Skip to main content

Monitoring Antigen-Specific Responses in Clinical Trials of Cancer Immunotherapy

  • Chapter
  • First Online:
Cancer Immunotherapy
  • 2511 Accesses

Abstract

Immune-based therapies are designed to generate or augment anti-tumor immune responses to achieve clinical benefit. Monitoring quantitative and qualitative parameters of immune function affords the opportunity to identify endpoints that correlate with, or predict clinical benefit and define the requirements for effective therapy. This chapter discusses structural and functional methods to assess both monoclonal and polyclonal antigen-specific T cell responses in vivo in humans. The most adequate methods to detect responses in blood and tumor tissue are examined with a focus on the information provided by evaluating the phenotype of tumor-specific cells. Because considerable variability in the type and performance of immune-monitoring assays exists, harmonization is required to render meaningful comparisons among the increasing number and complexity of immune-based clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mason D (1998) A very high level of crossreactivity is an essential feature of the T cell receptor. Immunol Today 19:395–404

    Article  PubMed  CAS  Google Scholar 

  2. Drezen JM, Babinet C, Morello D (1993) Transcriptional control of MHC class I and beta 2-microglobulin genes in vivo. J Immunol 150:2805–2813

    PubMed  CAS  Google Scholar 

  3. Sang M, Lian Y, Zhou X, Shan B (2011) MAGE-A family: attractive targets for cancer immunotherapy. Vaccine 29:8496–8500

    Article  PubMed  CAS  Google Scholar 

  4. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG et al (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274:94–96

    Article  PubMed  CAS  Google Scholar 

  5. Garboczi DN, Hung DT, Wiley DC (1992) HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc Natl Acad Sci USA 89:3429–3433

    Article  PubMed  CAS  Google Scholar 

  6. Milne K, Barnes RO, Girardin A, Mawer MA, Nesslinger NJ et al (2008) Tumor-infiltrating T cells correlate with NY-ESO-1-specific autoantibodies in ovarian cancer. PLoS One 3:e3409

    Article  PubMed  CAS  Google Scholar 

  7. Batard P, Peterson DA, Devevre E, Guillaume P, Cerottini JC et al (2006) Dextramers: new generation of fluorescent MHC class I/peptide multimers for visualization of antigen-specific CD8+ T cells. J Immunol Methods 310:136–148

    Article  PubMed  CAS  Google Scholar 

  8. Chattopadhyay PK, Price DA, Harper TF, Betts MR, Yu J et al (2006) Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat Med 12:972–977

    Article  PubMed  CAS  Google Scholar 

  9. Makedonas G, Betts MR (2006) Polyfunctional analysis of human t cell responses: importance in vaccine immunogenicity and natural infection. Springer Semin Immunopathol 28:209–219

    Article  PubMed  Google Scholar 

  10. Casalegno-Garduno R, Schmitt A, Yao J, Wang X, Xu X et al (2010) Multimer technologies for detection and adoptive transfer of antigen-specific T cells. Cancer Immunol Immunother 59:195–202

    Article  PubMed  CAS  Google Scholar 

  11. O'Herrin SM, Slansky JE, Tang Q, Markiewicz MA, Gajewski TF et al (2001) Antigen-specific blockade of T cells in vivo using dimeric MHC peptide. J Immunol 167:2555–2560

    PubMed  Google Scholar 

  12. Whelan JA, Dunbar PR, Price DA, Purbhoo MA, Lechner F et al (1999) Specificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent. J Immunol 163:4342–4348

    PubMed  CAS  Google Scholar 

  13. Neudorfer J, Schmidt B, Huster KM, Anderl F, Schiemann M et al (2007) Reversible HLA multimers (Streptamers) for the isolation of human cytotoxic T lymphocytes functionally active against tumor- and virus-derived antigens. J Immunol Methods 320:119–131

    Article  PubMed  CAS  Google Scholar 

  14. Hadrup SR, Bakker AH, Shu CJ, Andersen RS, van Veluw J et al (2009) Parallel detection of antigen-specific T cell responses by multidimensional encoding of MHC multimers. Nat Methods 6:520–526

    Article  PubMed  CAS  Google Scholar 

  15. Newell EW, Klein LO, Yu W, Davis MM (2009) Simultaneous detection of many T cell specificities using combinatorial tetramer staining. Nat Methods 6:497–499

    Article  PubMed  CAS  Google Scholar 

  16. Mallone R, Nepom GT (2004) MHC Class II tetramers and the pursuit of antigen-specific T cells: define, deviate, delete. Clin Immunol 110:232–242

