from adult cancer patients with late radionecrosis. Oncogene 23:5562–5566PubMedCrossRefGoogle Scholar
  194. 194.
    Xia F, Powell SN (2002) The molecular basis of radiosensitivity and chemosensitivity in the treatment of breast cancer. Semin Radiat Oncol 12:296–304PubMedCrossRefGoogle Scholar
  195. 195.
    Turesson I, Nyman J, Holmberg E, Odén A (1996) Prognostic factors for acute and late skin reactions in radiotherapy patients. Int J Radiat Oncol Biol Phys 36:1065–1075PubMedCrossRefGoogle Scholar
  196. 196.
    Andreassen CN, Alsner J, Overgaard J (2002) Does variability in normal tissue reactions after radiotherapy have a genetic basis—where and how to look for it? Radiother Oncol 64:131–140PubMedCrossRefGoogle Scholar
  197. 197.
    Brookes AJ (1999) The essence of SNPs. Gene 234:177–186PubMedCrossRefGoogle Scholar
  198. 198.
    Stoneking M (2001) Single nucleotide polymorphisms. From the evolutionary past. Nature 409:821–822PubMedCrossRefGoogle Scholar
  199. 199.
    Andreassen CN (2005) Can risk of radiotherapy-induced normal tissue complications be predicted from genetic profiles? Acta Oncol 44:801–815PubMedCrossRefGoogle Scholar
  200. 200.
    Barnett GC, West CM, Dunning AM, Elliott RM, Coles CE, Pharoah PD, Burnet NG (2009) Normal tissue reactions to radiotherapy: towards tailoring treatment dose by genotype. Nat Rev Cancer 9:134–142PubMedCrossRefGoogle Scholar
  201. 201.
    Popanda O, Marquardt JU, Chang-Claude J, Schmezer P (2009) Genetic variation in normal tissue toxicity induced by ionizing radiation. Mutat Res 667:58–69PubMedCrossRefGoogle Scholar
  202. 202.
    Andreassen CN, Alsner J (2009) Genetic variants and normal tissue toxicity after radiotherapy: a systematic review. Radiother Oncol 92:299–309PubMedCrossRefGoogle Scholar
  203. 203.
    Alsner J, Andreassen CN, Overgaard J (2008) Genetic markers for prediction of normal tissue toxicity after radiotherapy. Semin Radiat Oncol 18:126–135PubMedCrossRefGoogle Scholar
  204. 204.
    Parliament MB, Murray D (2010) Single nucleotide polymorphisms of DNA repair genes as predictors of radioresponse. Semin Radiat Oncol 20:232–240PubMedCrossRefGoogle Scholar
  205. 205.
    Fernet M, Hall J (2004) Genetic biomarkers of therapeutic radiation sensitivity. DNA Repair (Amst) 3:1237–1243CrossRefGoogle Scholar
  206. 206.
    Mohrenweiser H, Jones I (1998) Variation in DNA repair is a factor in cancer susceptibility: a paradigm for the promises and perils of individual and population risk estimation? Mutat Res 400:15–24PubMedCrossRefGoogle Scholar
  207. 207.
    Shen R, Jones I, Mohrenweiser H (1998) Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res 58:604–608PubMedGoogle Scholar
  208. 208.
    Mohrenweiser HW, Xi T, Vazquez-Matias J, Jones IM (2002) Identification of 127 amino acid substitution variants in screening 37 DNA repair genes in humans. Cancer Epidemiol Biomark Prev 11:1054–1064Google Scholar
  209. 209.
    Goode EL, Ulrich CM, Potter JD (2002) Polymorphisms in DNA repair genes and associations with cancer risk. Cancer Epidemiol Biomark Prev 11:1513–1530Google Scholar
  210. 210.
    Yin M, Tan D, Wei Q (2009) Genetic variants of the XRCC1 gene and susceptibility to esophageal cancer: a meta-analysis. Int J Clin Exp Med 2:26–35PubMedGoogle Scholar
  211. 211.
