Skip to main content

Persistence, Bioaccumulation, and Toxicity of Halogen-Free Flame Retardants

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology

Abstract

Polymers are synthetic organic materials that have a high carbon and hydrogen content, which renders them readily combustible. When used in buildings, electrical appliances, furniture, textiles, transportation, mining, and in many other applications, polymers have to fulfill flame retardancy regulatory requirements, primarily as mandatory specifications that often differ among countries. To achieve these requirements, chemical additives known as flame retardants (FRs) are incorporated into the polymers. In contrast to most additives, FRs can appreciably impair the material properties of polymers (United Nations Environment Programme (UNEP) 2008). The key challenge is therefore to find a suitable compromise between the performance of the polymers and fulfilling flame retardancy requirements. Brominated flame retardants (BFRs) are rather widely used because they have a low impact on the polymer’s characteristics, are very effective in relatively low amounts compared to other FRs (Alaee et al. 2003), and are relatively cheap (Birnbaum and Staskal 2004). In 2004, BFRs accounted for about 21 % of the total world production of FRs (SRI Consulting (SRIC) 2004). Many BFRs, however, have unintended negative effects on the environment and human health. Some are very persistent (Robrock et al. 2008), some bioaccumulate in aquatic and terrestrial food chains (Boon et al. 2002), and some show serious adverse effects such as endocrine disruption (Meerts et al. 2001). Some BFRs (polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), and tetrabromobisphenol-A (TBBPA), in particular) have been found in increasing concentrations in the human food chain, human tissues, and breast milk (Schantz et al. 2003; Hites 2004; Fängström et al. 2005). In 2000, exponentially increasing PBDE concentrations were measured in Swedish human milk (Norén and Meironyté 2000), and this was later followed by reports of even higher PBDE concentrations in human milk from the USA (Schecter et al. 2008).

Susanne L. Waaijers, Deguo Kong, and Hester S. Hendriks contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • ACD/Labs (2011) ACD/PhysChem Suite. Advanced Chemistry Development, Inc, Toronto, ON

    Google Scholar 

  • Alaee M, Arias P, Sjodin A, Bergman A (2003) An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int 29:683–689

    Article  CAS  Google Scholar 

  • Albemarle corporation (2003a) Material safety data sheet (MSDS)—Magnifin C grade flame retardants

    Google Scholar 

  • Albemarle corporation (2003b) Material safety data sheet (MSDS)—Magnifin H grades flame retardants

    Google Scholar 

  • Albemarle corporation (2003c) Material safety data sheet (MSDS)—Magnifin MV grades flame retardants

    Google Scholar 

  • Albemarle Corporation (2009) Re: EPA-industry DecaBDE phase-out initiative. In: US Environmental Protection Agency (ed) Albemarle Corporation,Washington, DC. p 2

    Google Scholar 

  • AluChem (2003) Material safety data sheet (MSDS)—magnesium hydroxide

    Google Scholar 

  • Australian Government Regulator of Industrial Chemicals (1994) Flamtard H. In: Australian Department of Health and Ageing (administration) (ed). National industrial chemicals notification and assessment scheme NICNAS—full public reports

    Google Scholar 

  • Australian Government Regulator of Industrial Chemicals (2000) Phosphoric acid, (1-methylethylidene) di-4,1-phenylene tetraphenyl ester (Fyrolflex BDP). In: Australian Department of Health and Ageing (administration) (ed) National industrial chemicals notification and assessment scheme NICNAS—full public reports

    Google Scholar 

  • Australian Government Regulator of Industrial Chemicals (2005) Chemical in Exolit OP 1312. In: Australian Department of Health and Ageing (administration) (ed) National industrial chemicals notification and assessment scheme NICNAS—full public reports

    Google Scholar 

  • Australian Government Regulator of Industrial Chemicals (2006) Melapur 200 and Polymer in Exolit OP 1312. In: Australian Department of Health and Ageing (administration) (ed) National industrial chemicals notification and assessment scheme NICNAS—full public reports

    Google Scholar 

  • Baird DJ, Barber I, Bradley M, Calow P, Soares A (1989) The Daphnia bioassay—a critique. Hydrobiologia 188:403–406

    Article  Google Scholar 

  • Barceloux DG (1999) Zinc. J Toxicol Clin Toxicol 37:279–292

    Article  CAS  Google Scholar 

  • Bengtsson BE, Tarkpea M, Sletten T, Carlberg GE, Kringstad A, Renberg L (1986) Bioaccumulation and effects of some technical triaryl phosphate products in fish and Nitocra Spinipes. Environ Toxicol Chem 5:853–861

    CAS  Google Scholar 

  • Bergh C, Torgrip R, Emenius G, Ostman C (2011) Organophosphate and phthalate esters in air and settled dust—a multi-location indoor study. Indoor Air 21:67–76

    Article  CAS  Google Scholar 

  • Berthon G (2002) Aluminium speciation in relation to aluminium bioavailability, metabolism and toxicity. Coord Chem Rev 228:319–341

    Article  CAS  Google Scholar 

  • Betts KS (2007) Formulating green flame retardants. Environ Sci Technol 41:7201–7202

    Article  CAS  Google Scholar 

  • Bilkei-Gorzo A (1993) Neurotoxic effect of enteral aluminium. Food Chem Toxicol 31:357–361

    Article  CAS  Google Scholar 

  • Bingham E, Cohrssen B, Powell CH (2001) Patty’s toxicology, vol 1–9. Wiley, New York. p V6 967

    Google Scholar 

  • Birnbaum LS, Staskal DF (2004) Brominated flame retardants: cause for concern? Environ Health Perspect 112:9–17

    Article  CAS  Google Scholar 

  • Boon JP, Lewis WE, Tjoen-A-Choy MR, Allchin CR, Law RJ, de Boer J, ten Hallers-Tjabbes CC, Zegers BN (2002) Levels of polybrominated diphenyl ether (PBDE) flame retardants in animals representing different trophic levels of the North Sea food web. Environ Sci Technol 36:4025–4032

    Article  CAS  Google Scholar 

  • Borax (2004) Material safety data sheet—Borogard ZB. Borax Inc.

