Skip to main content

α-Lactalbumin

  • Chapter
  • First Online:
Advanced Dairy Chemistry

Abstract

The whey protein, α-lactalbumin, has a key role in the biosynthesis of lactose and in the formation and secretion of the aqueous phase of milk. Mechanistically, α-lactalbumin interacts with β-1,4-galactosyltransferase-I to modify its specificity so that it can catalyze the transfer of galactose to glucose (lactose synthesis) rather than to glycoconjugates. α-Lactalbumin is a member of the type-c lysozyme superfamily. It has a 3D structure similar to those of the lysozymes that contains a tightly bound stabilizing calcium ion. Complexes of partially folded α-lactalbumin with lipids are cytotoxic to tumor cells but the specificity of this is uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya, K.R., Stuart, D.I., Walker, N.P.C., Lewis, M. and Phillips, D.C. (1989). Refined structure of baboon α-lactalbumin at 1.7 Å resolution. Comparison with c-type lysozyme. J. Mol. Biol. 208, 99–127.

    Article  CAS  Google Scholar 

  • Acharya, K.R., Stuart, D.I., Phillips, D.C. and Scheraga, H.A. (1990). A critical evaluation of the predicted and X-ray structures of α-lactalbumin. J. Protein Chem. 9, 549–563.

    Article  CAS  Google Scholar 

  • Acharya, K.R., Ren, J.S., Stuart, D.I., Phillips, D.C. and Fenna, R.E. (1991). Crystal-structure of human α-latalbumin at 1.7 Å resolution. J. Mol. Biol. 221, 571–581.

    Article  CAS  Google Scholar 

  • Aramini, J.M., Hiraoki, T., Grace, M.R., Swaddle, T.W., Chiancone, E. and Vogel, H.J. (1996). NMR and stopped-flow studies of metal ion binding to α-lactalbumins. Biochim. Biophys. Acta, 1293, 72–82.

    Article  Google Scholar 

  • Berliner, L. and Koga, K. (1987). α-Lactalbumin binding to membranes: evidence for a partially buried protein. Biochemistry, 26, 3006–3009.

    Article  CAS  Google Scholar 

  • Breton, C., Bettler, E., Joziasse, D.H., Geremia, R.A. and Imberty, A. (1998). Sequence-function relationships of prokaryotic and eukaryotic galactosyltransferases. J. Biochem. 123, 1000–1009.

    Article  CAS  Google Scholar 

  • Brew, K. (2003). α-Lactalbumin, in Advanced Dairy Chemistry, 3rd edn., Vol. 1, Part A: Proteins, P.F. Fox and P.L.H. McSweeney, eds., New York: Kluwer, pp. 388–418.

    Google Scholar 

  • Brew, K., Vanaman, T.C. and Hill, R.L. (1967). Comparison of the amino acid sequences of bovine α-lactalbumin and hen’s egg white lysozyme. J. Biol. Chem. 242, 3747–3749.

    CAS  Google Scholar 

  • Brew, K., Vanaman, T.C. and Hill, R.L. (1968). The role of α-lactalbumin and the A protein in lactose synthetase: a unique mechanism for the control of a biological reaction. Proc. Natl. Acad. Sci. U.S.A. 59, 491–497.

    Article  CAS  Google Scholar 

  • Brinkmann, C.R., Heegaard, C.W., Petersen, T.E., Jensenius, J.C. and Thiel, S. (2011). The toxicity of BAMLET is highly dependent on oleic acid and induces killing in cancer cell lines and non-cancer derived primary cells. FEBS J. 278(11), 1955–1967.

    Article  CAS  Google Scholar 

  • Brodbeck, U., Denton, W.L., Tanahashi, N. and Ebner, K.E. (1967). The isolation and identification of the B protein of lactose synthetase as α-lactalbumin. J. Biol. Chem. 242, 1391–1397.