    Article  PubMed  CAS  Google Scholar 

  17. Reijonen H, Kwok WW (2003) Use of HLA class II tetramers in tracking antigen-specific T cells and mapping T cell epitopes. Methods 29:282–288

    Article  PubMed  CAS  Google Scholar 

  18. Day CL, Seth NP, Lucas M, Appel H, Gauthier L et al (2003) Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. J Clin Invest 112:831–842

    PubMed  CAS  Google Scholar 

  19. Reche PA, Reinherz EL (2007) Prediction of peptide-MHC binding using profiles. Methods Mol Biol 409:185–200

    Article  PubMed  CAS  Google Scholar 

  20. Boniface JJ, Rabinowitz JD, Wulfing C, Hampl J, Reich Z et al (1998) Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands [corrected]. Immunity 9:459–466

    Article  PubMed  CAS  Google Scholar 

  21. Lovitch SB, Unanue ER (2005) Conformational isomers of a peptide-class II major histocompatibility complex. Immunol Rev 207:293–313

    Article  PubMed  CAS  Google Scholar 

  22. James EA, Mallone R, Schloot NC, Gagnerault MC, Thorpe J et al (2011) Immunology of Diabetes Society T cell Workshop: HLA class II tetramer-directed epitope validation initiative. Diabetes Metab Res Rev 27:727–736

    Article  PubMed  CAS  Google Scholar 

  23. Ayyoub M, Dojcinovic D, Pignon P, Raimbaud I, Schmidt J et al (2010) Monitoring of NY-ESO-1 specific CD4+ T cells using molecularly defined MHC class II/His-tag-peptide tetramers. Proc Natl Acad Sci USA 107:7437–7442

    Article  PubMed  CAS  Google Scholar 

  24. Zhang Y, Renkvist N, Sun Z, Schuler-Thurner B, Glaichenhaus N et al (2005) A polyclonal anti-vaccine CD4 T cell response detected with HLA-DP4 multimers in a melanoma patient vaccinated with MAGE-3.DP4-peptide-pulsed dendritic cells. Eur J Immunol 35:1066–1075

    Article  PubMed  CAS  Google Scholar 

  25. Lemaitre F, Viguier M, Cho MS, Fourneau JM, Maillere B et al (2004) Detection of low-frequency human antigen-specific CD4(+) T cells using MHC class II multimer bead sorting and immunoscope analysis. Eur J Immunol 34:2941–2949

    Article  PubMed  CAS  Google Scholar 

  26. Scriba TJ, Purbhoo M, Day CL, Robinson N, Fidler S et al (2005) Ultrasensitive detection and phenotyping of CD4+ T cells with optimized HLA class II tetramer staining. J Immunol 175:6334–6343

    PubMed  CAS  Google Scholar 

  27. Hunder NN, Wallen H, Cao J, Hendricks DW, Reilly JZ et al (2008) Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. N Engl J Med 358:2698–2703

    Article  PubMed  CAS  Google Scholar 

  28. Nishimura MI, Custer MC, Schwarz SL, Parker LL, Mixon A et al (1998) T cell-receptor V gene use by CD4+ melanoma-reactive clonal and oligoclonal T cell lines. J Immunother 21:352–362

    Article  PubMed  CAS  Google Scholar 

  29. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P et al (2002) Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 99:16168–16173

    Article  PubMed  CAS  Google Scholar 

  30. Chapuis AG, Casper C, Kuntz S, Zhu J, Tjernlund A et al (2011) HIV-specific CD8+ T cells from HIV+ individuals receiving HAART can be expanded ex vivo to augment systemic and mucosal immunity in vivo. Blood 117:5391–5402

    Article  PubMed  CAS  Google Scholar 

  31. De Visser KE, Schumacher TN, Kruisbeek AM (2003) CD8+ T cell tolerance and cancer immunotherapy. J Immunother 26:1–11

    Article  PubMed  Google Scholar 

  32. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME et al (1992) Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257:238–241

    Article  PubMed  CAS  Google Scholar 

  33. Brunner KT, Mauel J, Cerottini JC, Chapuis B (1968) Quantitative assay of the lytic action of immune lymphoid cells on 51-Cr-labelled allogeneic target cells in vitro; inhibition by isoantibody and by drugs. Immunology 14:181–196

    PubMed  CAS  Google Scholar 

  34. Roden MM, Lee KH, Panelli MC, Marincola FM (1999) A novel cytolysis assay using fluorescent labeling and quantitative fluorescent scanning technology. J Immunol Methods 226:29–41

    Article  PubMed  CAS  Google Scholar 

  35. Zaritskaya L, Shurin MR, Sayers TJ, Malyguine AM (2010) New flow cytometric assays for monitoring cell-mediated cytotoxicity. Expert Rev Vaccines 9:601–616

