Skip to main content

Introduction to Applications of the GMD and the Lorenz Curve in Finance

  • Chapter
  • First Online:
Book cover The Gini Methodology

Part of the book series: Springer Series in Statistics ((SSS,volume 272))

  • 3353 Accesses

Abstract

The purpose of this part of the book is to expose the reader to applications of the Gini methodology in financial theory. Those applications are relevant whenever one is interested in decision making under risk or in reducing the incompatibility between financial theory and econometric applications. Risky situations are characterized by having to make decisions without knowing what the exact outcome is going to be. This definition covers almost every decision a person makes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example, multivariate normal probability distributions of returns or quadratic utility functions.

  2. 2.

    Yitzhaki and Mayshar (2002) showed that the assumption of continuity in the portfolio space implies that if there is no portfolio that dominates a given portfolio under MCSD, then there will be no other portfolio (among all of portfolios, not just marginal ones) that dominates the given portfolio.

  3. 3.

    Shorrocks (1983) calls these curves generalized Lorenz curves.

  4. 4.

    Yitzhaki (1982a) also shows that the mean-Gini conditions for SSD are sufficient whenever the cumulative probability distributions intersect at most once.

  5. 5.

    LSA coincides with the Yitzhaki and Olkin (1991) line of independence (LOI). Samuelson (1967) shows that independent assets that are not included in the portfolio would be added to it if they have the same expected returns.

  6. 6.

    Whenever the CAPM is mentioned, it is interpreted as the reference portfolio held by the investor and not necessarily the market portfolio.

  7. 7.

    See Aaberge (2000) and Kleiber and Kotz (2002) on additional connections between the Lorenz curve and the extended Gini. Graves and Ringuest (2009) offer a tutorial for stochastic dominance.

  8. 8.

    This topic is dealt in Chap. 18.

  9. 9.

    In general the term market’s return should be interpreted as the portfolio’s return. See Shalit and Yitzhaki (2009) concerning CAPM with heterogeneous risk-averse investors.

References

  • Aaberge, R. (2000). Characterization of Lorenz curves and income distributions. Social Choice and Welfare, 17, 639–653.

    Article  MATH  Google Scholar 

  • Atkinson, A. B. (1970). On the measurement of inequality. Journal of Economic Theory, 2, 244–263.

    Article  MathSciNet  Google Scholar 

  • Best, R. W., Hodges, C. W., & Yoder, J. A. (2006). Expected earnings growth and portfolio performance. Review of Quantitative Finance and Accounting, 26, 431–437.

    Article  Google Scholar 

  • Cheung, C., Sherman, C. C., Kwan, & YIP, P. C. Y. (1990). The hedging effectiveness of options and futures: A Mean-Gini approach. Journal of Future Markets, 10(1), 61–73.

    Article  Google Scholar 

  • Chow, K. V., Riley, W. B., & Formby, J. P. (1992). International portfolio selection and efficiency analysis. Review of Quantitative Finance and Accounting, 2, 47–67.

    Article  Google Scholar 

  • Clark, E., Jokung, O., & Kassimatis, K. (2011). Making inefficient market indices efficient. European Journal of Operation Research, 209, 83–93.

    Article  MathSciNet  MATH  Google Scholar 

  • Clark, E. A., & Kassimatis, K. (2012). An empirical analysis of marginal conditional stochastic dominance. Journal of Banking & Finance, 36, 1144–1151.

    Article  Google Scholar 

  • De Veaux, D. R. (1976). Tight upper and lower bounds for correlation of bivariate distributions arising in air pollution modeling. Technical Report No. 5 (1976), Department of Statistics, Stanford University.

    Google Scholar 

  • Dennenberg, D., & Leufer, N. (2008). Dual volatility and dependence parameters and the copula. International Journal of Approximate Reasoning, 48, 697–708.

    Article  MathSciNet  Google Scholar 

  • Dentcheva, D., & Ruszczyński, A. (2006). Portfolio optimization with stochastic dominance constraints. Journal of Banking and Finance, 30, 433–451.

    Article  Google Scholar 

  • Embrechts, P., Lindskog, F., & McNeil, A. (2003). Modelling dependence with copulas and applications to risk management, ch-8. In T. R. Svetlozar (Ed.), Handbook of heavy tailed distributions in finance (pp. 331–384). New York: Elsevier.

    Google Scholar 

  • Embrechts, P., McNeil, A., & Straumann, D. (2002). Correlation and dependence in risk management: Properties and pitfalls. In M. Alan & H. Dempster (Eds.), Risk management: Value at risk and beyond (pp. 176–223). London: Cambridge University Press.

    Chapter  Google Scholar 

  • Graves, S. B., & Ringuest, J. L. (2009). Probabilistic dominance criteria for comparing uncertain alternatives: A tutorial. Omega, 37, 346–357.

    Article  Google Scholar 

  • Gregory-Allen, R. B., & Shalit, H. (1999). The estimation of systematic risk under differentiated risk aversion: A mean-extended Gini approach. Review of Quantitative Finance and Accounting, 12, 135–157.

    Article  Google Scholar 

  • Hadar, J., & Russell, W. R. (1969). Rules for ordering uncertain prospects. American Economic Review, 59(1 (March)), 25–34.

    Google Scholar 

  • Hanoch, G., & Levy, H. (1969). The efficiency analysis of choices involving risk. Review of Economic Studies, 36, 335–346.

