Skip to main content

Role of Toll-Like Receptor 4 in Alcohol-Induced Neuroinflammation and Behavioral Dysfunctions

  • Chapter
  • First Online:

Abstract

Until quite recently, the central nervous system (CNS) has been considered an autonomous unit nourished by blood and shielded not only from circulating immune cells but also from pathogens and toxins originating from circulation. However, it is now well established that immune surveillance occurs in the normal CNS and that inflammatory responses can take place in the neural plasticity and disease context. The CNS presents a well-organized series of innate immune reactions in response to systematic bacterial and viral infections and to cerebral injury [1, 2]. Activation of the innate immune system is an important component of inflammatory response.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Owens T, Babcock AA, Millward JM, Toft-Hansen H (2005) Cytokine and chemokine inter-regulation in the inflamed or injured CNS. Brain Res Brain Res Rev 48:178–184

    Article  PubMed  CAS  Google Scholar 

  2. Tanga FY, Nutile-McMenemy N, DeLeo JA (2005) The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci USA 102:5856–5861

    Article  PubMed  CAS  Google Scholar 

  3. Ben Menachem-Zidon O et al (2011) Astrocytes support hippocampal-dependent memory and long-term potentiation via interleukin-1 signaling. Brain Behav Immun 25:1008–1016

    Article  PubMed  CAS  Google Scholar 

  4. Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25:181–213

    Article  PubMed  CAS  Google Scholar 

  5. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140: 805–820

    Article  PubMed  CAS  Google Scholar 

  6. Tang SC et al (2008) Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol 213:114–121

    Article  PubMed  CAS  Google Scholar 

  7. Campbell A (2004) Inflammation, neurodegenerative diseases, and environmental exposures. Ann N Y Acad Sci 1035:117–132

    Article  PubMed  CAS  Google Scholar 

  8. Anderson KV, Jurgens G, Nusslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42:779–789

    Article  PubMed  CAS  Google Scholar 

  9. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  PubMed  CAS  Google Scholar 

  10. Buchanan MM, Hutchinson M, Watkins LR, Yin H (2010) Toll-like receptor 4 in CNS pathologies. J Neurochem 114:13–27

    PubMed  CAS  Google Scholar 

  11. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  PubMed  CAS  Google Scholar 

  12. Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173:3916–3924

    PubMed  CAS  Google Scholar 

  13. Jack CS et al (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175:4320–4330

    PubMed  CAS  Google Scholar 

  14. Caso JR et al (2007) Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 115:1599–1608

    Article  PubMed  CAS  Google Scholar 

  15. Tang SC et al (2007) Pivotal role for neuronal Toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci USA 104:13798–13803

    Article  PubMed  CAS  Google Scholar 

  16. Okun E et al (2010) Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. Proc Natl Acad Sci USA 107:15625–15630

    Article  PubMed  CAS  Google Scholar 

  17. Okun E, Griffioen KJ, Mattson MP (2011) Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 34:269–281

    Article  PubMed  CAS  Google Scholar 

  18. Pascual M, Balino P, Alfonso-Loeches S, Aragon CM, Guerri C (2011) Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun 25:S80–S91

    Article  PubMed  CAS  Google Scholar 

  19. Nagele RG, Wegiel J, Venkataraman V, Imaki H, Wang KC (2004) Contribution of glial cells to the development of amyloid plaques in Alzheimer’s disease. Neurobiol Aging 25:663–674

    Article  PubMed  CAS  Google Scholar 

  20. Wu DC et al (2002) Glial cell response: a pathogenic factor in Parkinson’s disease. J Neurovirol 8:551–558

    Article  PubMed  CAS  Google Scholar 

  21. Wurmser AE, Palmer TD, Gage FH (2004) Neuroscience. Cellular interactions in the stem cell niche. Science 304:1253–1255

    Article  PubMed  CAS  Google Scholar 

  22. Araque A, Perea G (2004) Glial modulation of synaptic transmission in culture. Glia 47:241–248

    Article  PubMed  Google Scholar 

  23. Downie LE, Pianta MJ, Vingrys AJ, Wilkinson-Berka JL, Fletcher EL (2007) Neuronal and glial cell changes are determined by retinal vascularization in retinopathy of prematurity. J Comp Neurol 504:404–417

    Article  PubMed  CAS  Google Scholar 

  24. Borlongan CV et al (2000) Glial cell survival is enhanced during melatonin-induced neuroprotection against cerebral ischemia. FASEB J 14:1307–1317

    Article  PubMed  CAS  Google Scholar 

  25. Dong Y, Benveniste EN (2001) Immune function of astrocytes. Glia 36:180–190

    Article  PubMed  CAS  Google Scholar 

  26. Kornyei Z, Czirok A, Vicsek T, Madarasz E (2000) Proliferative and migratory responses of astrocytes to in vitro injury. J Neurosci Res 61:421–429