    Google Scholar 

  • Budenheim (2010) Human health and environmental fact sheet—melamine polyphosphate (Budit 3141 & Budit 3141 CA). Phosphorus, Inorganic & Nitrogen Flame Retardants Association, Pinfa

    Google Scholar 

  • Chang TC, Wu KH, Wu TR, Chiu YS (1998) Thermogravimeter analysis study of a cyclic organo-phosphorus compound. Phosphorus, sulfur silicon. Relat Elem 139:45–56

    CAS  Google Scholar 

  • Chemtura (2009) Re: DecaBDE phase-out initiative. In: U.S. Environmental Protection Agency (ed). Chemtura Corporation, Washington, DC

    Google Scholar 

  • Chernysh EA, Bugerenk EF, Aksenov VI, Golubtso SA, Ponomare VV (1972) Organophosphorus heterocyclic-compounds. 3. Synthesis and conversion of 10-chloro-10-phospha-9-oxa-9,10-dihydrophenanthrene. Zhurnal Obshchei Khimii 42:93–96

    Google Scholar 

  • Ciba (2010) Human health and environmental fact sheet—melamine polyphosphate (Melapur 200). Phosphorus, Inorganic & Nitrogen Flame Retardants Association, Pinfa

    Google Scholar 

  • Clariant (2007) Human health and environmental fact sheet—diethylphosphinic acid, aluminium salt (Depal, Exolit OP 1230, Exolit OP 930, Exolit OP 935 (R)). In: Clariant International Ltd (ed) Phosphorus, Inorganic & Nitrogen Flame Retardants Association, Pinfa

    Google Scholar 

  • Clariant (2010) Human health and environmental fact sheet—ammonium polyphosphate (Exolit AP422). In: Clariant International Ltd (ed) Phosphorus, Inorganic & Nitrogen Flame Retardants Association, Pinfa

    Google Scholar 

  • Clean Production Action, Rossi M, Heine L (2007) The green screen for safer chemicals: evaluating flame retardants for TV enclosures, vol Version 1.0, p 17

    Google Scholar 

  • Cole JG, Mackay D (2000) Correlating environmental partitioning properties of organic compounds: the three solubility approach. Environ Toxicol Chem 19:265–270

    CAS  Google Scholar 

  • Cummings JE, Kovacic JP (2009) The ubiquitous role of zinc in health and disease. J Vet Emerg Crit Care 19:215–240

    Article  Google Scholar 

  • Danish EPA, Lassen C, Løkk S, Andersen LI, Hansen E (1999) Brominated flame retardants—substance flow analysis and assessment of alternatives. p 227

    Google Scholar 

  • Danish EPA, Stuer-Lauridsen F, Cohr K-H, Andersen TT (2007) Health and environmental assessment of alternatives to deca-BDE in electrical and electronic equipment. In: DHI Water & Environment (ed) Danish Environmental Protection Agency, EPA.

    Google Scholar 

  • Danish EPA, Stuer-Lauridsen F, Havelund S, Birkved M (2000) Alternatives to brominated flame retardants—screening for environmental and health data. In: A/S C (ed) Danish Environmental Protection Agency, EPA

    Google Scholar 

  • Dekant W (2009) Review of the toxicity of red phosphorus and related phosphorus based flame retardants. Institut für Toxikologie, Würzburg

    Google Scholar 

  • Dimitrov SD, Dimitrova NC, Walker JD, Veith GD, Mekenyan OG (2002) Predicting bioconcentration factors of highly hydrophobic chemicals. Effects of molecular size. Pure Appl Chem 74:1823–1830

    Article  CAS  Google Scholar 

  • Dobry A, Keller R (1957) Vapor pressures of some phosphate and phosphonate esters. J Phys Chem 61:1448–1449

    Article  CAS  Google Scholar 

  • Eckert F, Klamt A (2010) COSMOtherm® Vers. C2.1 released 01.10. COSMOlogic GmbH & Co. KG

    Google Scholar 

  • ENFIRO (2009) ENFIRO Webpage. www.enfiro.eu

  • ENFIRO partners, Leonards (Project Coordinator) PEG (2008) Life cycle assessment of environment-compatible flame retardants (prototypical case study)—project proposal—EU project (KP7-226563). In: ENFIRO (ed) p 72

    Google Scholar 

  • Eto M, Hashimoto Y, Ozaki K, Kassai T, Sasaki Y (1975) Fungitoxicity and insecticide synergism of monothioquinol phosphate esters and related compounds. Bochu-Kagaku 40:160

