Mycetoma Caused by Madurella mycetomatis: A Completely Neglected Medico-social Dilemma

  • Alex Van BelkumEmail author
  • Ahmed Fahal
  • Wendy W.J. van de Sande
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 764)


Mycetoma is a debilitating disease with a highly particular geographical distribution. The mycetoma belt circles the entire world just above the equator and defines the region with the highest prevalence and incidence. Although the disease is seen in Central America, India and all across Africa, Sudan seems to be the homeland of mycetoma. Mycetoma is an infectious disease caused either by bacteria (actinomycetoma) or true fungi (eumycetoma).

In Sudan most cases are caused by the fungal species Madurella mycetomatis. The precise natural habitat of this fungus is still an enigma, but its DNA can easily be found in soil and plant samples in endemic areas. Although the entire human population in these areas are in regular contact with the fungus, most individuals are unaffected. Thus mycetoma is an ideal clinical and experimental model system for the study of host-pathogen interactions. Also, given its relative importance locally, improvements in clinical and laboratory diagnostics and knowledge of the epidemiology of the disease are badly needed. This chapter describes the current state of affairs in the field of eumycetoma caused by M. mycetomatis. The value of laboratory research on this disease and future perspective for control and prevention of the infection are discussed.


Neutrophil Function Fructose Bisphosphate Aldolase Cladosporium Herbarum COMT Polymorphism Response Model System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Mycetoma research in Wendy van de Sande’s laboratory was facilitated by a grant in the VENI program provided by the Netherlands Organisation for Scientific Research (NWO).


  1. 1.
    Ahmed AO, van Leeuwen W, Fahal A, van de Sande W, Verbrugh H, van Belkum A (2004) Mycetoma caused by Madurella mycetomatis: a neglected infectious burden. Lancet Infect Dis 4(9):566–574CrossRefGoogle Scholar
  2. 2.
    McGinnis MR (1996) Mycetoma. Dermatol Clin 14(1):97–104CrossRefGoogle Scholar
  3. 3.
    Padhi S, Uppin SG, Uppin MS, Umabala P, Challa S, Laxmi V, Prasad VB (2010) Mycetoma in South India: retrospective analysis of 13 cases and description of two cases caused by unusual pathogens: Neoscytalidium dimidiatum and Aspergillus flavus. Int J Dermatol 49(11):1289–1296CrossRefGoogle Scholar
  4. 4.
    Afroz N, Khan N, Siddiqui FA, Rizvi M (2010) Eumycetoma versus actinomycetoma: diagnosis on cytology. J Cytol 27(4):133–135CrossRefGoogle Scholar
  5. 5.
    Wethered DB, Markey MA, Hay RJ, Mahgoub ES, Gumaa SA (1987) Ultrastructural and immunogenic changes in the formation of mycetoma grains. J Med Vet Mycol 25(1):39–46CrossRefGoogle Scholar
  6. 6.
    Ahmed A, Adelmann D, Fahal A, Verbrugh H, van Belkum A, de Hoog S (2002) Environmental occurrence of Madurella mycetomatis, the major agent of human eumycetoma in Sudan. J Clin Microbiol 40(3):1031–1036CrossRefGoogle Scholar
  7. 7.
    Ahmed AO, Abugroun E, Fahal AH, Zijlstra EE, van Belkum A, Verbrugh HA (1998) Unexpected high prevalence of secondary bacterial infection in patients with mycetoma. J Clin Microbiol 36:850–851PubMedPubMedCentralGoogle Scholar
  8. 8.
    Ameen M, Arenas R (2009) Developments in the management of mycetomas. Clin Exp Dermatol 34(1):1–7CrossRefGoogle Scholar
  9. 9.
    Ahmed AO, Desplaces N, Leonard P, Goldstein F, De Hoog S, Verbrugh H, van Belkum A (2003) Molecular detection and identification of agents of eumycetoma: detailed report of two cases. J Clin Microbiol 41(12):5813–5816CrossRefGoogle Scholar
  10. 10.
    Fahal AH, el Toum EA, el Hassan AM, Mahgoub ES, Gumaa SA (1995) The host tissue reaction to Madurella mycetomatis: new classification. J Med Vet Mycol 33(1):15–17CrossRefGoogle Scholar
  11. 11.
    Ameen M, Arenas R (2008) Emerging therapeutic regimes for the management of mycetomas. Expert Opin Pharmacother 9(12):2077–2085CrossRefGoogle Scholar
  12. 12.