    Article  PubMed  CAS  Google Scholar 

  27. Herrmann JE et al (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28:7231–7243

    Article  PubMed  CAS  Google Scholar 

  28. Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23:137–149

    Article  PubMed  Google Scholar 

  29. Sanai N et al (2004) Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427:740–744

    Article  PubMed  CAS  Google Scholar 

  30. Marin-Teva JL et al (2004) Microglia promote the death of developing Purkinje cells. Neuron 41:535–547

    Article  PubMed  CAS  Google Scholar 

  31. Wakselman S et al (2008) Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J Neurosci 28:8138–8143

    Article  PubMed  CAS  Google Scholar 

  32. Aarum J, Sandberg K, Haeberlein SL, Persson MA (2003) Migration and differentiation of neural precursor cells can be directed by microglia. Proc Natl Acad Sci USA 100: 15983–15988

    Article  PubMed  CAS  Google Scholar 

  33. Nakajima K et al (2001) Neurotrophin secretion from cultured microglia. J Neurosci Res 65:322–331

    Article  PubMed  CAS  Google Scholar 

  34. Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflammation 1:14

    Article  PubMed  CAS  Google Scholar 

  35. Dimayuga FO et al (2007) SOD1 overexpression alters ROS production and reduces neurotoxic inflammatory signaling in microglial cells. J Neuroimmunol 182:89–99

    Article  PubMed  CAS  Google Scholar 

  36. Qin L et al (2005) Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation. Glia 52:78–84

    Article  PubMed  Google Scholar 

  37. Haberg A et al (2001) Differences in neurotransmitter synthesis and intermediary metabolism between glutamatergic and GABAergic neurons during 4 hours of middle cerebral artery occlusion in the rat: the role of astrocytes in neuronal survival. J Cereb Blood Flow Metab 21:1451–1463

    Article  PubMed  CAS  Google Scholar 

  38. Prat A, Biernacki K, Wosik K, Antel JP (2001) Glial cell influence on the human blood–brain barrier. Glia 36:145–155

    Article  PubMed  CAS  Google Scholar 

  39. Weiss JM, Berman JW (1998) Astrocyte expression of monocyte chemoattractant protein-1 is differentially regulated by transforming growth factor beta. J Neuroimmunol 91:190–197

    Article  PubMed  CAS  Google Scholar 

  40. Dietrich PY, Walker PR, Saas P (2003) Death receptors on reactive astrocytes: a key role in the fine tuning of brain inflammation? Neurology 60:548–554

    Article  PubMed  Google Scholar 

  41. Vargas MR, Johnson JA (2010) Astrogliosis in amyotrophic lateral sclerosis: role and therapeutic potential of astrocytes. Neurotherapeutics 7:471–481

    Article  PubMed  CAS  Google Scholar 

  42. Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689

    Article  PubMed  CAS  Google Scholar 

  43. Little AR, O’Callagha JP (2001) Astrogliosis in the adult and developing CNS: is there a role for proinflammatory cytokines? Neurotoxicology 22:607–618

    Article  PubMed  CAS  Google Scholar 

  44. Griffin WS, Liu L, Li Y, Mrak RE, Barger SW (2006) Interleukin-1 mediates Alzheimer and Lewy body pathologies. J Neuroinflammation 3:5

    Article  PubMed  CAS  Google Scholar 

  45. Mrak RE, Griffin WS (2005) Potential inflammatory biomarkers in Alzheimer’s disease. J Alzheimers Dis 8:369–375

    PubMed  CAS  Google Scholar 

  46. Fan L et al (1995) Experimental brain injury induces expression of interleukin-1 beta mRNA in the rat brain. Brain Res Mol Brain Res 30:125–130

    Article  PubMed  CAS  Google Scholar 

  47. Patel HC, Boutin H, Allan SM (2003) Interleukin-1 in the brain: mechanisms of action in acute neurodegeneration. Ann N Y Acad Sci 992:39–47

    Article  PubMed  CAS  Google Scholar 

  48. Merrill JE, Benveniste EN (1996) Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci 19:331–338

    Article  PubMed  CAS  Google Scholar 

  49. John GR et al (2004) Interleukin-1beta induces a reactive astroglial phenotype via deactivation of the Rho GTPase-Rock axis. J Neurosci 24:2837–2845

    Article  PubMed  CAS  Google Scholar 

  50. Faulkner JR et al (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155

    Article  PubMed  CAS  Google Scholar 

  51. Sofroniew MV et al (1999) Genetically-targeted and conditionally-regulated ablation of astroglial cells in the central, enteric and peripheral nervous systems in adult transgenic mice. Brain Res 835:91–95

    Article  PubMed  CAS  Google Scholar 

  52. Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 30:8285–8295

    Article  PubMed  CAS  Google Scholar 

  53. Ikegami Y et al (2003) Increased TUNEL positive cells in human alcoholic brains. Neurosci Lett 349:201–205

    Article  PubMed  CAS  Google Scholar 

  54. Korbo L (1999) Glial cell loss in the hippocampus of alcoholics. Alcohol Clin Exp Res 23:164–168

    Article  PubMed  CAS  Google Scholar 

  55. Kril JJ, Halliday GM, Svoboda MD, Cartwright H (1997) The cerebral cortex is damaged in chronic alcoholics. Neuroscience 79:983–998

    Article  PubMed  CAS  Google Scholar 

  56. Miguel-Hidalgo JJ et al (2002) Glia pathology in the prefrontal cortex in alcohol dependence with and without depressive symptoms. Biol Psychiatry 52:1121–1133