    Cornetta T, Festa F, Testa A, Cozzi R (2006) DNA damage repair and genetic polymorphisms: assessment of individual sensitivity and repair capacity. Int J Radiat Oncol Biol Phys 66:537–545PubMedCrossRefGoogle Scholar
  212. 212.
    Bishop D, Ear U, Bhattacharyya A, Calderone C, Beckett M, Weichselbaum R (1998) XRCC3 is required for assembly of Rad51 complexes in vivo. J Biol Chem 273:21482–21488PubMedCrossRefGoogle Scholar
  213. 213.
    Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229PubMedCrossRefGoogle Scholar
  214. 214.
    Bentzen SM (2008) From cellular to high-throughput predictive assays in radiation oncology: challenges and opportunities. Semin Radiat Oncol 18:75–88PubMedCrossRefGoogle Scholar
  215. 215.
    Moullan N, Cox DG, Angèle S, Romestaing P, Gérard JP, Hall J (2003) Polymorphisms in the DNA repair gene XRCC1, breast cancer risk, and response to radiotherapy. Cancer Epidemiol Biomark Prev 12:1168–1174Google Scholar
  216. 216.
    Hu JJ, Smith TR, Miller MS, Mohrenweiser HW, Golden A, Case LD (2001) Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity. Carcinogenesis 22:917–922PubMedCrossRefGoogle Scholar
  217. 217.
    Rogers PB, Plowman PN, Harris SJ, Arlett CF (2000) Four radiation hypersensitivity cases and their implications for clinical radiotherapy. Radiother Oncol 57:143–154PubMedCrossRefGoogle Scholar
  218. 218.
    Andreassen CN, Alsner J, Overgaard M, Overgaard J (2003) Prediction of normal tissue radiosensitivity from polymorphisms in candidate genes. Radiother Oncol 69:127–135PubMedCrossRefGoogle Scholar
  219. 219.
    Andreassen CN, Alsner J, Overgaard M, Sørensen FB, Overgaard J (2006) Risk of radiation-induced subcutaneous fibrosis in relation to single nucleotide polymorphisms in TGFB1, SOD2, XRCC1, XRCC3, APEX and ATM–a study based on DNA from formalin fixed paraffin embedded tissue samples. Int J Radiat Biol 82:577–586PubMedCrossRefGoogle Scholar
  220. 220.
    Giotopoulos G, Symonds RP, Foweraker K, Griffin M, Peat I, Osman A, Plumb M (2007) The late radiotherapy normal tissue injury phenotypes of telangiectasia, fibrosis and atrophy in breast cancer patients have distinct genotype-dependent causes. Br J Cancer 96:1001–1007PubMedCrossRefGoogle Scholar
  221. 221.
    Chang-Claude J, Popanda O, Tan XL, Kropp S, Helmbold I, von Fournier D, Haase W, Sautter-Bihl ML, Wenz F, Schmezer P, Ambrosone CB (2005) Association between polymorphisms in the DNA repair genes, XRCC1, APE1, and XPD and acute side effects of radiotherapy in breast cancer patients. Clin Cancer Res 11:4802–4809PubMedCrossRefGoogle Scholar
  222. 222.
    Popanda O, Tan XL, Ambrosone CB, Kropp S, Helmbold I, von Fournier D, Haase W, Sautter-Bihl ML, Wenz F, Schmezer P, Chang-Claude J (2006) Genetic polymorphisms in the DNA double-strand break repair genes XRCC3, XRCC2, and NBS1 are not associated with acute side effects of radiotherapy in breast cancer patients. Cancer Epidemiol Biomark Prev 15:1048–1050CrossRefGoogle Scholar
  223. 223.
    Brem R, Cox DG, Chapot B, Moullan N, Romestaing P, Gérard JP, Pisani P, Hall J (2006) The XRCC1–77 T->C variant: haplotypes, breast cancer risk, response to radiotherapy and the cellular response to DNA damage. Carcinogenesis 27:2469–2474PubMedCrossRefGoogle Scholar
  224. 224.