    CAS  Google Scholar 

  • Browne, W.J., North, A.C.T., Phillips, D.C., Brew, K., Vanaman, T.C. and Hill, R.L. (1969). A possible three-dimensional structure of bovine α-lactalbumin based on that of hen’s egg-white lysozyme. J. Mol. Biol. 42, 65–86.

    Article  CAS  Google Scholar 

  • Calderone, V., Giuffrida, M.G., Viterbo, D., Napolitano, L., Fortunate, D., Conti, A. and Acharya, K.R. (1996). Amino acid sequence and crystal structure of buffalo α-lactalbumin. FEBS Lett. 394, 91–95.

    Article  CAS  Google Scholar 

  • Campbell, J.A., Davies, G.J., Bulone, V. and Henrissat, B. (1997). A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 326, 929–939.

    CAS  Google Scholar 

  • Capuco, A.V. and Akers, R.M. (2009). The origin and evolution of lactation. J. Biol. 8, 37.

    Article  Google Scholar 

  • Chandra, N., Brew, K. and Acharya, K.R. (1998). Structural evidence for the presence of a secondary calcium binding site in human α-lactalbumin. Biochemistry, 37, 4767–4772.

    Article  CAS  Google Scholar 

  • Chiu, W.W., Erikson, E.K., Sole, C.A., Shelling, A.N. and Chamley, L.W. (2004). SPRASA, a novel sperm protein involved in immune-mediated infertility. Hum. Reprod. 19, 243–249.

    Article  CAS  Google Scholar 

  • Chrysina, E.D., Brew, K. and Acharya, K.R. (2000). Crystal structures of apo- and holo-bovine α-lactalbumin at 2.2 Å resolution reveal an effect or Ca2+ on inter-lobe interactions. J. Biol. Chem. 275, 37021–37029.

    Article  CAS  Google Scholar 

  • Coutinho, P.M., Deleury, E., Davies, G.J. and Henrissat, B. (2003). An evolving hierarchical family classification for glycosyltransferases. J. Mol. Biol. 328, 307–317.

    Article  CAS  Google Scholar 

  • Davies, M.S., West, L.F., Davis, M.B., Povey, S. and Craig, R.K. (1987). The gene for human α-lactalbumin is assigned to chromosome 12q13. Ann. Hum. Genet. 51, 183–188.

    Article  CAS  Google Scholar 

  • Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J.F., Guindon, S., Lefort, V., Lescot, M., Claverie, J.M. and Gascuel, O. (2008). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, W465–W469.

    Article  CAS  Google Scholar 

  • Forge, V., Wijesinha, R.T., Balbach, J., Brew, K., Robinson, C.V., Redfield, C. and Dobson, C.M. (1999). Rapid collapse and slow structural reorganization during the refolding of bovine α-lactalbumin. J. Mol. Biol. 288, 673–688.

    Article  CAS  Google Scholar 

  • Godovac-Zimmermann, J., Conti, A. and Napolitano, L. (1988). The primary structure of donkey (Equus asinus) lysozyme contains the Ca(II) binding site of α-lactalbumin. Biol. Chem. 369, 1109–1115.

    CAS  Google Scholar 

  • Grobler, J., Rao, K.R., Pervaiz, S. and Brew, K. (1994). Sequences of two highly divergent canine type c lysozymes; implications for evolutionary interrelationships in the lysozyme/α-lactalbumin superfamily. Arch. Biochem. Biophys. 313, 360–366.

    Article  CAS  Google Scholar 

  • Grunclova, L., Fouquier, H., Hypsa, V. and Kopacek, P. (2003). Lysozyme from the gut of the soft tick Ornithodoros moubata: the sequence, phylogeny and post-feeding regulation. Dev. Comp. Immunol. 27, 651–660.

    Article  CAS  Google Scholar 

  • Gustafsson, L., Leijonhufvud, I., Aronsson, A., Mossberg, A.K. and Svanborg, C. (2004). Treatment of skin papillomas with topical alpha-lactalbumin-oleic acid. N. Engl. J. Med. 350, 2663–2672.