    Article  PubMed  CAS  Google Scholar 

  57. Liu J et al (2006) Patterns of gene expression in the frontal cortex discriminate alcoholic from nonalcoholic individuals. Neuropsychopharmacology 31:1574–1582

    Article  PubMed  CAS  Google Scholar 

  58. Lewohl JM, Wixey J, Harper CG, Dodd PR (2005) Expression of MBP, PLP, MAG, CNP, and GFAP in the human alcoholic brain. Alcohol Clin Exp Res 29:1698–1705

    Article  PubMed  CAS  Google Scholar 

  59. Fernandez-Lizarbe S, Pascual M, Guerri C (2009) Critical role of TLR4 response in the activation of microglia induced by ethanol. J Immunol 183:4733–4744

    Article  PubMed  CAS  Google Scholar 

  60. He J, Crews FT (2008) Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol 210:349–358

    Article  PubMed  CAS  Google Scholar 

  61. Qin L et al (2008) Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation 5:10

    Article  PubMed  CAS  Google Scholar 

  62. Alfonso-Loeches S, Guerri C (2011) Molecular and behavioral aspects of the actions of alcohol on the adult and developing brain. Crit Rev Clin Lab Sci 48:19–47

    Article  PubMed  CAS  Google Scholar 

  63. Blanco AM, Guerri C (2007) Ethanol intake enhances inflammatory mediators in brain: role of glial cells and TLR4/IL-1RI receptors. Front Biosci 12:2616–2630

    Article  PubMed  CAS  Google Scholar 

  64. Akira S, Takeda K (2004) Functions of toll-like receptors: lessons from KO mice. C R Biol 327:581–589

    Article  PubMed  CAS  Google Scholar 

  65. O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7:353–364

    Article  PubMed  CAS  Google Scholar 

  66. Yang Y et al (2007) Lipopolysaccharide (LPS) regulates TLR4 signal transduction in nasopharynx epithelial cell line 5-8F via NFkappaB and MAPKs signaling pathways. Mol Immunol 44:984–992

    Article  PubMed  CAS  Google Scholar 

  67. Shimazu R et al (1999) MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 189:1777–1782

    Article  PubMed  CAS  Google Scholar 

  68. Nagai Y et al (2002) Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat Immunol 3:667–672

    PubMed  CAS  Google Scholar 

  69. Gioannini TL et al (2004) Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc Natl Acad Sci USA 101:4186–4191

    Article  PubMed  CAS  Google Scholar 

  70. Kim HM et al (2007) Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell 130:906–917

    Article  PubMed  CAS  Google Scholar 

  71. Ohto U, Fukase K, Miyake K, Satow Y (2007) Crystal structures of human MD-2 and its complex with antiendotoxic lipid IVa. Science 316:1632–1634

    Article  PubMed  CAS  Google Scholar 

  72. Park BS et al (2009) The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458:1191–1195

    Article  PubMed  CAS  Google Scholar 

  73. Triantafilou M, Miyake K, Golenbock DT, Triantafilou K (2002) Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J Cell Sci 115:2603–2611

    PubMed  CAS  Google Scholar 

  74. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637–650

    Article  PubMed  CAS  Google Scholar 

  75. Caso JR et al (2008) Toll-like receptor 4 is involved in subacute stress-induced neuroinflammation and in the worsening of experimental stroke. Stroke 39:1314–1320

    Article  PubMed  CAS  Google Scholar 

  76. Sarnico I et al (2009) NF-kappaB p50/RelA and c-Rel-containing dimers: opposite regulators of neuron vulnerability to ischaemia. J Neurochem 108:475–485

    Article  PubMed  CAS  Google Scholar 

  77. Lehnardt S et al (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA 100:8514–8519

    Article  PubMed  CAS  Google Scholar 

  78. Blanco AM, Perez-Arago A, Fernandez-Lizarbe S, Guerri C (2008) Ethanol mimics ligand-mediated activation and endocytosis of IL-1RI/TLR4 receptors via lipid rafts caveolae in astroglial cells. J Neurochem 106:625–639

    Article  PubMed  CAS  Google Scholar 

  79. Blanco AM, Valles SL, Pascual M, Guerri C (2005) Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol 175:6893–6899

    PubMed  CAS  Google Scholar 

  80. Saijo K et al (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137:47–59

    Article  PubMed  CAS  Google Scholar 

  81. Boje KM, Arora PK (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587:250–256

    Article  PubMed  CAS  Google Scholar 

  82. Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149:2736–2741

    PubMed  CAS  Google Scholar 

  83. Okun E, Griffioen KJ, Mattson MP (2010) Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci 34:269–281

    Article  CAS  Google Scholar 

  84. Drexler SK, Foxwell BM (2010) The role of toll-like receptors in chronic inflammation. Int J Biochem Cell Biol 42:506–518

    Article  PubMed  CAS  Google Scholar 

  85. Landreth GE, Reed-Geaghan EG (2009) Toll-like receptors in Alzheimer’s disease. Curr Top Microbiol Immunol 336:137–153

    Article  PubMed  CAS  Google Scholar 

  86. Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP (2009) Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience 158:1007–1020