    Article  PubMed  CAS  Google Scholar 

  36. Kaufmann SH, Lee SH, Meng XW, Loegering DA, Kottke TJ et al (2008) Apoptosis-associated caspase activation assays. Methods 44:262–272

    Article  PubMed  CAS  Google Scholar 

  37. Lehmann PV, Zhang W (2012) Unique strengths of ELISPOT for T cell diagnostics. Methods Mol Biol 792:3–23

    Article  PubMed  CAS  Google Scholar 

  38. Karlsson AC, Martin JN, Younger SR, Bredt BM, Epling L et al (2003) Comparison of the ELISPOT and cytokine flow cytometry assays for the enumeration of antigen-specific T cells. J Immunol Methods 283:141–153

    Article  PubMed  CAS  Google Scholar 

  39. Whiteside TL, Zhao Y, Tsukishiro T, Elder EM, Gooding W et al (2003) Enzyme-linked immunospot, cytokine flow cytometry, and tetramers in the detection of T cell responses to a dendritic cell-based multipeptide vaccine in patients with melanoma. Clin Cancer Res 9:641–649

    PubMed  CAS  Google Scholar 

  40. Schmittel A, Keilholz U, Thiel E, Scheibenbogen C (2000) Quantification of tumor-specific T lymphocytes with the ELISPOT assay. J Immunother 23:289–295

    Article  PubMed  CAS  Google Scholar 

  41. Makedonas G, Betts MR (2011) Living in a house of cards: re-evaluating CD8+ T cell immune correlates against HIV. Immunol Rev 239:109–124

    Article  PubMed  CAS  Google Scholar 

  42. Nagorsen D, Scheibenbogen C, Thiel E, Keilholz U (2004) Immunological monitoring of cancer vaccine therapy. Expert Opin Biol Ther 4:1677–1684

    Article  PubMed  CAS  Google Scholar 

  43. Butterfield LH, Palucka AK, Britten CM, Dhodapkar MV, Hakansson L et al (2011) Recommendations from the iSBTc-SITC/FDA/NCI Workshop on Immunotherapy Biomarkers. Clin Cancer Res 17:3064–3076

    Article  PubMed  CAS  Google Scholar 

  44. Quast S, Zhang W, Shive C, Kovalovski D, Ott PA et al (2005) IL-2 absorption affects IFN-gamma and IL-5, but not IL-4 producing memory T cells in double color cytokine ELISPOT assays. Cell Immunol 237:28–36

    Article  PubMed  CAS  Google Scholar 

  45. Rebhahn JA, Bishop C, Divekar AA, Jiminez-Garcia K, Kobie JJ et al (2008) Automated analysis of two- and three-color fluorescent Elispot (Fluorospot) assays for cytokine secretion. Comput Methods Programs Biomed 92:54–65

    Article  PubMed  Google Scholar 

  46. Lieberman J (2003) The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat Rev Immunol 3:361–370

    Article  PubMed  CAS  Google Scholar 

  47. Zhou F (2009) Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol 28:239–260

    Article  PubMed  CAS  Google Scholar 

  48. Feau S, Arens R, Togher S, Schoenberger SP (2011) Autocrine IL-2 is required for secondary population expansion of CD8(+) memory T cells. Nat Immunol 12:908–913

    Article  PubMed  CAS  Google Scholar 

  49. Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin-mediated targeT cell death and immune homeostasis. Nat Rev Immunol 6:940–952

    Article  PubMed  CAS  Google Scholar 

  50. Precopio ML, Betts MR, Parrino J, Price DA, Gostick E et al (2007) Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med 204:1405–1416

    Article  PubMed  CAS  Google Scholar 

  51. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF et al (2007) Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 13:843–850

    Article  PubMed  CAS  Google Scholar 

  52. Yuan J, Gnjatic S, Li H, Powel S, Gallardo HF et al (2008) CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci USA 105:20410–20415

    Article  PubMed  CAS  Google Scholar 

  53. Muranski P, Restifo NP (2009) Adoptive immunotherapy of cancer using CD4(+) T cells. Curr Opin Immunol 21:200–208

    Article  PubMed  CAS  Google Scholar 

  54. Williams MA, Holmes BJ, Sun JC, Bevan MJ (2006) Developing and maintaining protective CD8+ memory T cells. Immunol Rev 211:146–153

    Article  PubMed  CAS  Google Scholar 

  55. Migueles SA, Laborico AC, Shupert WL, Sabbaghian MS, Rabin R et al (2002) HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol 3:1061–1068