    Hao B, Miao X, Li Y, Zhang X, Sun T, Liang G, Zhao Y, Zhou Y, Wang H, Chen X, Zhang L, Tan W, Wei Q, Lin D, He F (2006) A novel T-77C polymorphism in DNA repair gene XRCC1 contributes to diminished promoter activity and increased risk of non-small cell lung cancer. Oncogene 25:3613–3620PubMedCrossRefGoogle Scholar
  225. 225.
    Angèle S, Romestaing P, Moullan N, Vuillaume M, Chapot B, Friesen M, Jongmans W, Cox DG, Pisani P, Gérard JP, Hall J (2003) ATM haplotypes and cellular response to DNA damage: association with breast cancer risk and clinical radiosensitivity. Cancer Res 63:8717–8725PubMedGoogle Scholar
  226. 226.
    Chang-Claude J, Ambrosone CB, Lilla C, Kropp S, Helmbold I, von Fournier D, Haase W, Sautter-Bihl ML, Wenz F, Schmezer P, Popanda O (2009) Genetic polymorphisms in DNA repair and damage response genes and late normal tissue complications of radiotherapy for breast cancer. Br J Cancer 100:1680–1686PubMedCrossRefGoogle Scholar
  227. 227.
    Zschenker O, Raabe A, Boeckelmann IK, Borstelmann S, Szymczak S, Wellek S, Rades D, Hoeller U, Ziegler A, Dikomey E, Borgmann K (2010) Association of single nucleotide polymorphisms in ATM, GSTP1, SOD2, TGFB1, XPD and XRCC1 with clinical and cellular radiosensitivity. Radiother Oncol 97:26–32PubMedCrossRefGoogle Scholar
  228. 228.
    Sterpone S, Cornetta T, Padua L, Mastellone V, Giammarino D, Testa A, Tirindelli D, Cozzi R, Donato V (2010) DNA repair capacity and acute radiotherapy adverse effects in Italian breast cancer patients. Mutat Res 684:43–48PubMedCrossRefGoogle Scholar
  229. 229.
    Mangoni M, Bisanzi S, Carozzi F, Sani C, Biti G, Livi L, Barletta E, Costantini AS, Gorini G (2010) Association between genetic polymorphisms in the XRCC1, XRCC3, XPD, GSTM1, GSTT1, MSH2, MLH1, MSH3, and MGMT genes and radiosensitivity in breast cancer patients. Int J Radiat Oncol Biol Phys 81:52–58, Epub ahead of printPubMedCrossRefGoogle Scholar
  230. 230.
    Suga T, Ishikawa A, Kohda M, Otsuka Y, Yamada S, Yamamoto N, Shibamoto Y, Ogawa Y, Nomura K, Sho K, Omura M, Sekiguchi K, Kikuchi Y, Michikawa Y, Noda S, Sagara M, Ohashi J, Yoshinaga S, Mizoe J, Tsujii H, Iwakawa M, Imai T (2007) Haplotype-based analysis of genes associated with risk of adverse skin reactions after radiotherapy in breast cancer patients. Int J Radiat Oncol Biol Phys 69:685–693PubMedCrossRefGoogle Scholar
  231. 231.
    Pierce LJ, Strawderman M, Narod SA, Oliviotto I, Eisen A, Dawson L, Gaffney D, Solin LJ, Nixon A, Garber J, Berg C, Isaacs C, Heimann R, Olopade OI, Haffty B, Weber BL (2000) Effect of radiotherapy after breast-conserving treatment in women with breast cancer and germline BRCA1/2 mutations. J Clin Oncol 18:3360–3369PubMedGoogle Scholar
  232. 232.
    Shanley S, McReynolds K, Ardern-Jones A, Ahern R, Fernando I, Yarnold J, Evans G, Eccles D, Hodgson S, Ashley S, Ashcroft L, Tutt A, Bancroft E, Short S, Gui G (2006) Late toxicity is not increased in BRCA1/BRCA2 mutation carriers undergoing breast radiotherapy in the United Kingdom. Clin Cancer Res 12:7025–7032PubMedCrossRefGoogle Scholar
  233. 233.