    Article  PubMed  CAS  Google Scholar 

  87. Okun E et al (2009) Toll-like receptors in neurodegeneration. Brain Res Rev 59:278–292

    Article  PubMed  CAS  Google Scholar 

  88. Kiechl S et al (2002) Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 347:185–192

    Article  PubMed  CAS  Google Scholar 

  89. Manolakis AC et al (2011) TLR4 gene polymorphisms: evidence for protection against type 2 diabetes but not for diabetes-associated ischaemic heart disease. Eur J Endocrinol 165:261–267

    Article  PubMed  CAS  Google Scholar 

  90. Emonts M et al (2011) Polymorphisms in genes controlling inflammation and tissue repair in rheumatoid arthritis: a case control study. BMC Med Genet 12:36

    Article  PubMed  CAS  Google Scholar 

  91. Reed-Geaghan EG, Savage JC, Hise AG, Landreth GE (2009) CD14 and toll-like receptors 2 and 4 are required for fibrillar A{beta}-stimulated microglial activation. J Neurosci 29:11982–11992

    Article  PubMed  CAS  Google Scholar 

  92. Jin JJ, Kim HD, Maxwell JA, Li L, Fukuchi K (2008) Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 5:23

    Article  PubMed  CAS  Google Scholar 

  93. Tahara K et al (2006) Role of toll-like receptor signalling in Abeta uptake and clearance. Brain 129:3006–3019

    Article  PubMed  Google Scholar 

  94. Minoretti P et al (2006) Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci Lett 391:147–149

    Article  PubMed  CAS  Google Scholar 

  95. Richard KL, Filali M, Prefontaine P, Rivest S (2008) Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid beta 1–42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. J Neurosci 28:5784–5793

    Article  PubMed  CAS  Google Scholar 

  96. Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. J Neural Transm Suppl 373–381

    Google Scholar 

  97. Castano A, Herrera AJ, Cano J, Machado A (1998) Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem 70:1584–1592

    Article  PubMed  CAS  Google Scholar 

  98. Panaro MA et al (2008) Expression of TLR4 and CD14 in the central nervous system (CNS) in a MPTP mouse model of Parkinson’s-like disease. Immunopharmacol Immunotoxicol 30:729–740

    Article  PubMed  CAS  Google Scholar 

  99. Kilic U, Kilic E, Matter CM, Bassetti CL, Hermann DM (2008) TLR-4 deficiency protects against focal cerebral ischemia and axotomy-induced neurodegeneration. Neurobiol Dis 31:33–40

    Article  PubMed  CAS  Google Scholar 

  100. Kelley KW, Dantzer R (2011) Alcoholism and inflammation: neuroimmunology of behavioral and mood disorders. Brain Behav Immun 25(Suppl 1):S13–S20

    Article  PubMed  CAS  Google Scholar 

  101. Szabo G, Mandrekar P (2009) A recent perspective on alcohol, immunity, and host defense. Alcohol Clin Exp Res 33:220–232

    Article  PubMed  CAS  Google Scholar 

  102. Germann G, Barthold U, Lefering R, Raff T, Hartmann B (1997) The impact of risk factors and pre-existing conditions on the mortality of burn patients and the precision of predictive admission-scoring systems. Burns 23:195–203

    Article  PubMed  CAS  Google Scholar 

  103. Messingham KA, Faunce DE, Kovacs EJ (2002) Alcohol, injury, and cellular immunity. Alcohol 28:137–149

    Article  PubMed  Google Scholar 

  104. Ruiz M et al (1999) Severe community-acquired pneumonia. Risk factors and follow-up epidemiology. Am J Respir Crit Care Med 160:923–929

    PubMed  CAS  Google Scholar 

  105. Pruett SB, Schwab C, Zheng Q, Fan R (2004) Suppression of innate immunity by acute ethanol administration: a global perspective and a new mechanism beginning with inhibition of signaling through TLR3. J Immunol 173:2715–2724

    PubMed  CAS  Google Scholar 

  106. Yamashina S et al (2000) Tolerance and sensitization to endotoxin in Kupffer cells caused by acute ethanol involve interleukin-1 receptor-associated kinase. Biochem Biophys Res Commun 277:686–690

    Article  PubMed  CAS  Google Scholar 

  107. Goral J, Choudhry MA, Kovacs EJ (2004) Acute ethanol exposure inhibits macrophage IL-6 production: role of p38 and ERK1/2 MAPK. J Leukoc Biol 75:553–559

    Article  PubMed  CAS  Google Scholar 

  108. Pang M, Bala S, Kodys K, Catalano D, Szabo G (2011) Inhibition of TLR8- and TLR4-induced Type I IFN induction by alcohol is different from its effects on inflammatory cytokine production in monocytes. BMC Immunol 12:55

    Article  PubMed  CAS  Google Scholar 

  109. Miller AM, Horiguchi N, Jeong WI, Radaeva S, Gao B (2011) Molecular mechanisms of alcoholic liver disease: innate immunity and cytokines. Alcohol Clin Exp Res 35:787–793

    Article  PubMed  CAS  Google Scholar 

  110. Parlesak A, Schafer C, Schutz T, Bode JC, Bode C (2000) Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J Hepatol 32:742–747

    Article  PubMed  CAS  Google Scholar 

  111. Uesugi T et al (2001) Delivery of IkappaB superrepressor gene with adenovirus reduces early alcohol-induced liver injury in rats. Hepatology 34:1149–1157