    Google Scholar 

  • European Chemicals Agency (ECHA) (1963-May-19) Pentaerythritol—experimental supporting study toxicity—toxicological information. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1964) Pentaerythritol—acute toxicity; inhalation (toxicological information) experimental supporting study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1979-Feb-08) Pentaerythritol—biodegradation; in water (environmental fate and pathways) experimental supporting study 5. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1980-Feb-29 & 1981) Pentaerythritol—biodegradation; in water (environmental fate and pathways) experimental study 6 WoE. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1983) Pentaerythritol—aquatic toxicity; to microorganisms (ecotoxicological information) experimental study 2 weight of evidence (WoE). ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1985) Pentaerythritol—biodegradation; in water (environmental fate and pathways) experimental supporting study 2. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1990-Feb-15) Pentaerythritol—acute toxicity; oral (toxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1990-Sep-24) Pentaerythritol—biodegradation; in water (environmental fate and pathways) experimental supporting study 3. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1991-Sep-16) Pentaerythritol—biodegradation; in water, screening (environmental fate and pathways) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1992-May-30) Pentaerythritol—repeated dose toxicity; oral (toxicological information) experimental supporting study 2. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1994-Dec-21) Pentaerythritol—genetic toxicity; in vitro (toxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1994-Jan-25) Pentaerythritol—biodegradation; in water (environmental fate and pathways) experimental supporting study 4. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1996-Jul-28) Pentaerythritol—repeated dose study; oral (toxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1998a) Aluminium tris(dialkylphosphinate)—aquatic toxicity; short-term to aquatic invertebrates (ecotoxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1998b) Aluminium tris(dialkylphosphinate)—aquatic toxicity; short-term to fish (ecotoxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 2005-Apr-13) Aluminium tris(dialkylphosphinate)—aquatic toxicity; long-term to aquatic invertebrates (ecotoxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 2008) Aluminium tris(dialkylphosphinate)—genetic toxicity; in vivo (toxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (Accessed 2011) Triphenylphosphate—classification and labelling; GHS & DSD—DPD ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1964b) Pentaerythritol—acute toxicity; oral (toxicological information) experimental supporting study 2. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1993-Jan-03) Pentaerythritol—aquatic toxicity; short-term to fish (ecotoxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1993-March-01a) Pentaerythritol—aquatic toxicity; long-term to aquatic invertebrates (ecotoxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1993-March-01b) Pentaerythritol—aquatic toxicity; short-term to aquatic invertebrates (ecotoxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1994-Dec-07) Pentaerythritol—genetic toxicity; in vitro (toxicological information) experimental key study 3. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1996-Jul-25 ) Pentaerythritol—acute toxicity; oral (toxicological information) experimental supporting study 4. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1998a) Aluminium tris(dialkylphosphinate)—acute toxicity; dermal (toxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1998b) Aluminium tris(dialkylphosphinate)—acute toxicity; oral (toxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1998c) Aluminium tris(dialkylphosphinate)—aquatic toxicity; to aquatic algae and cyanobacteria (ecotoxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1998d) Aluminium tris(dialkylphosphinate)—aquatic toxicity; to microorganisms (ecotoxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1998e) Aluminium tris(dialkylphosphinate)—genetic toxicity; in vitro (toxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1998f) Aluminium tris(dialkylphosphinate)—genetic toxicity; in vitro (toxicological information) experimental key study 2. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 1998 g) Aluminium tris(dialkylphosphinate)—repeated dose toxicity; oral (toxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 2008) Aluminium tris(dialkylphosphinate)—toxicity to reproduction (toxicological information) experimental supporting study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 2009a) Aluminium tris(dialkylphosphinate)—aquatic toxicity; long-term to fish (ecotoxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 2009b) Aluminium tris(dialkylphosphinate)—biodegradation; in water (environmental fate and pathways) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 2009c) Aluminium tris(dialkylphosphinate)—biodegradation; in water (environmental fate and pathways) experimental key study 2. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 2009d) Pentaerythritol—log Kow (physical chemical properties) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 2009e) Pentaerythritol—Meltingpoint (Physical Chemical Properties) Experimental Key Study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 2009f) Pentaerythritol—water solubility (physical chemical properties) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 2010-April-29) Pentaerythritol—aquatic toxicity; to microorganisms (ecotoxicological information) experimental key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 2010-Aug-2) Pentaerythritol—stability; hydrolosis (environmental fate and pathways) experimental study 1 WoE. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 2010-Jan-31) Pentaerythritol—vapour pressure (physical chemical properties) calculated key study 1. ECHA

    Google Scholar 

  • European Chemicals Agency (ECHA) Database (original study 2010-Okt-2) Pentaerythritol—genetic toxicity; in vitro (toxicological information) experimental key study 2. ECHA

    Google Scholar 

  • European Chemicals Bureau (1998 (2005 updated)) IUCLID dataset pentaerythritol (CAS No. 115-77-5), SIDS initial assessment report for 8th SIAM. France, 28–30 October 1998. In: United Nations Environment Programme (UNEP) Publications (ed). United Nations Environment Programme, Organisation for Economic Co-operation and Development (OECD) Screening Information DataSets (SIDS)

    Google Scholar 

  • European Chemicals Bureau (2000a) IUCLID Dataset aluminium trihydroxide (CAS: 21645-51-2). In :European Chemicals Bureau (ed) European Chemicals Bureau, Institute of Health and Consumer Protection, Joint Research Centre, JRC, European Commission, Brussel, Belgium

    Google Scholar 

  • European Chemicals Bureau (2000b) IUCLID dataset boric acid (CAS: 10043-35-3). In: European Chemicals Bureau (ed) European Chemicals Bureau, Institute of Health and Consumer Protection, Joint Research Centre, JRC, European Commission, Brussel, Belgium

    Google Scholar 

  • European Chemicals Bureau (2000c) IUCLID dataset magnesium hydroxide (CAS: 1309-42-8). In: European Chemicals Bureau (ed) European Chemicals Bureau, Institute of Health and Consumer Protection, Joint Research Centre, JRC, European Commission, Brussel, Belgium