    Cesaretti JA, Stock RG, Lehrer S, Atencio DA, Bernstein JL, Stone NN, Wallenstein S, Green S, Loeb K, Kollmeier M, Smith M, Rosenstein BS (2005) ATM sequence variants are predictive of adverse radiotherapy response among patients treated for prostate cancer. Int J Radiat Oncol Biol Phys 61:196–202PubMedCrossRefGoogle Scholar
  234. 234.
    Cesaretti JA, Stock RG, Atencio DP, Peters SA, Peters CA, Burri RJ, Stone NN, Rosenstein BS (2007) A genetically determined dose-volume histogram predicts for rectal bleeding among patients treated with prostate brachytherapy. Int J Radiat Oncol Biol Phys 68:1410–1416PubMedCrossRefGoogle Scholar
  235. 235.
    Burri RJ, Stock RG, Cesaretti JA, Atencio DP, Peters S, Peters CA, Fan G, Stone NN, Ostrer H, Rosenstein BS (2008) Association of single nucleotide polymorphisms in SOD2, XRCC1 and XRCC3 with susceptibility for the development of adverse effects resulting from radiotherapy for prostate cancer. Radiat Res 170:49–59PubMedCrossRefGoogle Scholar
  236. 236.
    Pugh TJ, Keyes M, Barclay L, Delaney A, Krzywinski M, Thomas D, Novik K, Yang C, Agranovich A, McKenzie M, Morris WJ, Olive PL, Marra MA, Moore RA (2009) Sequence variant discovery in DNA repair genes from radiosensitive and radiotolerant prostate brachytherapy patients. Clin Cancer Res 15:5008–5016PubMedCrossRefGoogle Scholar
  237. 237.
    Damaraju S, Murray D, Dufour J, Carandang D, Myrehaug S, Fallone G, Field C, Greiner R, Hanson J, Cass CE, Parliament M (2006) Association of DNA repair and steroid metabolism gene polymorphisms with clinical late toxicity in patients treated with conformal radiotherapy for prostate cancer. Clin Cancer Res 12:2545–2554PubMedCrossRefGoogle Scholar
  238. 238.
    Hall EJ, Schiff PB, Hanks GE, Brenner DJ, Russo J, Chen J, Sawant SG, Pandita TK (1998) A preliminary report: frequency of A-T heterozygotes among prostate cancer patients with severe late responses to radiation therapy. Cancer J Sci Am 4:385–389PubMedGoogle Scholar
  239. 239.
    Suga T, Iwakawa M, Tsuji H, Ishikawa H, Oda E, Noda S, Otsuka Y, Ishikawa A, Ishikawa K, Shimazaki J, Mizoe JE, Tsujii H, Imai T (2008) Influence of multiple genetic polymorphisms on genitourinary morbidity after carbon ion radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 72:808–813PubMedCrossRefGoogle Scholar
  240. 240.
    Werbrouck J, De Ruyck K, Duprez F, Veldeman L, Claes K, Van Eijkeren M, Boterberg T, Willems P, Vral A, De Neve W, Thierens H (2009) Acute normal tissue reactions in head-and-neck cancer patients treated with IMRT: influence of dose and association with genetic polymorphisms in DNA DSB repair genes. Int J Radiat Oncol Biol Phys 73:1187–1195PubMedCrossRefGoogle Scholar
  241. 241.
    Kornguth DG, Garden AS, Zheng Y, Dahlstrom KR, Wei Q, Sturgis EM (2005) Gastrostomy in oropharyngeal cancer patients with ERCC4 (XPF) germline variants. Int J Radiat Oncol Biol Phys 62:665–671PubMedCrossRefGoogle Scholar
  242. 242.
    Alsbeih G, Al-Harbi N, Al-Hadyan K, El-Sebaie M, Al-Rajhi N (2010) Association between normal tissue complications after radiotherapy and polymorphic variations in TGFB1 and XRCC1 genes. Radiat Res 173:505–511PubMedCrossRefGoogle Scholar
  243. 243.