    Article  PubMed  CAS  Google Scholar 

  112. Hritz I et al (2008) The critical role of toll-like receptor (TLR) 4 in alcoholic liver disease is independent of the common TLR adapter MyD88. Hepatology 48:1224–1231

    Article  PubMed  CAS  Google Scholar 

  113. Bhatty M, Jan BL, Tan W, Pruett SB, Nanduri B (2011) Role of acute ethanol exposure and TLR4 in early events of sepsis in a mouse model. Alcohol 45:795–803

    Article  PubMed  CAS  Google Scholar 

  114. Bird MD et al (2010) Decreased pulmonary inflammation following ethanol and burn injury in mice deficient in TLR4 but not TLR2 signaling. Alcohol Clin Exp Res 34:1733–1741

    Article  PubMed  CAS  Google Scholar 

  115. Marcolini J, Nguyen M, Ericsson C (2002) Klebsiella pneumoniae brain abscess in a Taiwanese adult. J Infect 44:205–210

    Article  PubMed  Google Scholar 

  116. de Vries HE, Kuiper J, de Boer AG, Van Berkel TJ, Breimer DD (1997) The blood–brain barrier in neuroinflammatory diseases. Pharmacol Rev 49:143–155

    PubMed  Google Scholar 

  117. Kalaria RN (1992) The blood–brain barrier and cerebral microcirculation in Alzheimer disease. Cerebrovasc Brain Metab Rev 4:226–260

    PubMed  CAS  Google Scholar 

  118. Latour LL, Kang DW, Ezzeddine MA, Chalela JA, Warach S (2004) Early blood–brain barrier disruption in human focal brain ischemia. Ann Neurol 56:468–477

    Article  PubMed  Google Scholar 

  119. van Horssen J, Brink BP, de Vries HE, van der Valk P, Bo L (2007) The blood–brain barrier in cortical multiple sclerosis lesions. J Neuropathol Exp Neurol 66:321–328

    Article  PubMed  Google Scholar 

  120. Bowman CC, Rasley A, Tranguch SL, Marriott I (2003) Cultured astrocytes express toll-like receptors for bacterial products. Glia 43:281–291

    Article  PubMed  Google Scholar 

  121. Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021

    PubMed  CAS  Google Scholar 

  122. Esen N, Tanga FY, DeLeo JA, Kielian T (2004) Toll-like receptor 2 (TLR2) mediates astrocyte activation in response to the Gram-positive bacterium Staphylococcus aureus. J Neurochem 88:746–758

    Article  PubMed  CAS  Google Scholar 

  123. Minagar A et al (2002) The role of macrophage/microglia and astrocytes in the pathogenesis of three neurologic disorders: HIV-associated dementia, Alzheimer disease, and multiple sclerosis. J Neurol Sci 202:13–23

    Article  PubMed  CAS  Google Scholar 

  124. Valles SL, Blanco AM, Pascual M, Guerri C (2004) Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes. Brain Pathol 14:365–371

    Article  PubMed  CAS  Google Scholar 

  125. Wilflingseder D et al (2004) HIV-1-induced migration of monocyte-derived dendritic cells is associated with differential activation of MAPK pathways. J Immunol 173:7497–7505

    PubMed  CAS  Google Scholar 

  126. Wu D, Marko M, Claycombe K, Paulson KE, Meydani SN (2003) Ceramide-induced and age-associated increase in macrophage COX-2 expression is mediated through up-regulation of NF-kappa B activity. J Biol Chem 278:10983–10992

    Article  PubMed  CAS  Google Scholar 

  127. Buss H et al (2004) Constitutive and interleukin-1-inducible phosphorylation of p65 NF-{kappa}B at serine 536 is mediated by multiple protein kinases including I{kappa}B kinase (IKK)-{alpha}, IKK{beta}, IKK{epsilon}, TRAF family member-associated (TANK)-binding kinase 1 (TBK1), and an unknown kinase and couples p65 to TATA-binding protein-associated factor II31-mediated interleukin-8 transcription. J Biol Chem 279:55633–55643

    Article  PubMed  CAS  Google Scholar 

  128. Jiang Z et al (2003) Pellino 1 is required for interleukin-1 (IL-1)-mediated signaling through its interaction with the IL-1 receptor-associated kinase 4 (IRAK4)-IRAK-tumor necrosis factor receptor-associated factor 6 (TRAF6) complex. J Biol Chem 278:10952–10956

    Article  PubMed  CAS  Google Scholar 

  129. Salaria S et al (2007) Toll-like receptor pathway gene expression is associated with human immunodeficiency virus-associated neurodegeneration. J Neurovirol 13:496–503

    Article  PubMed  CAS  Google Scholar 

  130. Pascual M, Fernandez-Lizarbe S, Guerri C (2011) Role of TLR4 in ethanol effects on innate and adaptive immune responses in peritoneal macrophages. Immunol Cell Biol 89:716–727

    Article  PubMed  CAS  Google Scholar 

  131. O’Connor JC et al (2009) Interferon-gamma and tumor necrosis factor-alpha mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J Neurosci 29:4200–4209