    Google Scholar 

  • European Chemicals Bureau (2000d) IUCLID dataset of polyphosphoric acids, ammonium salts (APP) (CAS: 68333-79-9). In: European Chemicals Bureau (ed)European Chemicals Bureau, Institute of Health and Consumer Protection, Joint Research Centre, JRC, European Commission, Brussel, Belgium

    Google Scholar 

  • European Chemicals Bureau (2000e) IUCLID dataset pentaerythritol (CAS: 115-77-5). In: European Chemicals Bureau (ed) European Chemicals Bureau, Institute of Health and Consumer Protection, Joint Research Centre, JRC, European Commission, Brussel, Belgium

    Google Scholar 

  • European Chemicals Bureau (2000f) IUCLID dataset triphenyl phosphate (CAS: 115-86-6). In: European Chemicals Bureau (ed) European Chemicals Bureau, Institute of Health and Consumer Protection, Joint Research Centre, JRC, European Commission, Brussel, Belgium

    Google Scholar 

  • European Chemicals Bureau (2002) IUCLID dataset triphenyl phosphate (CAS No. 115-86-6), SIDS Initial Assessment Report for SIAM 15. Boston, MA, 22–25 October 2002. In: United Nations Environment Programme (UNEP) Publications (ed): United Nations Environment Programme, Organisation for Economic Co-operation and Development (OECD) Screening Information DataSets (SIDS)

    Google Scholar 

  • European Chemicals Bureau (2011) European Chemical Substance Information System (ESIS). European Chemicals Bureau, Joint Research Centre, JRC, European Commission

    Google Scholar 

  • European Chemicals Bureau, Pakalin S, Cole T, Steinkellner J, Nicolas R, Tissier C, Munn S, Eisenreich S (2007) Review on production processes of decabromodiphenyl ether (decaBDE) used in Polymeric applications in electrical and electronic equipment, and assessment of the availability of potential alternatives to DecaBDE. In: Europen Chemicals Bureau (ed) European Chemicals Bureau, Institute of Health and Consumer Protection, Joint Research Centre, JRC, European Commission, Brussel, Belgium

    Google Scholar 

  • European Flame Retardants Association (EFRA), Cefic (2006) Zinc borate flame retardants fact sheet In: Cefic European Chemical Industry Council (ed). Cefic European Chemical Industry Council

    Google Scholar 

  • European Parliament (E.P.) (2002) Report A5-0437/2002

    Google Scholar 

  • European Union (1993) Council Regulation No 793/93/EEC of 23 March 1993 on the evaluation and control of risks of existing substances. (L84/1). In: European Parliament and the Council on the European Union (ed) European Union, p 75

    Google Scholar 

  • European Union (2006) Regulation (EC) No 1907/2006 of the European Parliament and of the council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency. In: European Parliament and the Council on the European Union (ed), European Union, p 849

    Google Scholar 

  • European Union (2008) Regulation (EC) No 1272/2008 of the European Parliament and of the council on classification, labelling and packaging of substances and mixtures. In: European Parliament and the Council on the European Union (ed), European Union, p 1355

    Google Scholar 

  • Fängström B, Strid A, Grandjean P, Weihe P, Bergman Å (2005) A retrospective study of PBDEs and PCBs in human milk from the Faroe Islands. Environmental Health: A Global Access Science Source 4, 12

    Google Scholar 

  • Fisher Scientific (1999 (2008 updated)) Material safety data sheet (MSDS)—magnesium hydroxide (13405). Fisher Scientific

    Google Scholar 

  • Flaskos J, McLean WG, Hargreaves AJ (1994) The toxicity of organophosphate compounds towards cultured PC12 Cells. Toxicol Lett 70:71–76

    Article  CAS  Google Scholar 

  • Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225–227

    CAS  Google Scholar 

  • Gant DB, Eldefrawi ME, Eldefrawi AT (1987) Action of organophosphates on GABAA receptor and voltage-dependent chloride channels. Fundam Appl Toxicol 9:698–704

    Article  CAS  Google Scholar 

  • Gardner JR (1988a) Acute oral toxicity to rats of zinc hydroxystannate (ZHS). Huntingdon Research Centre (HRC), Huntingdon

    Google Scholar 

  • Gardner JR (1988b) Acute oral toxicity to rats of zinc stannate (ZS). Huntingdon Research Centre (HRC), Huntingdon

    Google Scholar 

  • Gelest (2008) Material safety data sheet of zinc stannate—SNZ9760. Gelest, Inc.

    Google Scholar 

  • German Federal Environmental Agency, Leisewitz A, Kruse H, Schramm E (2001) Substituting environmentally relevant flame retardants: assessment fundamentals—results and summary overview. In: Environmental research plan of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety, Contractor: Öko-Recherche. Büro für Umweltforschung und-beratung GmbH, Frankfurt am Main, p 204

    Google Scholar 

  • Gobas FAPC, Kelly BC, Arnot JA (2003) Quantitative structure activity relationships for predicting the bioaccumulation of POPs in terrestrial food-webs. Qsar Comb Sci 22:329–336

    Article  CAS  Google Scholar 

  • Hachiya N (1987) Evaluation of chemical genotoxicity by a series of short term tests. Akita Igaku 14:269–292

    CAS  Google Scholar 

  • Henrich R, Ryan BM, Selby R, Garthwaite S, Morrissey R, Freudenthal RI (2000) Two-generation oral (diet) reproductive toxicity study of resorcinol bis-diphenylphosphate (Fyrolflex RDP) in rats. Int J Toxicol 19:243–255