    Article  PubMed  CAS  Google Scholar 

  56. Maecker HT, Maino VC (2003) T cell immunity to HIV: defining parameters of protection. Curr HIV Res 1:249–259

    Article  PubMed  CAS  Google Scholar 

  57. Zhi-Jun Y, Sriranganathan N, Vaught T, Arastu SK, Ahmed SA (1997) A dye-based lymphocyte proliferation assay that permits multiple immunological analyses: mRNA, cytogenetic, apoptosis, and immunophenotyping studies. J Immunol Methods 210:25–39

    Article  PubMed  CAS  Google Scholar 

  58. Fulcher D, Wong S (1999) Carboxyfluorescein succinimidyl ester-based proliferative assays for assessment of T cell function in the diagnostic laboratory. Immunol Cell Biol 77:559–564

    Article  PubMed  CAS  Google Scholar 

  59. Ndongala ML, Kamya P, Boulet S, Peretz Y, Rouleau D et al (2010) Changes in function of HIV-specific T cell responses with increasing time from infection. Viral Immunol 23:159–168

    Article  PubMed  CAS  Google Scholar 

  60. Scholzen T, Gerdes J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182:311–322

    Article  PubMed  CAS  Google Scholar 

  61. Christensen E, Pintilie M, Evans KR, Lenarduzzi M, Menard C et al (2009) Longitudinal cytokine expression during IMRT for prostate cancer and acute treatment toxicity. Clin Cancer Res 15:5576–5583

    Article  PubMed  CAS  Google Scholar 

  62. Dehqanzada ZA, Storrer CE, Hueman MT, Foley RJ, Harris KA et al (2007) Assessing serum cytokine profiles in breast cancer patients receiving a HER2/neu vaccine using Luminex technology. Oncol Rep 17:687–694

    PubMed  CAS  Google Scholar 

  63. Krause SW, Rothe G, Gnad M, Reichle A, Andreesen R (2003) Blood leukocyte subsets and cytokine profile after autologous peripheral blood stem cell transplantation. Ann Hematol 82:628–636

    Article  PubMed  CAS  Google Scholar 

  64. Liu Z, Yuan X, Luo Y, He Y, Jiang Y et al (2009) Evaluating the effects of immunosuppressants on human immunity using cytokine profiles of whole blood. Cytokine 45:141–147

    Article  PubMed  CAS  Google Scholar 

  65. Burgdorf SK, Claesson MH, Nielsen HJ, Rosenberg J (2009) Changes in cytokine and biomarker blood levels in patients with colorectal cancer during dendritic cell-based vaccination. Acta Oncol 48:1157–1164

    Article  PubMed  CAS  Google Scholar 

  66. Casasnovas RO, Mounier N, Brice P, Divine M, Morschhauser F et al (2007) Plasma cytokine and soluble receptor signature predicts outcome of patients with classical Hodgkin’s lymphoma: a study from the Groupe d'Etude des Lymphomes de l'Adulte. J Clin Oncol 25:1732–1740

    Article  PubMed  CAS  Google Scholar 

  67. Leonhartsberger N, Ramoner R, Putz T, Gander H, Rahm A et al (2007) Antigen-independent immune responses after dendritic cell vaccination. Cancer Immunol Immunother 56:897–903

    Article  PubMed  Google Scholar 

  68. Ribas A, Glaspy JA, Lee Y, Dissette VB, Seja E et al (2004) Role of dendritic cell phenotype, determinant spreading, and negative costimulatory blockade in dendritic cell-based melanoma immunotherapy. J Immunother 27:354–367

    Article  PubMed  CAS  Google Scholar 

  69. Soleimani A, Berntsen A, Svane IM, Pedersen AE (2009) Immune responses in patients with metastatic renal cell carcinoma treated with dendritic cells pulsed with tumor lysate. Scand J Immunol 70:481–489

    Article  PubMed  CAS  Google Scholar 

  70. Veldhoen M, Seddon B (2010) Empowering T helper 17 cells in autoimmunity. Nat Med 16:166–168

    Article  PubMed  CAS  Google Scholar 

  71. van der Vliet HJ, Molling JW, Nishi N, Masterson AJ, Kolgen W et al (2003) Polarization of Valpha24+ Vbeta11+ natural killer T cells of healthy volunteers and cancer patients using alpha-galactosylceramide-loaded and environmentally instructed dendritic cells. Cancer Res 63:4101–4106

    PubMed  Google Scholar 

  72. Gaucher D, Therrien R, Kettaf N, Angermann BR, Boucher G et al (2008) Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J Exp Med 205:3119–3131

    Article  PubMed  CAS  Google Scholar 

  73. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA et al (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced Leukemia. Sci Transl Med 3:95ra73