    Article  PubMed  CAS  Google Scholar 

  132. Back SA et al (2005) Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med 11:966–972

    PubMed  CAS  Google Scholar 

  133. Kadhim H, De Prez C, Gazagnes MD, Sebire G (2003) In situ cytokine immune responses in acute disseminated encephalomyelitis: insights into pathophysiologic mechanisms. Hum Pathol 34:293–297

    Article  PubMed  CAS  Google Scholar 

  134. Paula-Barbosa MM, Tavares MA (1985) Long term alcohol consumption induces microtubular changes in the adult rat cerebellar cortex. Brain Res 339:195–199

    Article  PubMed  CAS  Google Scholar 

  135. Mayfield RD et al (2002) Patterns of gene expression are altered in the frontal and motor cortices of human alcoholics. J Neurochem 81:802–813

    Article  PubMed  CAS  Google Scholar 

  136. Lewohl JM et al (2000) Gene expression in human alcoholism: microarray analysis of frontal cortex. Alcohol Clin Exp Res 24:1873–1882

    Article  PubMed  CAS  Google Scholar 

  137. de la Monte SM (1988) Disproportionate atrophy of cerebral white matter in chronic alcoholics. Arch Neurol 45:990–992

    Article  PubMed  Google Scholar 

  138. Pfefferbaum A, Adalsteinsson E, Sullivan EV (2006) Dysmorphology and microstructural degradation of the corpus callosum: interaction of age and alcoholism. Neurobiol Aging 27:994–1009

    Article  PubMed  CAS  Google Scholar 

  139. Alfonso-Loeches S et al (2012) Toll-like receptor 4 participates in the myelin disruptions associated with chronic alcohol abuse. Glia 60:948–964

    Article  PubMed  Google Scholar 

  140. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    Article  PubMed  CAS  Google Scholar 

  141. Marta M (2009) Toll-like receptors in multiple sclerosis mouse experimental models. Ann N Y Acad Sci 1173:458–462

    Article  PubMed  CAS  Google Scholar 

  142. Schonberg DL, McTigue DM (2009) Iron is essential for oligodendrocyte genesis following intraspinal macrophage activation. Exp Neurol 218:64–74

    Article  PubMed  CAS  Google Scholar 

  143. Peoples RW, Li C, Weight FF (1996) Lipid vs protein theories of alcohol action in the nervous system. Annu Rev Pharmacol Toxicol 36:185–201

    Article  PubMed  CAS  Google Scholar 

  144. Pike LJ (2003) Lipid rafts: bringing order to chaos. J Lipid Res 44:655–667

    Article  PubMed  CAS  Google Scholar 

  145. Triantafilou M, Morath S, Mackie A, Hartung T, Triantafilou K (2004) Lateral diffusion of Toll-like receptors reveals that they are transiently confined within lipid rafts on the plasma membrane. J Cell Sci 117:4007–4014

    Article  PubMed  CAS  Google Scholar 

  146. Dolganiuc A, Bakis G, Kodys K, Mandrekar P, Szabo G (2006) Acute ethanol treatment modulates Toll-like receptor-4 association with lipid rafts. Alcohol Clin Exp Res 30:76–85

    Article  PubMed  CAS  Google Scholar 

  147. Dai Q, Zhang J, Pruett SB (2005) Ethanol alters cellular activation and CD14 partitioning in lipid rafts. Biochem Biophys Res Commun 332:37–42

    Article  PubMed  CAS  Google Scholar 

  148. Fernandez-Lizarbe S, Pascual M, Gascon MS, Blanco A, Guerri C (2008) Lipid rafts regulate ethanol-induced activation of TLR4 signaling in murine macrophages. Mol Immunol 45:2007–2016

    Article  PubMed  CAS  Google Scholar 

  149. Wang JH, Sun GY (2001) Ethanol inhibits cytokine-induced iNOS and sPLA2 in immortalized astrocytes: evidence for posttranscriptional site of ethanol action. J Biomed Sci 8:126–133

    PubMed  CAS  Google Scholar 

  150. Militante JD, Feinstein DL, Syapin PJ (1997) Suppression by ethanol of inducible nitric oxide synthase expression in C6 glioma cells. J Pharmacol Exp Ther 281:558–565

    PubMed  CAS  Google Scholar 

  151. Boe DM, Nelson S, Zhang P, Quinton L, Bagby GJ (2003) Alcohol-induced suppression of lung chemokine production and the host defense response to Streptococcus pneumoniae. Alcohol Clin Exp Res 27:1838–1845

    Article  PubMed  CAS  Google Scholar 

  152. Friebe A et al (2010) Dose-dependent development of depressive symptoms during adjuvant interferon-{alpha} treatment of patients with malignant melanoma. Psychosomatics 51:466–473

    PubMed  CAS  Google Scholar 

  153. Khairova RA, Machado-Vieira R, Du J, Manji HK (2009) A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder. Int J Neuropsychopharmacol 12:561–578

    Article  PubMed  CAS  Google Scholar 

  154. Hauss-Wegrzyniak B, Lukovic L, Bigaud M, Stoeckel ME (1998) Brain inflammatory response induced by intracerebroventricular infusion of lipopolysaccharide: an immunohistochemical study. Brain Res 794:211–224