    Article  CAS  Google Scholar 

  • Hakansson, A., Zhivotovsky, B., Orrenius, S., Sabharwal, H. and Svanborg, C. (1995). Apoptosis induced by a human milk protein. Proc. Natl. Acad. Sci. U.S.A. 92, 8064–8068.

    Article  CAS  Google Scholar 

  • Hakansson, A., Andreasson, J., Zhivotovsky, B., Karpman, D., Orrenius, S. and Svanborg, C. (1999). Multimeric α-lactalbumin from human milk induces apoptosis through a direct effect on cell nuclei. Exp. Cell Res. 246, 451–460.

    Article  CAS  Google Scholar 

  • Hall, L., Emery, D.C., Davies, M.S., Parker, D. and Craig, R.F. (1987). Organization and sequence of the human α-lactalbumin gene. Biochem. J. 242, 735–742.

    CAS  Google Scholar 

  • Harata, K. and Muraki, M. (1992). X-Ray structural evidence for a local helix-loop transition in α-lactalbmin. J. Biol. Chem. 267, 1419–1421.

    CAS  Google Scholar 

  • Hiroaka, Y., Segawa, T., Kuwajima, K., Sugai, S. and Murai, N. (1980). α-Lactalbumin: a calcium metallo-protein. Biochem. Biophys. Res. Commun. 93, 1098–1104.

    Article  Google Scholar 

  • Irwin, D.M., Biegel, J.M. and Stewart, C.-B. (2011). Evolution of the mammalian lysozyme gene family. BMC Evol. Biol. 11, 166.

    Article  CAS  Google Scholar 

  • Kronman, M.J., Sinha, S.K. and Brew, K. (1981) Characteristics of the Binding of Ca2+ and Other Divalent Metal Ions to Bovine α-Lactalbumin. J. Biol. Chem. 256, 8582–­8587.

    Article  CAS  Google Scholar 

  • Kohler, C., Hakansson, A., Svanborg, C., Orrenius, S. and Zhivotovsky, B. (1999). Protease activation in apoptosis induced by MAL. Exp. Cell Res. 249, 260–268.

    Article  CAS  Google Scholar 

  • Kuwajima, K. (1989). The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins, 6, 87–103.

    Article  CAS  Google Scholar 

  • Kuwajima, K. (1996). The molten globule state of α-lactalbumin. FASEB J. 10, 102–109.

    CAS  Google Scholar 

  • Kuwajima, K., Mitani, M. and Sugai, S. (1989). Characterization of the critical state in protein folding-effects of guanidine hydrochloride and specific Ca2+ binding on the folding kinetics of α-lactalbumin. J. Mol. Biol. 206, 547–561.

    Article  CAS  Google Scholar 

  • Li, B., Calvo, E., Marinotti, O., James, A.A. and Paskewitz, S.M. (2005). Characterization of the c-type lysozyme gene family in Anopheles gambiae. Gene 360, 131–139.

    Article  CAS  Google Scholar 

  • Lindahl, L. and Vogel, H.J. (1984). Metal-ion dependent hydrophobic-interaction chromatography of α-lactalbumin. Anal. Biochem. 140, 394–402.

    Article  CAS  Google Scholar 

  • Liskova, K., Kelly, A.L., O’Brien, N. and Brodkorb, A. (2010). Effect of denaturation of alpha-lactalbumin on the formation of BAMLET (bovine alpha-lactalbumin made lethal to tumor cells). J. Agric. Food Chem. 58, 4421–4427.

    Article  CAS  Google Scholar 

  • Lo, N.W., Shaper, J.H., Pevsner, J. and Shaper, N.L. (1998). The expanding β4-galactosyltransferase gene family: messages from the databanks. Glycobiology 8, 517–526.

    Article  CAS  Google Scholar 

  • Malinovskii, V.A., Tian, J., Grobler, J.A. and Brew, K. (1996). Functional site in α-lactalbumin encompasses a region corresponding to a subsite in lysozyme and parts of two adjacent flexible substructures. Biochemistry 35, 9710–9715.