    De Ruyck K, Van Eijkeren M, Claes K, Morthier R, De Paepe A, Vral A, De Ridder L, Thierens H (2005) Radiation-induced damage to normal tissues after radiotherapy in patients treated for gynecologic tumors: association with single nucleotide polymorphisms in XRCC1, XRCC3, and OGG1 genes and in vitro chromosomal radiosensitivity in lymphocytes. Int J Radiat Oncol Biol Phys 62:1140–1149PubMedCrossRefGoogle Scholar
  244. 244.
    De Ruyck K, Wilding CS, Van Eijkeren M, Morthier R, Tawn EJ, Thierens H (2005) Microsatellite polymorphisms in DNA repair genes XRCC1, XRCC3 and XRCC5 in patients with gynecological tumors: association with late clinical radiosensitivity and cancer incidence. Radiat Res 164:237–244PubMedCrossRefGoogle Scholar
  245. 245.
    Azria D, Ozsahin M, Kramar A, Peters S, Atencio DP, Crompton NE, Mornex F, Pèlegrin A, Dubois JB, Mirimanoff RO, Rosenstein BS (2008) Single nucleotide polymorphisms, apoptosis, and the development of severe late adverse effects after radiotherapy. Clin Cancer Res 14:6284–6288PubMedCrossRefGoogle Scholar
  246. 246.
    Carles J, Monzo M, Amat M, Jansa S, Artells R, Navarro A, Foro P, Alameda F, Gayete A, Gel B, Miguel M, Albanell J, Fabregat X (2006) Single-nucleotide polymorphisms in base excision repair, nucleotide excision repair, and double strand break genes as markers for response to radiotherapy in patients with Stage I to II head-and-neck cancer. Int J Radiat Oncol Biol Phys 66:1022–1030PubMedCrossRefGoogle Scholar
  247. 247.
    Tu HF, Chen HW, Kao SY, Lin SC, Liu CJ, Chang KW (2008) MDM2 SNP 309 and p53 codon 72 polymorphisms are associated with the outcome of oral carcinoma patients receiving postoperative irradiation. Radiother Oncol 87:243–252PubMedCrossRefGoogle Scholar
  248. 248.
    Wu X, Gu J, Wu TT, Swisher SG, Liao Z, Correa AM, Liu J, Etzel CJ, Amos CI, Huang M, Chiang SS, Milas L, Hittelman WN, Ajani JA (2006) Genetic variations in radiation and chemotherapy drug action pathways predict clinical outcomes in esophageal cancer. J Clin Oncol 24:3789–3798PubMedCrossRefGoogle Scholar
  249. 249.
    Warnecke-Eberz U, Vallböhmer D, Alakus H, Kütting F, Lurje G, Bollschweiler E, Wienand-Dorweiler A, Drebber U, Hölscher AH, Metzger R (2009) ERCC1 and XRCC1 gene polymorphisms predict response to neoadjuvant radiochemotherapy in esophageal cancer. J Gastrointest Surg 13:1411–1421PubMedCrossRefGoogle Scholar
  250. 250.
    Yoon SM, Hong YC, Park HJ, Lee JE, Kim SY, Kim JH, Lee SW, Park SY, Lee JS, Choi EK (2005) The polymorphism and haplotypes of XRCC1 and survival of non-small-cell lung cancer after radiotherapy. Int J Radiat Oncol Biol Phys 63:885–891PubMedCrossRefGoogle Scholar
  251. 251.
    Su D, Ma S, Liu P, Jiang Z, Lv W, Zhang Y, Deng Q, Smith S, Yu H (2007) Genetic polymorphisms and treatment response in advanced non-small cell lung cancer. Lung Cancer 56:281–288PubMedCrossRefGoogle Scholar
  252. 252.
    Yin Z, Zhou B, He Q, Li M, Guan P, Li X, Cui Z, Xue X, Su M, Ma R, Bai W, Xia S, Jiang Y, Xu S, Lv Y, Li X (2009) Association between polymorphisms in DNA repair genes and survival of non-smoking female patients with lung adenocarcinoma. BMC Cancer 9:439PubMedCrossRefGoogle Scholar
  253. 253.