    Article  PubMed  CAS  Google Scholar 

  155. Hauss-Wegrzyniak B, Vannucchi MG, Wenk GL (2000) Behavioral and ultrastructural changes induced by chronic neuroinflammation in young rats. Brain Res 859:157–166

    Article  PubMed  CAS  Google Scholar 

  156. Hauss-Wegrzyniak B, Wenk GL (2002) Beta-amyloid deposition in the brains of rats chronically infused with thiorphan or lipopolysaccharide: the role of ascorbic acid in the vehicle. Neurosci Lett 322:75–78

    Article  PubMed  CAS  Google Scholar 

  157. Huang Y, Henry CJ, Dantzer R, Johnson RW, Godbout JP (2008) Exaggerated sickness behavior and brain proinflammatory cytokine expression in aged mice in response to intracerebroventricular lipopolysaccharide. Neurobiol Aging 29:1744–1753

    Article  PubMed  CAS  Google Scholar 

  158. Wu Y et al (2011) Attenuation of microglial and IL-1 signaling protects mice from acute alcohol-induced sedation and/or motor impairment. Brain Behav Immun 25(Suppl 1):S155–S164

    Article  PubMed  CAS  Google Scholar 

  159. Pascual M, Blanco AM, Cauli O, Minarro J, Guerri C (2007) Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats. Eur J Neurosci 25:541–550

    Article  PubMed  Google Scholar 

  160. Hayley S, Mangano E, Strickland M, Anisman H (2008) Lipopolysaccharide and a social stressor influence behaviour, corticosterone and cytokine levels: divergent actions in cyclooxygenase-2 deficient mice and wild type controls. J Neuroimmunol 197:29–36

    Article  PubMed  CAS  Google Scholar 

  161. Weberpals M et al (2009) NOS2 gene deficiency protects from sepsis-induced long-term cognitive deficits. J Neurosci 29:14177–14184

    Article  PubMed  CAS  Google Scholar 

  162. Vollmar P et al (2010) Active immunization with amyloid-beta 1–42 impairs memory performance through TLR2/4-dependent activation of the innate immune system. J Immunol 185:6338–6347

    Article  PubMed  CAS  Google Scholar 

  163. Edenberg HJ et al (2008) Association of NFKB1, which encodes a subunit of the transcription factor NF-kappaB, with alcohol dependence. Hum Mol Genet 17:963–970

    Article  PubMed  CAS  Google Scholar 

  164. Okvist A et al (2007) Neuroadaptations in human chronic alcoholics: dysregulation of the NF-kappaB system. PLoS One 2:e930

    Article  PubMed  CAS  Google Scholar 

  165. Loftis JM, Choi D, Hoffman W, Huckans MS (2010) Methamphetamine causes persistent immune dysregulation: a cross-species, translational report. Neurotox Res 20:59–68

    Article  PubMed  CAS  Google Scholar 

  166. Edenberg HJ et al (2004) Variations in GABRA2, encoding the alpha 2 subunit of the GABA(A) receptor, are associated with alcohol dependence and with brain oscillations. Am J Hum Genet 74:705–714

    Article  PubMed  CAS  Google Scholar 

  167. Zou J, Crews F (2010) Induction of innate immune gene expression cascades in brain slice cultures by ethanol: key role of NF-kappaB and proinflammatory cytokines. Alcohol Clin Exp Res 34:777–789

    Article  PubMed  CAS  Google Scholar 

  168. Liu J et al (2011) Binge alcohol drinking is associated with GABAA alpha2-regulated Toll-like receptor 4 (TLR4) expression in the central amygdala. Proc Natl Acad Sci USA 108:4465–4470

    Article  PubMed  CAS  Google Scholar 

  169. Blednov YA et al (2011) Neuroimmune regulation of alcohol consumption: behavioral validation of genes obtained from genomic studies. Addict Biol 17:108–120

    Article  PubMed  CAS  Google Scholar 

  170. Drugan RC, Wiedholz LM, Holt A, Kent S, Christianson JP (2007) Environmental and immune stressors enhance alcohol-induced motor ataxia in rat. Pharmacol Biochem Behav 86:125–131

    Article  PubMed  CAS  Google Scholar 

  171. Blednov YA et al (2011) Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice. Brain Behav Immun 25(Suppl 1):S92–S105

    Article  PubMed  CAS  Google Scholar 

  172. Blednov YA et al (2011) Loss of ethanol conditioned taste aversion and motor stimulation in knockin mice with ethanol-insensitive alpha2-containing GABA(A) receptors. J Pharmacol Exp Ther 336:145–154

    Article  PubMed  CAS  Google Scholar 

  173. Breese GR et al (2008) Repeated lipopolysaccharide (LPS) or cytokine treatments sensitize ethanol withdrawal-induced anxiety-like behavior. Neuropsychopharmacology 33:867–876

    Article  PubMed  CAS  Google Scholar 

  174. Wohleb ES et al (2011) beta-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci 31:6277–6288

    Article  PubMed  CAS  Google Scholar 

  175. Watkins LR, Hutchinson MR, Rice KC, Maier SF (2009) The “toll” of opioid-induced glial activation: improving the clinical efficacy of opioids by targeting glia. Trends Pharmacol Sci 30:581–591

