Treatment of Resistant Bacterial Infections in Children: Thinking Inside and Outside the Box

  • Gilat Livni
  • Shai AshkenaziEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 764)


Antimicrobial resistance of bacteria causing pediatric infections has become more common and complicated in recent years. Although formerly confined to hospital settings, multi-drug resistant bacteria now also cause community-acquired infections. Treatment of infections caused by resistant pathogens is difficult, necessitating thinking both inside and outside the box. Determination of the precise minimal inhibitory concentration (MIC) is often crucial for selecting the most appropriate antibiotics, their doses, and use of prolonged infusions. For some multiply-resistant bacteria, off-label use of antibiotics, sometimes with no evidence from controlled studies (“salvage therapy”) is unavoidable.


Minimal Inhibitory Concentration Infective Endocarditis Bacterial Meningitis Septic Arthritis Necrotizing Fasciitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gupta N, Limbago BM, Patel JB, Kallen AJ (2011) Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis 53(1):60–67CrossRefGoogle Scholar
  2. 2.
    Perez F, Hujer AM, Hujer KM, Decker BK, Rather ON, Bonomo RA (2007) Global challenge of multi-drug resistant Acinetobacter baumani. Antimicrobial Agents Chemother 51(10):3471–3484CrossRefGoogle Scholar
  3. 3.
    Paterson DL (2008) Impact of antibiotic resistance in Gram-negative bacilli on empirical and definitive antibiotic therapy. Clin Infect Dis 47(Suppl1):14–20CrossRefGoogle Scholar
  4. 4.
    Paterson DL, Rogers BA (2010) How soon is now? The urgent need for randomized controlled trials evaluating treatment for multi-drug resistant bacterial infections. Clin Infect Dis 51(11):1245–1247CrossRefGoogle Scholar
  5. 5.
    Sievent DM, Rudrick JT, Patel JB, McDonald LC, Wilkins MJ, Hageman JC (2008) Vancomycin-resistant Staphylococcus aureus in the Unites States, 2002–2006. Clin Infect Dis 46(5):668–674CrossRefGoogle Scholar
  6. 6.
    Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R et al (2010) Emergence of a new antibiotic resistance mechanism in India, Pakistan and the UK: a molecular, biological and epidemiological study. Lancet Infect Dis 10(9):597–602CrossRefGoogle Scholar
  7. 7.
    Chen LF, Chopra T, Kaye KS (2009) Pathogens resistant to antimicrobial agents. Infect Dis Clin North Am 23(4):817–845CrossRefGoogle Scholar
  8. 8.
    Normark BH, Normark S (2002) Evolution and spread of antibiotic resistance. J intern Med 252(2):91–106CrossRefGoogle Scholar
  9. 9.
    Castanheira M, Mendes RE, Woosley LN, Jones RN (2011) Trends in carbapenemase-producing Escherichia coli and Klebsiella app from Europe and the Americas: report from the SENTRY antimicrobial surveillance programme (2007-09). J Antimicrobial Chemother 66(6):1409–1411CrossRefGoogle Scholar
  10. 10.
    Carrillo-Marquez MA, Hulten KG, Hammerman W, Lamberth L, Mason EO, Kaplan SL (2011) Staphylococcus aureus pneumonia in children in the era of community-acquired methicillin-resistance at Texas Children’s Hospital. Pediatr Infect Dis J 30(7):545–550CrossRefGoogle Scholar
  11. 11.
    Nordmann P, Poirel L, Toleman MA, Walsh TR (2011) Does broad-spectrum β-lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria? J Antimicrobial Chemother 66(4):689–692CrossRefGoogle Scholar
  12. 12.
    British Society for Antimicrobial Chemotherapy (2011) The urgent need for new antimicrobial agents. J Antimicrobial Chemother 66(6):1939–1940Google Scholar
  13. 13.
    Dagan R, Greenberg D, Jacobs MR, Phillips BL (2009) Pneumococcal infections. In: Feigin RD, Cherry JD, Demmler-Harrison GJ, Kaplan SL (eds) Textbook of Pediatric Infectious Diseases, 6th edn. p 1288–1342Google Scholar
  14. 14.
    Hsu KK, Shea KM, Stevenson AE, Pelton SI (2010) Changing serotypes causing childhood invasive pneumococcal disease: Massachusetts, 2001–2007. Pediatr Infect Dis J 29(4):289–293PubMedGoogle Scholar
  15. 15.
    Markiewicz Z, Tomasz A (1989) Variations in penicillin-binding protein patterns of penicillin-resistant clinical isolates of pneumococci. J Clin Microbiol 27(3):405–410PubMedPubMedCentralGoogle Scholar
  16. 16.
    Clinical and Laboratory Standards Institute (2011) Performance standards for antimicrobial susceptibility testing (Table 2G), WayneGoogle Scholar
  17. 17.
    Martinez-Aguilar G, Hammerman WA, Mason EO, Kaplan SL (2011) Clindamycin treatment of invasive infections caused by community-acquired methicillin-resistant and methicillin-sensitive Staphylococcus aureus in children. Pediatr Infect Dis J 22(7):593–598Google Scholar