    Article  PubMed  CAS  Google Scholar 

  74. Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733

    Article  PubMed  CAS  Google Scholar 

  75. Hoos A, Eggermont AM, Janetzki S, Hodi FS, Ibrahim R et al (2010) Improved endpoints for cancer immunotherapy trials. J Natl Cancer Inst 102:1388–1397

    Article  PubMed  CAS  Google Scholar 

  76. Beachy SH, Repasky EA (2008) Using extracellular biomarkers for monitoring efficacy of therapeutics in cancer patients: an update. Cancer Immunol Immunother 57:759–775

    Article  PubMed  CAS  Google Scholar 

  77. Currier JR, Robinson MA (2001) Spectratype/immunoscope analysis of the expressed TCR repertoire. Curr Protoc Immunol Chapter 10: Unit 10.28

    Google Scholar 

  78. Zhou J, Dudley ME, Rosenberg SA, Robbins PF (2005) Persistence of multiple tumor-specific T cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy. J Immunother 28:53–62

    Article  PubMed  Google Scholar 

  79. Goronzy JJ, Weyand CM (2005) T cell development and receptor diversity during aging. Curr Opin Immunol 17:468–475

    Article  PubMed  CAS  Google Scholar 

  80. Robins H, Desmarais C, Matthis J, Livingston R, Andriesen J et al (2012) Ultra-sensitive detection of rare T cell clones. J Immunol Methods 375:14–19

    Article  CAS  Google Scholar 

  81. Freeman JD, Warren RL, Webb JR, Nelson BH, Holt RA (2009) Profiling the T cell receptor beta-chain repertoire by massively parallel sequencing. Genome Res 19:1817–1824

    Article  PubMed  CAS  Google Scholar 

  82. Wang C, Sanders CM, Yang Q, Schroeder HW Jr, Wang E et al (2010) High throughput sequencing reveals a complex pattern of dynamic interrelationships among human T cell subsets. Proc Natl Acad Sci USA 107:1518–1523

    Article  PubMed  CAS  Google Scholar 

  83. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29:917–924

    Article  PubMed  Google Scholar 

  84. Sharma P, Bajorin DF, Jungbluth AA, Herr H, Old LJ et al (2008) Immune responses detected in urothelial carcinoma patients after vaccination with NY-ESO-1 protein plus BCG and GM-CSF. J Immunother 31:849–857

    Article  PubMed  CAS  Google Scholar 

  85. Kern F, Surel IP, Faulhaber N, Frommel C, Schneider-Mergener J et al (1999) Target structures of the CD8(+)-T cell response to human cytomegalovirus: the 72-kilodalton major immediate-early protein revisited. J Virol 73:8179–8184

    PubMed  CAS  Google Scholar 

  86. Frahm NB, Baker B, Brander E (2008) Identification and optimal definition of HIV-derived cytotoxic T lymphocytes (CTL) elpitopes for the study of CTL escape, functional avidity and viral evolution. In: Korber B, Brander C, Haynes B, Koup R, Moore J, Walker B, Watkins D (eds) HIV Molecular Immunology 2008. Los Alamos National Laboratory, Theoretical Biology and Biophysic, Los Alamos, NM, pp 3–24

    Google Scholar 

  87. Farris AD, Keech CL, Gordon TP, McCluskey J (2000) Epitope mimics and determinant spreading: pathways to autoimmunity. Cell Mol Life Sci 57:569–578

    Article  PubMed  CAS  Google Scholar 

  88. Sercarz EE (2000) Driver clones and determinant spreading. J Autoimmun 14:275–277

    Article  PubMed  CAS  Google Scholar 

  89. Vanderlugt CL, Miller SD (2002) Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol 2:85–95

    Article  PubMed  CAS  Google Scholar 

  90. Howard LM, Miga AJ, Vanderlugt CL, Dal Canto MC, Laman JD et al (1999) Mechanisms of immunotherapeutic intervention by anti-CD40L (CD154) antibody in an animal model of multiple sclerosis. J Clin Invest 103:281–290

    Article  PubMed  CAS  Google Scholar 

  91. Markiewicz MA, Fallarino F, Ashikari A, Gajewski TF (2001) Epitope spreading upon P815 tumor rejection triggered by vaccination with the single class I MHC-restricted peptide P1A. Int Immunol 13:625–632

    Article  PubMed  CAS  Google Scholar 

  92. Liao X, Li Y, Bonini C, Nair S, Gilboa E et al (2004) Transfection of RNA encoding tumor antigens following maturation of dendritic cells leads to prolonged presentation of antigen and the generation of high-affinity tumor-reactive cytotoxic T lymphocytes. Mol Ther 9:757–764