    Article  CAS  Google Scholar 

  • Mandal, A., Klotz, K.L., Shetty, J., Jayes, F.L., Wolkowicz, M.J., Bolling, L.C., Coonrod, S.A., Black, M.B., Diekman, A.B., Haystead, T.A., Flickinger, C.J. and Herr, J.C. (2003). SLLP1, a unique, intra-acrosomal, non-bacteriolytic, c lysozyme-like protein of human spermatozoa. Biol. Reprod. 68, 1525–1537.

    Article  CAS  Google Scholar 

  • Masibay, A.S., Balaji, P.V., Boeggeman, E.E. and Qasba, P.K. (1993). Mutational analysis of the Golgi retention signal of bovine beta-1,4-galactosyltransferase. J. Biol. Chem. 268, 9908–9916.

    CAS  Google Scholar 

  • Messer, M., Griffiths, M., Rismiller, P.D. and Shaw, B.C. (1997). Lactose synthesis in a monotreme, the echidna (Tachyglossus aculeatus): isolation and amino acid sequence of echidna α-lactalbumin. Comp. Biochem. Physiol. B 118, 403–410.

    Google Scholar 

  • Mok, K.H., Pettersson, J., Orrenius, S. and Svanborg, C. (2007). HAMLET, protein folding, and tumor cell death. Biochem. Biophys. Res. Commun. 354, 1–7.

    Article  CAS  Google Scholar 

  • Mossberg, A.K., Wullt, B., Gustafsson, L., Månsson, W., Ljunggren, E. and Svanborg, C. (2007). Bladder cancers respond to intravesical instillation of HAMLET (human alpha-lactalbumin made lethal to tumor cells). Int. J. Cancer, 121, 1352–1359.

    Article  CAS  Google Scholar 

  • Mossberg, A.K., Mok, K.H., Morozova-Roche, L.A. and Svanborg, C. (2010). Structure and function of human alpha-lactalbumin made lethal to tumor cells (HAMLET)-type complexes. FEBS J. 277, 4614–4625.

    Article  CAS  Google Scholar 

  • Musci, G. and Berliner, L.J. (1985). Physiological roles of zinc and calcium binding to α-lactalbumin in lactose biosynthesis. Biochemistry 24, 6945–6948.

    Article  CAS  Google Scholar 

  • Narimatsu, H., Sinha, S., Brew, K., Okayama, H. and Qasba, P.K. (1986). Cloning and sequencing of cDNA of bovine N-acetylglucosamine (β 1–4) galactosyltransferase. Proc. Natl. Acad. Sci. U.S.A. 83, 4720–4724.

    Article  CAS  Google Scholar 

  • Nielsen, S.B., Wilhelm, K., Vad, B., Schleucher, J., Morozova-Roche, L.A. and Otzen, D. (2010). The interaction of equine lysozyme:oleic acid complexes with lipid membranes suggests a cargo off-loading mechanism. J. Mol. Biol. 398, 351–361.

    Article  CAS  Google Scholar 

  • Nitta, K. and Sugai, S. (1989). The evolution of lysozyme and α-lactalbumin. Eur. J. Biochem. 182, 111–118.

    Article  CAS  Google Scholar 

  • Oftedal, O.T. (2002). The mammary gland and its origin during synapsid evolution. J. Mammary Gland Biol. Neoplasia, 7, 225–252.

    Article  Google Scholar 

  • Pan, L., Yue, F., Miao, J., Zhang, L. and Li, J. (2010). Molecular cloning and characterization of a novel c-type lysozyme gene in swimming crab Portunus trituberculatus. Fish Shellfish Immunol. 29, 286–292.

    Article  CAS  Google Scholar 

  • Peters, C.W.B., Kruse, U., Pollwein, R., Grzeschik, K.-H. and Sippel, A.E. (1989). The human lysozyme gene: sequence organization and chromosomal localization. Cytogenet. Cell Genet. 51, 1059.