    Article  PubMed  CAS  Google Scholar 

  176. Hutchinson MR et al (2010) Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun 24:83–95

    Article  PubMed  CAS  Google Scholar 

  177. Hutchinson MR et al (2010) Evidence that tricyclic small molecules may possess toll-like receptor and myeloid differentiation protein 2 activity. Neuroscience 168:551–563

    Article  PubMed  CAS  Google Scholar 

  178. Hutchinson MR et al (2008) Proinflammatory cytokines oppose opioid-induced acute and chronic analgesia. Brain Behav Immun 22:1178–1189

    Article  PubMed  CAS  Google Scholar 

  179. Song P, Zhao ZQ (2001) The involvement of glial cells in the development of morphine tolerance. Neurosci Res 39:281–286

    Article  PubMed  CAS  Google Scholar 

  180. Hutchinson MR et al (2008) Minocycline suppresses morphine-induced respiratory depression, suppresses morphine-induced reward, and enhances systemic morphine-induced analgesia. Brain Behav Immun 22:1248–1256

    Article  PubMed  CAS  Google Scholar 

  181. Hutchinson MR et al (2009) Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun 23:240–250

    Article  PubMed  CAS  Google Scholar 

  182. Liu B, Du L, Hong JS (2000) Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation. J Pharmacol Exp Ther 293:607–617

    PubMed  CAS  Google Scholar 

  183. Liu JG, Prather PL (2002) Chronic agonist treatment converts antagonists into inverse agonists at delta-opioid receptors. J Pharmacol Exp Ther 302:1070–1079

    Article  PubMed  CAS  Google Scholar 

  184. Sebai H et al (2010) Protective effect of resveratrol against LPS-induced extracellular lipoperoxidation in AR42J cells partly via a Myd88-dependent signaling pathway. Arch Biochem Biophys 495:56–61

    Article  PubMed  CAS  Google Scholar 

  185. Ding BJ et al (2011) Soybean isoflavone alleviates beta-amyloid 1–42 induced inflammatory response to improve learning and memory ability by down regulation of Toll-like receptor 4 expression and nuclear factor-kappaB activity in rats. Int J Dev Neurosci 29:537–542

    Article  PubMed  CAS  Google Scholar 

  186. Youn HS, Saitoh SI, Miyake K, Hwang DH (2006) Inhibition of homodimerization of Toll-like receptor 4 by curcumin. Biochem Pharmacol 72:62–69

    Article  PubMed  CAS  Google Scholar 

  187. Wong SW et al (2009) Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-­dependent manner. J Biol Chem 284:27384–27392

    Article  PubMed  CAS  Google Scholar 

  188. Youn HS et al (2008) Cinnamaldehyde suppresses toll-like receptor 4 activation mediated through the inhibition of receptor oligomerization. Biochem Pharmacol 75:494–502

    Article  PubMed  CAS  Google Scholar 

  189. Chen T, Guo J, Han C, Yang M, Cao X (2009) Heat shock protein 70, released from heat-stressed tumor cells, initiates antitumor immunity by inducing tumor cell chemokine production and activating dendritic cells via TLR4 pathway. J Immunol 182:1449–1459

    Article  PubMed  CAS  Google Scholar 

  190. Equils O et al (2006) 1,25-Dihydroxyvitamin D inhibits lipopolysaccharide-induced immune activation in human endothelial cells. Clin Exp Immunol 143:58–64

    Article  PubMed  CAS  Google Scholar 

  191. Roozen HG et al (2006) A systematic review of the effectiveness of naltrexone in the maintenance treatment of opioid and alcohol dependence. Eur Neuropsychopharmacol 16:311–323

    Article  PubMed  CAS  Google Scholar 

  192. Wu Y et al (2011) Inhibiting the TLR4-MyD88 signalling cascade by genetic or pharmacologic strategies reduces acute alcohol dose-induced sedation and motor impairment in mice. Br J Pharmacol 165:1319–1329

    Article  CAS  Google Scholar 

  193. Franchi S et al (2010) The effects of alcoholism pharmacotherapy on immune responses in alcohol-dependent patients. Int J Immunopathol Pharmacol 23:847–855

    PubMed  CAS  Google Scholar 

  194. Mulligan MK et al (2006) Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. Proc Natl Acad Sci USA 103:6368–6373

    Article  PubMed  CAS  Google Scholar 

  195. Kong EC et al (2010) Ethanol-regulated genes that contribute to ethanol sensitivity and rapid tolerance in Drosophila. Alcohol Clin Exp Res 34:302–316

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank M. March for excellent professional assistance in preparing the figures in this manuscript. The authors’ experimental work has been supported by grants from the Spanish Ministry of Science and Innovation (SAF 2009-07503), the Spanish Ministry of Health, the Carlos III Institute (RTA Network, RD06/0001/1119), PNSD (2010I037), PROMETEO/2009/072, and General Direct Drug Dependence, GV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Consuelo Guerri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Guerri, C., Pascual, M. (2013). Role of Toll-Like Receptor 4 in Alcohol-Induced Neuroinflammation and Behavioral Dysfunctions. In: Cui, C., Grandison, L., Noronha, A. (eds) Neural-Immune Interactions in Brain Function and Alcohol Related Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4729-0_9

Download citation

Publish with us

Policies and ethics