    Article  PubMed  CAS  Google Scholar 

  93. Srinivas M, Aarntzen EH, Bulte JW, Oyen WJ, Heerschap A et al (2010) Imaging of cellular therapies. Adv Drug Deliv Rev 62:1080–1093

    Article  PubMed  CAS  Google Scholar 

  94. Bernhard H, Neudorfer J, Gebhard K, Conrad H, Hermann C et al (2008) Adoptive transfer of autologous, HER2-specific, cytotoxic T lymphocytes for the treatment of HER2-overexpressing breast cancer. Cancer Immunol Immunother 57:271–280

    Article  PubMed  Google Scholar 

  95. Pockaj BA, Sherry RM, Wei JP, Yannelli JR, Carter CS et al (1994) Localization of 111indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Augmentation with cyclophosphamide and correlation with response. Cancer 73:1731–1737

    Article  PubMed  CAS  Google Scholar 

  96. Jamieson GP, Snook MB, Thurlow PJ, Wiley JS (1996) Extracellular ATP causes of loss of L-selectin from human lymphocytes via occupancy of P2Z purinocepters. J Cell Physiol 166:637–642

    Article  PubMed  CAS  Google Scholar 

  97. Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353:2654–2666

    Article  PubMed  CAS  Google Scholar 

  98. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  PubMed  CAS  Google Scholar 

  99. Pinaud F, Michalet X, Bentolila LA, Tsay JM, Doose S et al (2006) Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27:1679–1687

    Article  PubMed  CAS  Google Scholar 

  100. Zhu J, Koelle DM, Cao J, Vazquez J, Huang ML et al (2007) Virus-specific CD8+ T cells accumulate near sensory nerve endings in genital skin during subclinical HSV-2 reactivation. J Exp Med 204:595–603

    Article  PubMed  CAS  Google Scholar 

  101. Tjernlund A, Zhu J, Laing K, Diem K, McDonald D et al (2010) In situ detection of Gag-specific CD8+ cells in the GI tract of SIV infected Rhesus macaques. Retrovirology 7:12

    Article  PubMed  CAS  Google Scholar 

  102. Mrass P, Petravic J, Davenport MP, Weninger W (2010) Cell-autonomous and environmental contributions to the interstitial migration of T cells. Semin Immunopathol 32:257–274

    Article  PubMed  Google Scholar 

  103. He X, Gao J, Gambhir SS, Cheng Z (2010) Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges. Trends Mol Med 16:574–583

    Article  PubMed  CAS  Google Scholar 

  104. Fisher B, Packard BS, Read EJ, Carrasquillo JA, Carter CS et al (1989) Tumor localization of adoptively transferred indium-111 labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol 7:250–261

    PubMed  CAS  Google Scholar 

  105. Griffith KD, Read EJ, Carrasquillo JA, Carter CS, Yang JC et al (1989) In vivo distribution of adoptively transferred indium-111-labeled tumor infiltrating lymphocytes and peripheral blood lymphocytes in patients with metastatic melanoma. J Natl Cancer Inst 81:1709–1717

    Article  PubMed  CAS  Google Scholar 

  106. Meidenbauer N, Hoffmann TK, Donnenberg AD (2003) Direct visualization of antigen-specific T cells using peptide-MHC-class I tetrameric complexes. Methods 31:160–171

    Article  PubMed  CAS  Google Scholar 

  107. Meidenbauer N, Marienhagen J, Laumer M, Vogl S, Heymann J et al (2003) Survival and tumor localization of adoptively transferred Melan-A-specific T cells in melanoma patients. J Immunol 170:0212–1265

    Google Scholar 

  108. Bulte JW (2009) In vivo MRI cell tracking: clinical studies. AJR Am J Roentgenol 193:314–325

    Article  PubMed  Google Scholar 

  109. Weissleder R, Stark DD, Engelstad BL, Bacon BR, Compton CC et al (1989) Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 152:167–173

    PubMed  CAS  Google Scholar 

  110. Ferrucci JT, Stark DD (1990) Iron oxide-enhanced MR imaging of the liver and spleen: review of the first 5 years. AJR Am J Roentgenol 155:943–950

    PubMed  CAS  Google Scholar 

  111. Janic B, Rad AM, Jordan EK, Iskander AS, Ali MM et al (2009) Optimization and validation of FePro cell labeling method. PLoS One 4:e5873

    Article  PubMed  CAS  Google Scholar 

  112. de Vries IJ, Lesterhuis WJ, Barentsz JO, Verdijk P, van Krieken JH et al (2005) Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol 23:1407–1413