    Article  CAS  Google Scholar 

  • Hilal SH, Karickhoff SW, Carreira LA (2003) Sparc On-line Calculator 4.5—predicting melting point, vapour pressure & Henry’s law constant—based on “Prediction of the vapor pressure boiling point, heat of vaporization and diffusion coefficient of organic compounds”. Qsar Comb Sci 22:565–574

    Article  CAS  Google Scholar 

  • Hilal SH, Karickhoff SW, Carreira LA (2004) Sparc On-line Calculator 4.5—predicting water solubility & log Kow—based on “Prediction of the solubility, activity coefficient and liquid/liquid partition coefficient of organic compounds”. Qsar Comb Sci 23:709–720

    Article  CAS  Google Scholar 

  • Hites RA (2004) Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations. Environ Sci Technol 38:945–956

    Article  CAS  Google Scholar 

  • Hoenicke R, Oros DR, Oram JJ, Taberski KM (2007) Adapting an ambient monitoring program to the challenge of managing emerging pollutants in the San Francisco Estuary. Environ Res 105:132–144

    Article  CAS  Google Scholar 

  • Hubbard CM, Redpath GT, Macdonald TL, VandenBerg SR (1989) Modulatory effects of aluminum, calcium, lithium, magnesium, and zinc oons on [3H]MK-801 binding in human cerebral cortex. Brain Res 486:170–174

    Article  CAS  Google Scholar 

  • ICL (2009) Commitment letter to EPA, Re: voluntary phase out of DecaBDE.In: U.S. Environmental Protection Agency (ed). ICL Industrial Products, Washington, DC. p 2

    Google Scholar 

  • ICL Industrial Products (2011) Material safety data sheet (MSDS)—Fyrolflex RDP.

    Google Scholar 

  • Illinois EPA (2007) Report on alternatives to the flame retardant DecaBDE: evaluation of toxicity, availability, affordability, and fire safety issues—a report to the Governor and the General Assembly. p 86

    Google Scholar 

  • ITRI (2009) Technical bulletin—zinc stannates and zinc hydroxy stannate. ITRI technical bulletin, vols 2 & 3

    Google Scholar 

  • Joseph Storey & Co. Ltd. (1994) Material safety data sheet (MSDS)—Storflam ZHS (zinc hydroxy stannate). Joseph Storey & Co. Ltd, Lancaster

    Google Scholar 

  • Knie VJ, Hälke A, Juhnke I, Schiller W (1983) Ergebnisse der Untersuchungen von chemischen Stoffen mit vier Biotests [Results of studies on chemical substances with four biotests]. Deutsche Gewässerkundliche Mitteilungen 27:77–79

    CAS  Google Scholar 

  • Kucera T, Horakova H, Sonska A (2008) Toxic metal ions in photoautotrophic organisms. Photosynthetica 46:481–489

    Article  CAS  Google Scholar 

  • Kuo Ching Chemical Co Ltd. (2009) Specification Sheet—KFR DOPO. Kuo Ching Chemical Co, Ltd

    Google Scholar 

  • Lewis RL (2000) Sr. Sax’s dangerous properties of industrial materials, 10th edn. Wiley, New York

    Google Scholar 

  • Maine Department of Environmental Protection, Maine Center for Disease Control & Prevention (2007) Brominated flame retardants: third annual report to the Maine Legislature. Maine, United States of America

    Google Scholar 

  • MaKuang Chemical Co. Ltd. (2009) Data sheet—MK 68 (DOPO). MaKuang Chemical Co, Ltd. Taichung, Taiwan

    Google Scholar 

  • Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20:3–18

    Article  CAS  Google Scholar 

  • Martin Marietta Magnesia Specialties LLC (MMMS), Walter MD, Wajer MT (2010) Overview of flame retardants including magnesium hydroxide. Martin Marietta Magnesia Specialties LLC, Baltimore, MA

    Google Scholar 

  • Martinez CE, Motto HL (2000) Solubility of lead, zinc and copper added to mineral soils. Environ Pollut 107:153–158

    Article  CAS  Google Scholar 

  • Matsukami H, Honda M, Nakamura A, Takasuga T (2010) Analysis of monomeric and oligomeric phosphate esters in indoor air and house dust by GC-MS and LC-MS. Extended abstract, fifth International Workshop on brominated flame retardants BFR 2010

    Google Scholar 

  • Mayer FL, Adams WJ, Finley MT, Michael PR, Mehrle PM, Saeger VW (1981) Phosphate ester hydraulic fluids: an aquatic environmental assessment of Pydrauls 50E and 115E. In: Branson DR, Dickson KL (eds) Aquatic toxicology and hazard assessment, 4th conference, vol STP 737. American Society for Testing and Materials (ASTM): Philadelphia, PA. pp 103–123

    Google Scholar 

  • McDonald SF, Hamilton SJ, Buhl KJ, Heisinger JF (1996) Acute toxicity of fire control chemicals to Daphnia magna (Straus) and Selenastrum capricornutum (Printz). Ecotoxicol Environ Saf 33:62–72

    Article  CAS  Google Scholar 

  • McEntee TE (1987) PC-Nomograph-Programs to enhance PC-GEMS estimates of physical properties for organic chemicals Version 2.0—EGA/CGA. MS DOS: 1987/12/04. The Mitre Corporation, MSDOS

    Google Scholar 

  • McPherson A, Thorpe B, Blake A (2004) Brominated flame retardants in dust on computers: the case for safer chemicals and better computer design. Clean Protection Action. p 43

    Google Scholar 

  • Meerts I, Letcher RJ, Hoving S, Marsh G, Bergman A, Lemmen JG, van der Burg B, Brouwer A (2001) In vitro estrogenicity of polybrominated diphenyl ethers, hydroxylated PBDEs, and polybrominated bisphenol A compounds. Environ Health Perspect 109:399–407