    Article  MATH  Google Scholar 

  • Kleiber, C., & Kotz, S. (2002). A characterization of income distributions in terms of generalized Gini coefficients. Social Choice and Welfare, 19, 789–794.

    Article  MathSciNet  MATH  Google Scholar 

  • Levy, H. (1992). Stochastic dominance and expected utility: Survey and analysis. Management Science, 38, 555–593.

    Article  MATH  Google Scholar 

  • Levy, H. (2006). Stochastic dominance: Investment decision making under uncertainty (2nd ed.). New York: Springer Verlag.

    Google Scholar 

  • Levy, H., Guttman, I., & Tkatch, I. (2). Regression, correlation, and the time interval: Additive-multiplicative framework. Management Science, 47(8 (August)), 1150–1159.

    Google Scholar 

  • Levy, H., & Schwarz, G. (1997). Correlation and the time interval over which the variables are measured. Journal of Econometrics, 76, 341–350.

    Article  MathSciNet  MATH  Google Scholar 

  • Lien, D., & Tse, Y. K. (2002). Some future developments in future hedging. Journal of Economic Surveys, 16, 357–396.

    Article  Google Scholar 

  • Ogryczak, W., & Ruszczyński, A. (2002). Dual stochastic dominance and related mean–risk models. SIAM Journal on Optimization, 13, 60–78.

    Article  MathSciNet  MATH  Google Scholar 

  • Post, T. (2003). Empirical tests for stochastic dominance efficiency. Journal of Finance, 58, 1905–1931.

    Article  Google Scholar 

  • Rothschild, M., & Stiglitz, J. E. (1970). Increasing risk I a definition. Journal of Economic Theory, 2, 225–253.

    Article  MathSciNet  Google Scholar 

  • Ruszczyński, A., & Vanderbei, R. J. (2003). Frontier of stochastically nondominated portfolios. Econometrica, 71, 1287–1297.

    Article  MathSciNet  MATH  Google Scholar 

  • Samuelson, P. A. (1967). General proof that diversification pays. Journal of Financial and Quantitative Analysis, 2, 1–13.

    Article  Google Scholar 

  • Serfling, R. (2010). Autoregressive models via Yule-Walker equations allowing heavy tail innovations. Working paper. http://www.utdallas.edu/~serfling/papers/Serfling2010_AR_MR.pdf.

  • Shalit, H., & Yitzhaki, S. (1989). Evaluating the mean-Gini approach selection to portfolio selection. International Journal of Finance Spring, 1(2), 15–31.

    Google Scholar 

  • Shalit, H., & Yitzhaki, S. (1994). Marginal conditional stochastic dominance. Management Science, 40, 670–684.

    Article  MATH  Google Scholar 

  • Shalit, H., & Yitzhaki, S. (2003). An asset allocation puzzle: Comment. American Economic Review, 93, 1002–1008.

    Article  Google Scholar 

  • Shalit, H., & Yitzhaki, S. (2009). Capital market equilibrium with heterogeneous investors. Quantitative Finance, 9, 757–766.

    Article  MathSciNet  MATH  Google Scholar 

  • Shalit, H., & Yitzhaki, S. (2010). How does beta explain stochastic dominance efficiency? Review of Quantitative Finance and Accounting, 35, 431–444.

    Article  Google Scholar 

  • Shelef, A., & Schechtman, E. (2011). A Gini-based methodology for analyzing time series, draft. SSRN.com.

    Google Scholar 

  • Shorrocks, A. F. (1983). Ranking income distributions. Economica, 50, 3–17.

    Article  Google Scholar 

  • Thistle, P. D. (1993). Negative moments, risk aversion, and stochastic dominance. Journal of Financial and Quantitative Analysis, 28(2), 301–311.

    Article  Google Scholar 

  • Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica, 55(1 (January)), 95–115.

    Article  MathSciNet  MATH  Google Scholar 

  • Yaari, M. E. (1988). A controversial proposal concerning inequality measurement. Journal of Economic Theory, 44(2), 381–397.

    Article  MathSciNet  MATH  Google Scholar 

  • Yitzhaki, S. (1982a). Stochastic dominance, mean variance, and the Gini’s mean difference. American Economic Review, 72, 178–185.

    Google Scholar 

  • Yitzhaki, S. (1982b). Relative deprivation and economic welfare. European Economic Review, 17, 99–113.

    Article  Google Scholar 

  • Yitzhaki, S. (1982c). A tax programming model. Journal of Public Economics, 19, 107–120.

    Article  Google Scholar 

  • Yitzhaki, S. (1987). On the Relation between return and income. Quarterly Journal of Economics, 102(February), 77–95.

    Article  Google Scholar 

  • Yitzhaki, S., & Mayshar, J. (2002). Characterizing efficient portfolios. Available at: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=297899. Unpublished.

  • Yitzhaki, S., & Olkin, I. (1991). Concentration indices and concentration curves. In Karl Mosler and Marco Scarsini (Eds.), Stochastic orders and decisions under risk, 19 (pp. 380–392). Institute Of Mathematical Statistics: Lecture-Notes Monograph Series.

    Google Scholar 

  • Zhang, D. (2009). A demonstration of the non-necessity of marginal conditional stochastic dominance for portfolio inefficiency. The Quarterly Review of Economics and Finance, 49, 417–423.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yitzhaki, S., Schechtman, E. (2013). Introduction to Applications of the GMD and the Lorenz Curve in Finance. In: The Gini Methodology. Springer Series in Statistics, vol 272. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4720-7_17

Download citation

Publish with us

Policies and ethics