    Article  PubMed  CAS  Google Scholar 

  113. Zhu J, Zhou L, XingWu F (2006) Tracking neural stem cells in patients with brain trauma. N Engl J Med 355:2376–2378

    Article  PubMed  CAS  Google Scholar 

  114. Callera F, de Melo CM (2007) Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells’ migration into the injured site. Stem Cells Dev 16:461–466

    Article  PubMed  Google Scholar 

  115. Toso C, Vallee JP, Morel P, Ris F, Demuylder-Mischler S et al (2008) Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am J Transplant 8:701–706

    Article  PubMed  CAS  Google Scholar 

  116. Chen J, Lanza GM, Wickline SA (2010) Quantitative magnetic resonance fluorine imaging: today and tomorrow. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:431–440

    Article  PubMed  CAS  Google Scholar 

  117. Yaghoubi SS, Jensen MC, Satyamurthy N, Budhiraja S, Paik D et al (2009) Noninvasive detection of therapeutic cytolytic T cells with 18 F-FHBG PET in a patient with glioma. Nat Clin Pract Oncol 6:53–58

    Article  PubMed  CAS  Google Scholar 

  118. MacLaren DC, Gambhir SS, Satyamurthy N, Barrio JR, Sharfstein S et al (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6:785–791

    Article  PubMed  CAS  Google Scholar 

  119. Rogers BE, McLean SF, Kirkman RL, Della Manna D, Bright SJ et al (1999) In vivo localization of [(111)In]-DTPA-D-Phe1-octreotide to human ovarian tumor xenografts induced to express the somatostatin receptor subtype 2 using an adenoviral vector. Clin Cancer Res 5:383–393

    PubMed  CAS  Google Scholar 

  120. Haberkorn U, Henze M, Altmann A, Jiang S, Morr I et al (2001) Transfer of the human NaI symporter gene enhances iodide uptake in hepatoma cells. J Nucl Med 42:317–325

    PubMed  CAS  Google Scholar 

  121. Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM et al (2003) Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 4:225–234

    Article  PubMed  CAS  Google Scholar 

  122. Akondy RS, Monson ND, Miller JD, Edupuganti S, Teuwen D et al (2009) The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. J Immunol 183:7919–7930

    Article  PubMed  CAS  Google Scholar 

  123. Stubbe M, Vanderheyde N, Goldman M, Marchant A (2006) Antigen-specific central memory CD4+ T lymphocytes produce multiple cytokines and proliferate in vivo in humans. J Immunol 177:8185–8190

    PubMed  CAS  Google Scholar 

  124. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM et al (2002) Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 8:379–385

    Article  PubMed  CAS  Google Scholar 

  125. Zimmerli SC, Harari A, Cellerai C, Vallelian F, Bart PA et al (2005) HIV-1-specific IFN-gamma/IL-2-secreting CD8 T cells support CD4-independent proliferation of HIV-1-specific CD8 T cells. Proc Natl Acad Sci USA 102:7239–7244

    Article  PubMed  CAS  Google Scholar 

  126. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    Article  PubMed  CAS  Google Scholar 

  127. Butler MO, Friedlander P, Milstein MI, Mooney MM, Metzler G et al (2011) Establishment of antitumor memory in humans using in vitro-educated CD8+ T cells. Sci Transl Med 3:8034

    Article  CAS  Google Scholar 

  128. Powell DJ Jr, Dudley ME, Robbins PF, Rosenberg SA (2005) Transition of late-stage effector T cells to CD27+ CD28+ tumor-reactive effector memory T cells in humans after adoptive cell transfer therapy. Blood 105:241–250

    Article  PubMed  CAS  Google Scholar 

  129. Papagno L, Spina CA, Marchant A, Salio M, Rufer N et al (2004) Immune activation and CD8+ T cell differentiation towards senescence in HIV-1 infection. PLoS Biol 2:E20

    Article  PubMed  CAS  Google Scholar 

  130. Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ et al (2003) Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101:2711–2720

    Article  PubMed  CAS  Google Scholar 

  131. Lynch DH (2008) The promise of 4-1BB (CD137)-mediated immunomodulation and the immunotherapy of cancer. Immunol Rev 222:277–286

    Article  PubMed  CAS  Google Scholar 

  132. Ascierto PA, Simeone E, Sznol M, Fu YX, Melero I (2010) Clinical experiences with anti-CD137 and anti-PD1 therapeutic antibodies. Semin Oncol 37:508–516

    Article  PubMed  CAS  Google Scholar 

  133. Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723

    Article  PubMed  CAS  Google Scholar 

  134. Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ et al (2009) Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 10:29–37