  18. 18.
    Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ et al (2011) Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52(3):285–292CrossRefGoogle Scholar
  19. 19.
    Gemmel CG, Edwards DI, Fraise AP, Gould FK, Ridgway GL, Warren RE (2006) Guidelines for the prophylaxis and treatment of methicillin-resistant Staphylococcus aureus infections in the UK. J Antimicrobial Chemother 57(4):589–608CrossRefGoogle Scholar
  20. 20.
    Markwell S, Peter J, Barenkamp S (2010) Randomized controlled trial of antibiotics in the management of community-acquired skin abscesses in the pediatric patients. Ann Emerg Med 55(5):401–407CrossRefGoogle Scholar
  21. 21.
    Peltola H, Paakkonen M, Kallio MJT (2010) Short- versus long-term antimicrobial treatment for acute osteomyelitis of children: prospective, randomized trial on 131 culture-proven cases. Pediatr Infect Dis J 29(12):1123–1128CrossRefGoogle Scholar
  22. 22.
    Garazzino S, Tovo PA (2011) Clinical experience with linezolid in infants and children. J Antimicrobial Chemother 66(Suppl 4):23–41Google Scholar
  23. 23.
    Chavez-Bueno S, Stull TL (2009) Antibacterial agents in children. Infect Dis Clin North Am 23(4):865–880CrossRefGoogle Scholar
  24. 24.
    Ardura MI, Mejias A, Katz KS, Ravell P, McCracken GH, Sanchez PJ (2007) Daptomycin therapy for invasive Gram-positive bacterial infections in children. Pediatr Infect Dis J 26(12):1128–1132CrossRefGoogle Scholar
  25. 25.
    The Pediatric Infectious Disease Newsletter (2011) Ceftaroline approved. Pediatr Infect Dis J 30(4):A7Google Scholar
  26. 26.
    Laudano JB (2011) Ceftaroline fosamil: a new broad-spectrum cephalosporin. J Antimicrobial Chemother 66(Suppl 3):11–18Google Scholar
  27. 27.
    Sievent DM, Rudrik JT, Patel JB (2008) Vancomycin-resistant S. aureus in the United States, 2002–2006. Clin Infect Dis 46(5):668–674CrossRefGoogle Scholar
  28. 28.
    Jones RN (2006) Microbiological features of vancomycin in the 21st century: MIC creep, bactericidal/static activity and applied breakpoints to predict outcomes or detect resistant strains. Clin Infect Dis 42(Suppl 1):13–24CrossRefGoogle Scholar
  29. 29.
    Holmes NE, Turnidge JD, Munckholf WJ, Robinson JO, Korman TM, O’Sullivan MVN et al (2011) Antibiotic choice may not explain poorer outcomes in patients with Staphylococcus aureus bacteremia and high vancomycin minimum inhibitory concentrations. J Infect Dis 204(3):340–347CrossRefGoogle Scholar
  30. 30.
    Zheng X, Qi C, Arrieta M, O’leary A, Wang D, Shulman ST (2010) Lack of increase in vancomycin resistance of pediatric methicillin-resistant Staphylococcus aureus isolates from 2000 to 2007. Pediatr Infect Dis J 29(9):882–884CrossRefGoogle Scholar
  31. 31.
    Jacoby GA (1997) Extended-spectrum β-lactamases and other enzymes providing resistance to oxyimino-β-lactams. Infect Dis Clin North Am 11(4):875–887CrossRefGoogle Scholar
  32. 32.
    Hague R (2011) What is the threat from extended spectrum β-lactamaze-producing organisms in children? Arch Dis Child 96(4):325–327CrossRefGoogle Scholar
  33. 33.
    Tamma PD, Jenh AM, Milstone AM (2011) Prolonged β-lactam infusion for Gram-negative infections. Pediatr Infect Dis J 30(4):336–337CrossRefGoogle Scholar
  34. 34.
    Overturf GD (2010) Carbapenemnases: a brief review for pediatric infectious disease specialist. Pediatr Infect Dis J 29(1):68–70PubMedGoogle Scholar
  35. 35.
    Bradley JS, Jackson MA, Committee on Infectious Diseases, American Academy of Pediatrics (2011) Clinical report—the use of systemic and topical fluoroquinolones. Pediatrics 128(4):1034–1045CrossRefGoogle Scholar
  36. 36.
    Tamma PD, Lee CK (2009) Use of Colistin in children. Pediatr Infect Dis J 28(6):534–535CrossRefGoogle Scholar
  37. 37.
    Jajoo M, Kumar V, Jain M, Kumari S, Manchandra V (2011) Intravenous colistin administration in neonates. Pediatr Infect Dis J 30(3):218–221CrossRefGoogle Scholar
  38. 38.
    Yahav D, Lador A, Paul M, Leibovici L (2011) Efficacy and safety of tigecycline: a systematic review and meta-analysis. J Antimicrob Chemother 66(9):1963–1971CrossRefGoogle Scholar
  39. 39.
    Schwaber MJ, Lev B, Israeli A, Solter E, Smollan G, Rubinowitch B et al (2011) Containment of a country-wide outbreak of carbapenem-resistant Klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. Clin Infect Dis 52(7):848–855CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Professor of Pediatrics, Sackler Faculty of MedicineSchneider Children’s Medical CenterPetach TikvaIsrael

Personalised recommendations