    Google Scholar 

  • Permyakov SE, Knyazeva EL, Leonteva MV, Fadeev RS, Chekanov AV, Zhadan AP, Håkansson AP, Akatov VS, Permyakov EA (2011). A novel method for preparation of HAMLET-­like protein complexes. Biochemistry, 93, 1495–1501.

    Article  CAS  Google Scholar 

  • Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C. and Ferrin, T.E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612.

    Article  CAS  Google Scholar 

  • Pike, A.C.W., Acharya, K.R. and Brew, K. (1996). Crystal structures of guinea-pig, goat and bovine α-lactalbumins highlight the enhanced conformational flexibility of regions that are significant for its action in lactose synthase. Structure, 4, 691–703.

    Article  CAS  Google Scholar 

  • Powell, J.T. and Brew, K. (1976). A comparison of the interactions of galactosyl-transferase with a glycoprotein substrate (ovalbumin) and with α-lactalbumin. J. Biol. Chem. 251, 3653–3663.

    CAS  Google Scholar 

  • Prager, E.M. and Wilson, A.C. (1988). Ancient origin of α-lactalbumin from lysozyme: analysis of DNA and amino acid sequences. J. Mol. Evol, 27, 326–335.

    Article  CAS  Google Scholar 

  • Qasba, P.K. and Safaya, S.K. (1984). Similarities in the nucleotide sequences of rat α-lactalbumin and chicken lysozyme genes. Nature 308, 377–380.

    Article  CAS  Google Scholar 

  • Qasba, P.K., Ramakrishnan, B. and Boeggeman, E. (2008). Structure and function of β-1,4 galactosyltransferase. Curr. Drug Targets 9, 292–309.

    Article  CAS  Google Scholar 

  • Ramakrishnan, B. and Qasba, P.K. (2001). Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the β-1,4-galactosyltransferase-I.J. Mol. Biol. 310, 205–218.

    Article  CAS  Google Scholar 

  • Ramakrishnan, B., Boeggeman, E., Ramasamy, V. and Qasba, P.K. (2004). Structure and catalytic cycle of beta-1,4-galactosyltransferase. Curr. Opin. Struct. Biol. 14, 593–600.

    Article  CAS  Google Scholar 

  • Ramakrishnan, B., Ramasamy, V. and Qasba, P.K. (2006). Structural snapshots of beta-1,4-galactosyltransferase-I along the kinetic pathway. J. Mol. Biol. 357, 619–633.

    Article  Google Scholar 

  • Rao, K.R. and Brew, K. (1989). Calcium regulates folding and disulfide-bond formation in α-lactalbumin. Biochem. Biophys. Res. Commun. 163, 1390–1396.

    Article  CAS  Google Scholar 

  • Reich, C.M. and Arnould, J.P.Y. (2007). Evolution of Pinnipedia lactation strategies: a potential role for α-lactalbumin. Biol. Lett. 3, 546–549.

    Article  CAS  Google Scholar 

  • Ren, J., Stuart, D.I. and Acharya, K.R. (1993). α-Lactalbumin possesses a distinct zinc binding site. J. Biol. Chem. 268, 19292–19298.

    CAS  Google Scholar 

  • Rodriguez, R., Menendez-Arias, L., Gonzalez de Buitrago, G. and Gavilanes, J.G. (1985). Amino acid sequence of pigeon egg-white lysozyme. Biochem. Int. 11, 841–843.

    CAS  Google Scholar 

  • Rösner, H.I. and Redfield, C. (2009). The human alpha-lactalbumin molten globule: comparison of structural preferences at pH 2 and pH 7. J. Mol. Biol. 394, 351–362.

    Article  Google Scholar 

  • Rychel, A.L., Reeder, T.W. and Berta, A. (2004). Phylogeny of mysticete whales based on mitochondrial and nuclear data. Mol. Phylogenet. Evol. 32, 892–901.