    Mahgoub ES, Gumaa SA (1984) Ketoconazole in the treatment of eumycetoma due to Madurella mycetomii. Trans R Soc Trop Med Hyg 78:376–379CrossRefGoogle Scholar
  13. 13.
    Fahal AH, Rahman IA, El-Hassan AM, Rahman ME, Zijlstra EE (2011) The safety and efficacy of itraconazole for the treatment of patients with eumycetoma due to Madurella mycetomatis. Trans R Soc Trop Med Hyg 105(3):127–132CrossRefGoogle Scholar
  14. 14.
    Ahmed AO, van de Sande WW, van Vianen W, van Belkum A, Fahal AH, Verbrugh HA, Bakker-Woudenberg IA (2004) In vitro susceptibilities of Madurella mycetomatis to itraconazole and amphotericin B assessed by a modified NCCLS method and a viability-base 2,3-Bis(2-methoxy-4-nitro-5-sulfophenyl)-5-((phenylamino)carbonyl)-2H-tetrazolium hydroxide (XTT) assay. Antimicrob Agents Chemother 48(7):2742–2746CrossRefGoogle Scholar
  15. 15.
    van de Sande WW, Luijendijk A, Ahmed AO, Bakker-Woudenberg IA, van Belkum A (2005) Testing of the in vitro susceptibilities of Madurella mycetomatis to six antifungal agents by using the Sensititre system in comparison with a viability-based 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5- ((phenylamino)carbonyl)-2H-tetrazolium hydroxide (XTT) assay and a modified NCCLS method. Antimicrob Agents Chemother 49(4):1364–1368CrossRefGoogle Scholar
  16. 16.
    de Hoog GS, Adelmann D, Ahmed AO, van Belkum A (2004) Phylogeny and typification of Madurella mycetomatis, with a comparison of other agents of eumycetoma. Mycoses 47(3–4):121–130CrossRefGoogle Scholar
  17. 17.
    Desnos-Ollivier M, Bretagne S, Dromer F, Lortholary O, Dannaoui E (2006) Molecular identification of black-grain mycetoma agents. J Clin Microbiol 44(10):3517–3523CrossRefGoogle Scholar
  18. 18.
    Padhye AA, Salkin IF (2011) Madurella pseudomycetomatis: an invalidly published name. J Clin Microbiol 49(4):1703CrossRefGoogle Scholar
  19. 19.
    Ahmed AO, Mukhtar MM, Kools-Sijmons M, Fahal AH, de Hoog S, van den Ende BG, Zijlstra EE, Verbrugh H, Abugroun ES, Elhassan AM, van Belkum A (1999) Development of a species-specific PCR-restriction fragment length polymorphism analysis procedure for identification of Madurella mycetomatis. J Clin Microbiol 37(10):3175–3178PubMedPubMedCentralGoogle Scholar
  20. 20.
    Ahmed A, van de Sande W, Verbrugh H, Fahal A, van Belkum A (2003) Madurella mycetomatis strains from mycetoma lesions in Sudanese patients are clonal. J Clin Microbiol 41(10):4537–4541CrossRefGoogle Scholar
  21. 21.
    Fahal AH, Abu S (2010) Mycetoma in children. Trans R Soc Trop Med Hyg 104:107–112CrossRefGoogle Scholar
  22. 22.
    Yousif MA, Hay RJ (1987) Leucocyte chemotaxis to mycetoma agents--the effect of the antifungal drugs griseofulvin and ketoconazole. Trans R Soc Trop Med Hyg 81(2):319–321CrossRefGoogle Scholar
  23. 23.
    van de Sande WW, Janse DJ, Hira V, Goedhart H, van der Zee R, Ahmed AO, Ott A, Verbrugh H, van Belkum A (2006) Translationally controlled tumor protein from Madurella mycetomatis, a marker for tumorous mycetoma progression. J Immunol 177(3):1997–2005CrossRefGoogle Scholar
  24. 24.
    Zaini F, Moore MK, Hathi D, Hay RJ, Noble WC (1991) The antigenic composition and protein profiles of eumycetoma agents. Mycoses 34(1–2):19–28PubMedGoogle Scholar
  25. 25.
    Romero H, Mackenzie DW (1989) Studies on antigens from agents causing black grain eumycetoma. J Med Vet Mycol 27(5):303–311CrossRefGoogle Scholar
  26. 26.