    Article  CAS  Google Scholar 

  • Merck & Co. Inc. (2001) The Merck Index—13th edn—triphenyl phosphate darmstadt. Merck KGaA, Darmstadt, Duitsland

    Google Scholar 

  • Merck & Co. Inc. (2006) The Merck Index—14th edn—triphenyl phosphate (Monograph nr: 09742). Merck KGaA, Darmstadt, Duitsland

    Google Scholar 

  • Merck Chemicals—Product Information (Merck Website) Magnesiumhydroxide 105870 (CAS 1309-42-8). http://www.merck-chemicals.nl/magnesiumhydroxide/MDA_CHEM-105870/p_uuid. Merck KGaA, Darmstadt, Duitsland

  • Merck Chemicals—Product Information (Merck Website) Pentaerythritol 807331 (CAS 115-77-5). http://www.merck-chemicals.nl/pentaerythritol/MDA_CHEM-807331/p_uuid. Merck KGaA, Darmstadt, Duitsland

  • Merck Chemicals—Product Information (Merck Website) Trifenyl Fosfaat 821197 (CAS 115-86-6). http://www.merck-chemicals.nl/trifenyl-fosfaat/MDA_CHEM-821197/p_uuid. Merck KGaA, Darmstadt, Duitsland

  • Meylan WM, Howard PH (1991) Bond contribution methods for estimating Henry’s law constants. Environ Toxicol Chem 10:1283–1293

    Article  CAS  Google Scholar 

  • Meylan WM, Howard PH (1995) Atom fragment contribution methods for estimating octanol-water partition-coefficients. J Pharm Sci 84:83–92

    Article  CAS  Google Scholar 

  • Meylan WM, Howard PH, Boethling RS (1996) Improved method for estimating water solubility from octanol water partition coefficient. Environ Toxicol Chem 15:100–106

    Article  CAS  Google Scholar 

  • Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mut Res-Fund Mol Mech Mutagen 455:29–60

    Article  CAS  Google Scholar 

  • Muir DCG, Yarechewski AL, Grift NP (1989) Biodegradation of 4 triaryl alkyl phophate-esters in sediment under various temperature and redox conditions. Toxicol Environ Chem 18:269–286

    Article  CAS  Google Scholar 

  • Nabaltec (2009) Human health and environmental fact sheet—magnesium hydroxide (Brucite) (Apymag). Phosphorus, Inorganic & Nitrogen Flame Retardants Association, Pinfa.

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Neely B, Blau GE (1985) Environmental exposure from chemicals. CRS, Boca Ratón, FL

    Google Scholar 

  • Nordin H (2007) Human health and environmental fact sheet—Melapur 200 70. Phosphorus, Inorganic & Nitrogen Flame Retardants Association, Pinfa. p 2

    Google Scholar 

  • Norén K, Meironyté D (2000) Certain organochlorine and organobromine contaminants in Swedish human milk in perspective of past 20–30 years. Chemosphere 40:1111–1123

    Article  Google Scholar 

  • O’Connell S, Whitley A, Brady T, Ching S, Fong A, Bergman R, Burkitt J (2004) Environmental assessment of halogen-free printed circuit boards, a design for environment (DfE) project with the high density packaging user group (HDPUG). Computer Society Washington, Washington, DC

    Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD) (1992) OECD guideline for testing of chemicals—ready biodegradability 301. In: OECD/OCDE 301, vol Section 3. Degradation and accumulation: OECD.

    Google Scholar 

  • OSPAR (2001 (2004 updated)) Certain brominated flame retardants – polybrominated diphenylethers, polybrominated biphenyls, hexabromo cyclododecane, vol OSPAR Priority Substances Series In: The Convention for the Protection of the marine Environment of the North-East Atlantic (ed)

    Google Scholar 

  • Padilla SS, Grizzle TB, Lyerly D (1987) Triphenyl phosphite: in vivo and in vitro inhibition of rat neurotoxic esterase. Toxicol Appl Pharmacol 87:249–256

    Article  CAS  Google Scholar 

  • Perstorp Specialty Chemicals AB (2008) Material safety data sheet of pentaerythritol mono, pentaerythritol nitration. Perstorp Specialty Chemicals AB

    Google Scholar 

  • Peterson HG, Healey FP, Wagemann R (1984) Metal toxicity to algae—a highly pH dependent phenomenon. Can J Fish Aquat Sci 41:974–979

    Article  CAS  Google Scholar 

  • Rio Tinto Alcan (RTA) (2008a) Material safety data sheet (MSDS)—alumina hydrate (000219). Rio Tinto Alcan

    Google Scholar 

  • Rio Tinto Alcan (RTA) (2008b) Material safety data sheet (MSDS)—Flamtard H (000042) zinc hydroxy stannate. Rio Tinto Alcan (RTA)

    Google Scholar 

  • Rio Tinto Alcan (RTA) (2008c) Material safety data sheet (MSDS)—Flamtard S (000038) zinc stannate. Rio Tinto Alcan (RTA)

    Google Scholar 

  • Robrock KR, Korytar P, Alvarez-Cohen L (2008) Pathways for the anaerobic microbial debromination of polybrominated diphenyl ethers. Environ Sci Technol 42:2845–2852

    Article  CAS  Google Scholar 

  • Rout GR, Das P (2003) Effect of metal toxicity on plant growth and metabolism: I. Zinc. Agronomie 23:3–11