    Okazaki T, Jiao L, Chang P, Evans DB, Abbruzzese JL, Li D (2008) Single-nucleotide polymorphisms of DNA damage response genes are associated with overall survival in patients with pancreatic cancer. Clin Cancer Res 14:2042–2048PubMedCrossRefGoogle Scholar
  254. 254.
    Li D, Frazier M, Evans DB, Hess KR, Crane CH, Jiao L, Abbruzzese JL (2006) Single nucleotide polymorphisms of RecQ1, RAD54L, and ATM genes are associated with reduced survival of pancreatic cancer. J Clin Oncol 24:1720–1728PubMedCrossRefGoogle Scholar
  255. 255.
    Li D, Liu H, Jiao L, Chang DZ, Beinart G, Wolff RA, Evans DB, Hassan MM, Abbruzzese JL (2006) Significant effect of homologous recombination DNA repair gene polymorphisms on pancreatic cancer survival. Cancer Res 66:3323–3330PubMedCrossRefGoogle Scholar
  256. 256.
    Sakano S, Wada T, Matsumoto H, Sugiyama S, Inoue R, Eguchi S, Ito H, Ohmi C, Matsuyama H, Naito K (2006) Single nucleotide polymorphisms in DNA repair genes might be prognostic factors in muscle-invasive bladder cancer patients treated with chemoradiotherapy. Br J Cancer 95:561–570PubMedCrossRefGoogle Scholar
  257. 257.
    Gao R, Price DK, Dahut WL, Reed E, Figg WD (2010) Genetic polymorphisms in XRCC1 associated with radiation therapy in prostate cancer. Cancer Biol Ther 10:13–18PubMedCrossRefGoogle Scholar
  258. 258.
    Cecchin E, Agostini M, Pucciarelli S, De Paoli A, Canzonieri V, Sigon R, De Mattia E, Friso ML, Biason P, Visentin M, Nitti D, Toffoli G (2011) Tumor response is predicted by patient genetic profile in rectal cancer patients treated with neo-adjuvant chemo-radiotherapy, Pharmacogenomics J 11:214–226Google Scholar
  259. 259.
    Kerns SL, Ostrer H, Stock R, Li W, Moore J, Pearlman A, Campbell C, Shao Y, Stone N, Kusnetz L, Rosenstein BS (2010) Genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with the development of erectile dysfunction in African-American men after radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 78:1292–1300PubMedCrossRefGoogle Scholar
  260. 260.
    Hutchison CA 3rd (2007) DNA sequencing: bench to bedside and beyond. Nucleic Acids Res 35:6227–6237PubMedCrossRefGoogle Scholar
  261. 261.
    Das AK, Bell MH, Nirodi CS, Story MD, Minna JD (2010) Radiogenomics predicting tumor responses to radiotherapy in lung cancer. Semin Radiat Oncol 20:149–155PubMedCrossRefGoogle Scholar
  262. 262.
    Eschrich S, Zhang H, Zhao H, Boulware D, Lee JH, Bloom G, Torres-Roca JF (2009) Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform. Int J Radiat Oncol Biol Phys 75:497–505PubMedCrossRefGoogle Scholar
  263. 263.
    Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, González JR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME (2006) Global variation in copy number in the human genome. Nature 444:444–454PubMedCrossRefGoogle Scholar
  264. 264.
    West CM, McKay MJ, Hölscher T, Baumann M, Stratford IJ, Bristow RG, Iwakawa M, Imai T, Zingde SM, Anscher MS, Bourhis J, Begg AC, Haustermans K, Bentzen SM, Hendry JH (2005) Molecular markers predicting radiotherapy response: report and recommendations from an International Atomic Energy Agency technical meeting. Int J Radiat Oncol Biol Phys 62:1264–1273PubMedCrossRefGoogle Scholar
  265. 265.