    Jiang RS, Hsu CY (2004) Serum immunoglobulins and IgG subclass levels in sinus mycetoma. Otolaryngol Head Neck Surg 130(5):563–566CrossRefGoogle Scholar
  27. 27.
    Araujo MJ, Castañeda E (1997) Madurella mycetomatis antigen for the serodiagnosis of mycetoma. Rev Iberoam Micol 14(1):31–35PubMedGoogle Scholar
  28. 28.
    de Klerk N, de Vogel C, Fahal A, van Belkum A, van de Sande WW (2011) Fructose-bisphosphate aldolase and pyruvate kinase, two novel immunogens in Madurella mycetomatis. Med Mycol (Epub ahead of print)Google Scholar
  29. 29.
    Rajendran C, Baby A, Kumari S, Verghese T (1991) An evaluation of straw-extract agar media for the growth and sporulation of Madurella mycetomatis. Mycopathologia 115(1):9–12CrossRefGoogle Scholar
  30. 30.
    van de Sande WW, Gorkink R, Simons G, Ott A, Ahmed AO, Verbrugh H, van Belkum A (2005) Genotyping of Madurella mycetomatis by selective amplification of restriction fragments (amplified fragment length polymorphism) and subtype correlation with geographical origin and lesion size. J Clin Microbiol 43(9):4349–4356CrossRefGoogle Scholar
  31. 31.
    Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414CrossRefGoogle Scholar
  32. 32.
    van Belkum A, Fahal AH, van de Sande WW (2011) In vitro susceptibility of Madurella mycetomatis to posaconazole and terbinafine. Antimicrob Agents Chemother 55(4):1771–1773CrossRefGoogle Scholar
  33. 33.
    N’diaye B, Dieng MT, Perez A, Stockmeyer M, Bakshi R (2006) Clinical efficacy and safety of oral terbinafine in fungal mycetoma. Int J Dermatol 45(2):154–157CrossRefGoogle Scholar
  34. 34.
    van de Sande WW, Fahal AH, Bakker-Woudenberg IA, van Belkum A (2010) Madurella mycetomatis is not susceptible to the echinocandin class of antifungal agents. Antimicrob Agents Chemother 54(6):2738–2740CrossRefGoogle Scholar
  35. 35.
    Mahgoub ES, Gumaa SA (1984) Ketoconazole in the treatment of eumycetoma due to Madurella mycetomii. Trans R Soc Trop Med Hyg 78(3):376–379CrossRefGoogle Scholar
  36. 36.
    Negroni R, Tobón A, Bustamante B, Shikanai-Yasuda MA, Patino H, Restrepo A (2005) Posaconazole treatment of refractory eumycetoma and chromoblastomycosis. Rev Inst Med Trop Sao Paulo 47(6):339–346CrossRefGoogle Scholar
  37. 37.
    van de Sande WW, Fahal AH, Riley TV, Verbrugh H, van Belkum A (2007) In vitro susceptibility of Madurella mycetomatis, prime agent of Madura foot, to tea tree oil and artemisinin. J Antimicrob Chemother 59(3):553–555CrossRefGoogle Scholar
  38. 38.
    Wassenaar TM, Gaastra W (2001) Bacterial virulence: can we draw the line? FEMS Microbiol Lett 201(1):1–7CrossRefGoogle Scholar
  39. 39.
    Findlay GH, Vismer HF (1974) Black grain mycetoma. A study of the chemistry, formation and significance of the tissue grain in Madurella mycetomi infection. Br J Dermatol 91(3):297–303CrossRefGoogle Scholar
  40. 40.
    Revankar SG, Sutton DA (2010) Melanized fungi in human disease. Clin Microbiol Rev 23(4):884–928CrossRefGoogle Scholar
  41. 41.
    van de Sande WW, de Kat J, Coppens J, Ahmed AO, Fahal A, Verbrugh H, van Belkum A (2007) Melanin biosynthesis in Madurella mycetomatis and its effect on susceptibility to itraconazole and ketoconazole. Microbes Infect 9(9):1114–1123CrossRefGoogle Scholar
  42. 42.
    Martinez LR, Ntiamoah P, Gácser A, Casadevall A, Nosanchuk JD (2007) Voriconazole inhibits melanization in Cryptococcus neoformans. Antimicrob Agents Chemother 51(12):4396–4400CrossRefGoogle Scholar
  43. 43.