    Article  PubMed  CAS  Google Scholar 

  135. Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A et al (2011) Exhaustion of tumor-specific CD8 T cells in metastases from melanoma patients. J Clin Invest 121:2350–2360

    Article  PubMed  CAS  Google Scholar 

  136. Baitsch L, Legat A, Barba L, Fuertes Marraco SA, Rivals JP et al (2012) Extended co-expression of inhibitory receptors by human CD8 T cells depending on differentiation, antigen-specificity and anatomical localization. PLoS One 7:e30852

    Article  PubMed  CAS  Google Scholar 

  137. Letsch A, Keilholz U, Assfalg G, Mailander V, Thiel E et al (2003) Bone marrow contains melanoma-reactive CD8+ effector T cells and, compared with peripheral blood, enriched numbers of melanoma-reactive CD8+ memory T cells. Cancer Res 63:5582–5586

    PubMed  CAS  Google Scholar 

  138. Gorfu G, Rivera-Nieves J, Ley K (2009) Role of beta7 integrins in intestinal lymphocyte homing and retention. Curr Mol Med 9:836–850

    Article  PubMed  CAS  Google Scholar 

  139. Fuhlbrigge RC, Kieffer JD, Armerding D, Kupper TS (1997) Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells. Nature 389:978–981

    Article  PubMed  CAS  Google Scholar 

  140. Homey B, Wang W, Soto H, Buchanan ME, Wiesenborn A et al (2000) Cutting edge: the orphan chemokine receptor G protein-coupled receptor-2 (GPR-2, CCR10) binds the skin-associated chemokine CCL27 (CTACK/ALP/ILC). J Immunol 164:3465–3470

    PubMed  CAS  Google Scholar 

  141. Peng W, Ye Y, Rabinovich BA, Liu C, Lou Y et al (2010) Transduction of tumor-specific T cells with CXCR2 chemokine receptor improves migration to tumor and antitumor immune responses. Clin Cancer Res 16:5458–5468

    Article  PubMed  CAS  Google Scholar 

  142. Miyara M, Sakaguchi S (2011) Human FoxP3(+)CD4(+) regulatory T cells: their knowns and unknowns. Immunol Cell Biol 89:346–351

    Article  PubMed  CAS  Google Scholar 

  143. Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR et al (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203:1701–1711

    Article  PubMed  CAS  Google Scholar 

  144. Seddiki N, Santner-Nanan B, Martinson J, Zaunders J, Sasson S et al (2006) Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T cells. J Exp Med 203:1693–1700

    Article  PubMed  CAS  Google Scholar 

  145. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K et al (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911

    Article  PubMed  CAS  Google Scholar 

  146. Hilchey SP, Bernstein SH (2007) Use of CFSE to monitor ex vivo regulatory T cell suppression of CD4+ and CD8+ T cell proliferation within unseparated mononuclear cells from malignant and non-malignant human lymph node biopsies. Immunol Invest 36:629–648

    Article  PubMed  CAS  Google Scholar 

  147. Venken K, Thewissen M, Hellings N, Somers V, Hensen K et al (2007) A CFSE based assay for measuring CD4 + CD25+ regulatory T cell mediated suppression of auto-antigen specific and polyclonal T cell responses. J Immunol Methods 322:1–11

    Article  PubMed  CAS  Google Scholar 

  148. Canavan JB, Afzali B, Scotta C, Fazekasova H, Edozie FC et al (2012) A rapid diagnostic test for human regulatory T cell function to enable regulatory T cell therapy. Blood 119:e57–e66

    Article  PubMed  CAS  Google Scholar 

  149. Vence L, Palucka AK, Fay JW, Ito T, Liu YJ et al (2007) Circulating tumor antigen-specific regulatory T cells in patients with metastatic melanoma. Proc Natl Acad Sci USA 104:20884–20889

    Article  PubMed  CAS  Google Scholar 

  150. Danke NA, Koelle DM, Yee C, Beheray S, Kwok WW (2004) Autoreactive T cells in healthy individuals. J Immunol 172:5967–5972

    PubMed  CAS  Google Scholar 

  151. Chapuis AG, Thompson JA, Margolin KA, Rodmyre R, Lai IP et al (2012) Transferred melanoma-specific CD8+ T cells persist, mediate tumor regression, and acquire central memory phenotype. Proc Natl Acad Sci USA 109:4592–4597

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cassian Yee MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chapuis, A.G., Yee, C. (2013). Monitoring Antigen-Specific Responses in Clinical Trials of Cancer Immunotherapy. In: Curiel, T. (eds) Cancer Immunotherapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4732-0_14

Download citation

Publish with us

Policies and ethics