    Ho AY, Atencio DP, Peters S, Stock RG, Formenti SC, Cesaretti JA, Green S, Haffty B, Drumea K, Leitzin L, Kuten A, Azria D, Ozsahin M, Overgaard J, Andreassen CN, Trop CS, Park J, Rosenstein BS (2006) Genetic predictors of adverse radiotherapy effects: the Gene-PARE project. Int J Radiat Oncol Biol Phys 65:646–655PubMedCrossRefGoogle Scholar
  266. 266.
    Burnet NG, Elliott RM, Dunning A, West CM (2006) Radiosensitivity, radiogenomics and RAPPER. Clin Oncol (R Coll Radiol) 18:525–528CrossRefGoogle Scholar
  267. 267.
  268. 268.
    Iwakawa M, Imai T, Harada Y, Ban S, Michikawa Y, Saegusa K, Sagara M, Tsuji A, Noda S, Ishikawa A (2002) RadGenomics project. Nippon Igaku Hoshasen Gakkai Zasshi 62:484–489PubMedGoogle Scholar
  269. 269.
    Baumann M, Hölscher T, Begg AC (2003) Towards genetic prediction of radiation responses: ESTRO’s GENEPI project. Radiother Oncol 69:121–125PubMedCrossRefGoogle Scholar
  270. 270.
  271. 271.
    West C, Rosenstein BS, Alsner J, Azria D, Barnett G, Begg A, Bentzen S, Burnet N, Chang-Claude J, Chuang E, Coles C, De Ruyck K, De Ruysscher D, Dunning A, Elliott R, Fachal L, Hall J, Haustermans K, Herskind C, Hoelscher T, Imai T, Iwakawa M, Jones D, Kulich C, EQUAL-ESTRO, Langendijk JH, O’Neils P, Ozsahin M, Parliament M, Polanski A, Rosenstein B, Seminara D, Symonds P, Talbot C, Thierens H, Vega A, West C, Yarnold J. (2010) Establishment of a Radiogenomics Consortium. Int J Radiat Oncol Biol Phys 76:1295–1296Google Scholar
  272. 272.
    Bentzen SM (2006) Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat Rev Cancer 6:702–713PubMedCrossRefGoogle Scholar
  273. 273.
    Dikomey E, Brammer I, Johansen J, Bentzen SM, Overgaard J (2000) Relationship between DNA double-strand breaks, cell killing, and fibrosis studied in confluent skin fibroblasts derived from breast cancer patients. Int J Radiat Oncol Biol Phys 46:481–490PubMedCrossRefGoogle Scholar
  274. 274.
    Kasten U, Plottner N, Johansen J, Overgaard J, Dikomey E (1999) Ku70/80 gene expression and DNA-dependent protein kinase (DNA-PK) activity do not correlate with double-strand break (dsb) repair capacity and cellular radiosensitivity in normal human fibroblasts. Br J Cancer 79:1037–1041PubMedCrossRefGoogle Scholar
  275. 275.
    Kasten-Pisula U, Vronskaja S, Overgaard J, Dikomey E (2008) In normal human fibroblasts variation in DSB repair capacity cannot be ascribed to radiation-induced changes in the localisation, expression or activity of major NHEJ proteins. Radiother Oncol 86:321–328PubMedCrossRefGoogle Scholar
  276. 276.
    Cosgrove MS, Boeke JD, Wolberger C (2004) Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol 11:1037–1043PubMedCrossRefGoogle Scholar
  277. 277.
    Hummel R, Hussey DJ, Haier J (2010) MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer 46:298–311PubMedCrossRefGoogle Scholar
  278. 278.
    Stucki M, Jackson SP (2004) Tudor domains track down DNA breaks. Nat Cell Biol 6:1150–1152PubMedCrossRefGoogle Scholar
  279. 279.
    Huyen Y, Zgheib O, Ditullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432:406–411PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  1. 1.Division of Experimental Oncology, Department of OncologyCross Cancer Institute, University of AlbertaEdmontonCanada
  2. 2.Division of Radiation Oncology, Department of OncologyCross Cancer Institute, University of AlbertaEdmontonCanada

Personalised recommendations