    Article  Google Scholar 

  • Ryan BM, Henrich R, Mallett E, Freudenthal RI (2000) Developmental toxicity study of orally administered resorcinol bis-diphenylphosphate (RDP) in rabbits. Int J Toxicol 19:257–264

    Article  CAS  Google Scholar 

  • Saeger VW, Hicks O, Kaley RG, Michael PR, Mieure JP, Tucker ES (1979) Environmental fate of selected phosphate-esters. Environ Sci Technol 13:840–844

    Article  CAS  Google Scholar 

  • Sasaki K, Takeda M, Uchiyama M (1981) Toxicity, absorption and elimination of phosphoric acid triesters by killifish and goldfish. Bull Environ Contam Toxicol 27:775–782

    Article  CAS  Google Scholar 

  • Schantz SL, Widholm JJ, Rice DC (2003) Effects of PCB exposure on neuropsychological function in children. Environ Health Perspect 111:357–376

    Article  CAS  Google Scholar 

  • Schecter A, Harris TR, Brummitt S, Shah N, Paepke O (2008) PBDE and HBCD brominated flame retardants in the USA, update 2008: levels in human milk and blood, food, and environmental samples. Epidemiology 19:S76–S76

    Google Scholar 

  • Schenker U, MacLeod M, Scheringer M, Hungerbuhler K (2005) Improving data quality for environmental fate models: a least-squares adjustment procedure for harmonizing physicochemical properties of organic compounds. Environ Sci Technol 39:8434–8441

    Article  CAS  Google Scholar 

  • Shimizu H, Suzuki Y, Takemura N, Goto S, Matsushita H (1985) The results of microbial mutation test for forty-three industrial chemicals. Sangyo Igaku Jpn J Ind Health 27:400–419

    Article  CAS  Google Scholar 

  • Shüürmann G, Ebert R-U, Nendza M, Dearden JC, Paschke A, Kühne R (2007) Chapter 9: predicting fate-related physicochemical properties. In: Leeuwen CJV, Vermeire TG (eds) Risk assessment of chemicals: an introduction. Springer, Heidelberg, pp 379–382

    Google Scholar 

  • Smith MI, Elvove E, Frazier WH (1930) The pharmacological action of certain phenol esters with special reference to the etiology of so-called ginger paralysis. Public Health Reports 45:2509–2524

    Google Scholar 

  • Smith MI, Engel EW, Stohlman EF (1932) Further studies on the pharmacology of certain phenol esters with special reference to the relation of chemical censtitution and physiologic action. National Institute of Health Bulletin 160:1–53

    Google Scholar 

  • Snyder R (ed) (1990) Nitrogen and phosphorus solvents. Ethyl browning’s toxicity and metabolism of industrial solvents, vol II. Elsevier, Amsterdam, p 491

    Google Scholar 

  • Spurgeon DJ, Lofts S, Hankard PK, Toal M, McLellan D, Fishwick S, Svendsen C (2006) Effect of pH on metal speciation and resulting metal uptake and toxicity for earthworms. Environ Toxicol Chem 25:788–796

    Article  CAS  Google Scholar 

  • SRI Consulting (SRIC) (2004) Worldwide FR consumption and geographical distribution. Zürich, Switzerland

    Google Scholar 

  • Stevens GC, Mann AH (1999) Risks and benefits in the use of flame retardants in consumer products. In: For the UK Department of Trade and Industry (ed) Polymer Reserch Centre, University of Surrey, Guildford, Surrey. p 197

    Google Scholar 

  • Sundkvist AM, Olofsson U, Haglund P (2010) Organophosphorus flame retardants and plasticizers in marine and fresh water biota and in human milk. J Environ Monit 12:943–951

    Article  CAS  Google Scholar 

  • Supresta (2006) Material saftey data sheet (MSDS)—Fyrolflex BDP. Product Safety Department, Supresta

    Google Scholar 

  • Syracuse Research Corporation (SRC) (2006) An assessment of potential health and environmental impacts of RDP and BAPP, two phosphate-based alternatives to Deca-BDE for use in electronics. Conducted for the Washington State Departments of Ecology and Health

    Google Scholar 

  • Syracuse Research Corporation (SRC) (2009) SRC physical property database (PHYSPROP, Pentaerythritol: 115.77.5). SRC Inc.

    Google Scholar 

  • Syracuse Research Corporation (SRC) (2011) Toxic Substance Control Act Test Submission Database (TSCATS). SRC Inc.

    Google Scholar 

  • The Subcommittee on Flame-Retardant Chemicals CoT, Board on Environmental Studies and Toxicology, National Research Council (2000) Toxicological risks of selected flame-retardant chemicals. National Academy Press, Washington, DC

    Google Scholar 

  • U.K. Environment Agency, Brooke DN, Crookes MJ, Burns J, Quarterman P (2009a) Environmental risk evaluation report: tetraphenyl resorcinol diphosphate (CAS no. 57583-54-7). SCHO0809BQUL-E-P, Bristol, UK. p 78

    Google Scholar 

  • U.K. Environment Agency, Brooke DN, Crookes MJ, Quarterman P, Burns J (2009b) Environmental risk assessment report: summary and overview aryl phosphate esters (Draft). Bristol, UK

    Google Scholar 

  • U.K. Environment Agency, Fisk PR, Girling AE, Wildey RJ (2003) Prioritisation of flame retardants for environmental risk assessment. p 129

    Google Scholar 

  • U.S. Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry (2009) Toxicological profile for phosphate ester flame retardants (Draft)

    Google Scholar 

  • U.S. Environmental Protection Agency (EPA) (2008) Flame retardants in printed circuit boards (Draft). In: Design for the Environment (DfE) Flame Retardant in Printed Circuit Board Partnership (ed). p 273