    Rid R, Simon-Nobbe B, Langdon J, Holler C, Wally V, Pöll V, Ebner C, Hemmer W, Hawranek T, Lang R, Richter K, MacDonald S, Rinnerthaler M, Laun P, Mari A, Breitenbach M (2008) Cladosporium herbarum translationally controlled tumor protein (TCTP) is an IgE-binding antigen and is associated with disease severity. Mol Immunol 45(2):406–418CrossRefGoogle Scholar
  44. 44.
    van de Sande WW, Fahal A, Verbrugh H, van Belkum A (2007) Polymorphisms in genes involved in innate immunity predispose toward mycetoma susceptibility. J Immunol 179(5):3065–3074CrossRefGoogle Scholar
  45. 45.
    Mahgoub ES, Gumaa SA, El Hassan AM (1977) Immunological status of mycetoma patients. Bull Soc Pathol Exot Filiales 70(1):48–54PubMedGoogle Scholar
  46. 46.
    Mahgoub ES (1978) Experimental infection of athymic nude New Zealand mice, nu nu strain with mycetoma agents. Sabouraudia 16(3):211–216CrossRefGoogle Scholar
  47. 47.
    Gumaa SA, Abu-Samra MT (1981) Experimental mycetoma infection in the goat. J Comp Pathol 91(3):341–346CrossRefGoogle Scholar
  48. 48.
    Nishimura K, Miyaji M (1985) Pathogenicity of Exophiala jeanselmei for ddY mice. Mycopathologia 91(1):29–33CrossRefGoogle Scholar
  49. 49.
    Ahmed AO, van Vianen W, ten Kate MT, van de Sande WW, van Belkum A, Fahal AH, Verbrugh HA, Bakker-Woudenberg IA (2003) A murine model of Madurella mycetomatis eumycetoma. FEMS Immunol Med Microbiol 37(1):29–36CrossRefGoogle Scholar
  50. 50.
    Greenberg AK, Knapp J, Rom WN, Addrizzo-Harris DJ (2002) Clinical presentation of pulmonary mycetoma in HIV-infected patients. Chest 122(3):886–892CrossRefGoogle Scholar
  51. 51.
    van de Sande WW, Fahal A, Tavakol M, van Belkum A (2010) Polymorphisms in catechol-O-methyltransferase and cytochrome p450 subfamily 19 genes predispose towards Madurella mycetomatis-induced mycetoma susceptibility. Med Mycol 48(7):959–968CrossRefGoogle Scholar
  52. 52.
    Kuijpers TW (2002) Clinical symptoms and neutropenia: the balance of neutrophil development, functional activity, and cell death. Eur J Pediatr 161(Suppl 1):S75–82CrossRefGoogle Scholar
  53. 53.
    Newport MJ, Finan C (2011) Genome-wide association studies and susceptibility to infectious diseases. Brief Funct Genomics 10(2):98–107CrossRefGoogle Scholar
  54. 54.
    Shugart YY, Wang Y, Jia WH, Zeng YX (2011) GWAS signals across the HLA regions: revealing a clue for common etiology underlying infectious tumors and other immunity diseases. Chin J Cancer 30(4):226–230CrossRefGoogle Scholar
  55. 55.
    Zhang J, Chiodini R, Badr A, Zhang G (2011) The impact of next-generation sequencing on genomics. J Genet Genomics 38(3):95–109CrossRefGoogle Scholar
  56. 56.
    Ostergaard P, Simpson MA, Jeffery S (2011) Massively parallel sequencing and identification of genes for primary lymphoedema: a perfect fit. Clin Genet 80(2):110–116CrossRefGoogle Scholar
  57. 57.
    Morelli G, Song Y, Mazzoni CJ, Eppinger M, Roumagnac P, Wagner DM, Feldkamp M, Kusecek B, Vogler AJ, Li Y, Cui Y, Thomson NR, Jombart T, Leblois R, Lichtner P, Rahalison L, Petersen JM, Balloux F, Keim P, Wirth T, Ravel J, Yang R, Carniel E, Achtman M (2010) Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nat Genet 42(12):1140–1143CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alex Van Belkum
    • 1
    Email author
  • Ahmed Fahal
    • 2
  • Wendy W.J. van de Sande
    • 3
  1. 1.bioMérieuxMicrobiology UnitLa Balme-Les-GrottesFrance
  2. 2.Mycetoma Research CentreUniversity of KhartoumKhartoumSudan
  3. 3.Medical Microbiology and Infectious DiseasesErasmus MCRotterdamThe Netherlands

Personalised recommendations