    Google Scholar 

  • U.S. EPA (2005) Environmental profiles of chemical flame-retardant alternatives for low-density polyurethane foam—Volume 1. In: Furniture Flame Retardancy Partnership (ed). p 153

    Google Scholar 

  • U.S. EPA (2006) Non-confidential 2006 IUR records by chemical. Inventory Update Reporting (IUR). United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • U.S. EPA (2008) Flame retardants in printed circuit boards. In: Design for the Environment (DfE) Flame Retardant in Printed Circuit Board Partnership (ed). p 273

    Google Scholar 

  • U.S. EPA (2011) Estimation Programs Interface Suite™ for Microsoft® Windows v4.10. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

  • U.S. EPA (2012) Ecotox Database. vol Version 4. U.S. Environmental Protection Agency

    Google Scholar 

  • UNEP OECD SIDS (1998, 2005) Pentaerythritol (CAS No. 115-77-5), SIDS Initial assessment report for 8th SIAM. France, 28–30 October, 1998. In: United Nations Environment Programme Publications (ed): United Nations Environment Programme, Organisation for Economic Co-operation and Development (OECD) Screening Information DataSets (SIDS)

    Google Scholar 

  • UNEP OECD SIDS (2002a) Triphenyl phosphate (CAS No. 115-86-6). In: United Nations Environment Programme Publications (ed): United Nations Environment Programme, Organisation for Economic Co-operation and Development (OECD) Screening Information DataSets (SIDS)

    Google Scholar 

  • UNEP OECD SIDS (2002b) Triphenyl phosphate CAS No. 115-86-6. In: United Nations Environment Programme Publications (ed): United Nations Environment Programme, Organisation for Economic Co-operation and Development (OECD) Screening Information DataSets (SIDS)

    Google Scholar 

  • UNEP OECD SIDS (2007) Ammonium polyphosphate APP (CAS No. 68333-79-9). In: United Nations Environment Programme Publications (ed): United Nations Environment Programme, Organisation for Economic Co-operation and Development (OECD) Screening Information DataSets (SIDS)

    Google Scholar 

  • United Nations Environment Programme (UNEP) (2008) Guidance on flame-retardant alternatives to pentabromodiphenyl ether (PentaBDE). The Stockholm Convention on Persistent Organic Pollutants of the United Nations Environment Programme (UNEP), Stockholm, Sweden.

    Google Scholar 

  • United Nations Environment Programme (UNEP), Stockholm Convention—Press release (8 May 2009) Governments unite to step-up reduction on global DDT reliance and add nine new chemicals under international treaty. Geneva

    Google Scholar 

  • Vainiotalo S, Verkkala E, Savolainen H, Nickels J, Zitting A (1987) Acute biological effects of commercial cresyl diphenyl phosphate in rats. Toxicology 44:31–44

    Article  CAS  Google Scholar 

  • Washington State Department of Ecology and Department of Health (2006) Washington State polybrominated diphenyl ether (PBDE) chemical action plan: final plan. Department of Ecology Publication No. 05-07-048, Department of Health Publication No. 334–079, Olympia, WA. p 307

    Google Scholar 

  • William Blythe (2010a) Material safety data sheet (MSDS)—Flamtard H (zinc hydroxy stannate). Phosphorus, Inorganic & Nitrogen Flame Retardants Association, Pinfa

    Google Scholar 

  • William Blythe (2010b) Material safety data sheet (MSDS)—Flamtard S (zinc stannate). Phosphorus, Inorganic & Nitrogen Flame Retardants Association, Pinfa

    Google Scholar 

  • Wills JH, Barron K, Groblewski GE, Benitz KF, Johnson MK (1979) Does triphenyl phosphate produce delayed neurotoxic effects? Toxicol Lett 4:21–24

    Article  CAS  Google Scholar 

  • World Health Organisation (WHO) (1994) Polybrominated biphenyls. Environmental Health Criteria-152, vol International Program on Chemical Safety, Geneva, Switzerland

    Google Scholar 

  • World Health Organization (WHO) (1991) Triphenyl phosphate. Environmental Health Criteria-111, vol International Program on Chemical Safety, Geneva, Switzerland

    Google Scholar 

  • World Health Organization (WHO) (1997) Flame retardants: a general introduction. Environmental Health Criteria-192, vol International Program on Chemical Safety, Geneva, Switzerland

    Google Scholar 

  • Wu J-P, Luo X-J, Zhang Y, Luo Y, Chen S-J, Mai B-X, Yang Z-Y (2008) Bioaccumulation of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in wild aquatic species from an electronic waste (e-waste) recycling site in South China. Environ Int 34:1109–1113

    Article  CAS  Google Scholar 

  • Zatta P, Perazzolo M, Facci L, Skaper SD, Corain B, Favarato M (1992) Effects of aluminum speciation on murine neuroblastoma cells. Mol Chem Neuropathol 16:11–22

    Article  CAS  Google Scholar 

  • Zeiger E, Anderson B, Haworth S, Lawlor T, Mortelmans K, Speck W (1988) Salmonella mutagenicity tests: III. Results from the testing of 255 chemicals. Environ Mutagen 11:158

    Article  Google Scholar 

Download references

Acknowledgments

This research is part of the EU project ENFIRO (KP7-226563) and the financial support of the European Union is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne L. Waaijers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Waaijers, S.L. et al. (2013). Persistence, Bioaccumulation, and Toxicity of Halogen-Free Flame Retardants. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 222. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4717-7_1

Download citation

Publish with us

Policies and ethics