    Article  CAS  Google Scholar 

  • Shaper, N.L., Shaper, J.H., Meuth, J.L., Fox, J.L., Chang, H., Kirsch, I.R. and Hollis, G.F. (1986). Bovine galactosyltransferase: identification of a clone by direct immunological screening of a cDNA expression library. Proc. Natl. Acad. Sci. U.S.A. 83, 1573–1577.

    Article  CAS  Google Scholar 

  • Sharp, J.A., Lefèvre, C. and Nicholas, K.R. (2008). Lack of functional α-lactalbumin prevents involution in Cape fur seals and identifies the protein as an apoptotic milk factor in mammary gland involution. BMC Biol. 6, 48.

    Article  Google Scholar 

  • Shaw, D.C., Messer, M., Scrivener, A.M., Nicholas, K.R. and Griffiths, M. (1993). Isolation, partial characterisation, and amino acid sequence of α-lactalbumin from platypus (Ornithorhynchus anatinus) milk. Biochim. Biophys. Acta, 1161, 177–1786.

    Article  CAS  Google Scholar 

  • Smith, S.G., Lewis, M., Aschaffenburg, R., Fenna, R.E., Wilson, I.A., Sundaralingam, M., Stuart, D.I. and Phillips, D.C. (1987). Crystallographic analysis of the three-dimensional structure of baboon α-lactalbumin at low resolution. Homology with lysozyme. Biochem. J. 242, 353–360.

    CAS  Google Scholar 

  • Stacey, A., Schnieke, A., Kerr, M., Scott, A., McKee, C., Cottingham, I., Binas, B., Wilde, C. and Colman, A. (1995). Lactation is disrupted by α-lactalbumin deficiency and can be restored by human α-lactalbumin gene replacement in mice. Proc. Natl. Acad. Sci. U.S.A. 92, 2835–2839.

    Article  CAS  Google Scholar 

  • Stinnakre, M.G., Vilotte, J.L., Soulier, S. and Mercier, J.C. (1994). Creation and phenotypic analysis of α-lactalbumin-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 91, 6544–6548.

    Article  CAS  Google Scholar 

  • Stuart, D.I., Acharya, K.R., Walker, N.P.C., Smith, S.G., Lewis, M. and Phillips, D.C. (1986). α-Lactalbumin possesses a novel calcium binding loop. Nature, 324, 84–87.

    Article  CAS  Google Scholar 

  • Svensson, M., Sabharwal, H., Hakansson, A., Mossberg, A.K., Lipniunas, P., Leffler, H., Svanborg, C. and Linse, S. (1999). Molecular characterization of α-lactalbumin folding variants that induce apoptosis in tumor cells. J. Biol. Chem. 274, 6388–6396.

    Article  CAS  Google Scholar 

  • Svensson, M., Hakansson, A., Mossberg, A.K., Linse, S. and Svanborg, C. (2000). Conversion of α-lactalbumin to a protein inducing apoptosis. Proc. Natl. Acad. Sci. U.S.A. 97, 4221–4226.

    Article  CAS  Google Scholar 

  • Svensson, M., Fast, J., Mossberg, A.K., Drunger, C., Gustafsson, L., Hallgren, O., Brooks, C.L., Berliner, L., Linse, S. and Svanborg, C. (2003). α-Lactalbumin unfolding is not sufficient to cause apoptosis, but is required for conversion to HAMLET (human α-lactalbumin made lethal to tumor cells). Protein Sci. 12, 2794–2804.

    Article  CAS  Google Scholar 

  • Teahan, C.G., McKenzie, H.A., Shaw, D.C. and Griffiths, M. (1991). The isolation and amino acid sequences of echidna (Tachyglossus aculeatus) milk lysozyme I and II. Biochem. Int. 24, 85–95.

    CAS  Google Scholar 

  • Tolin, S., De Francheschi, G., Spolaore, B., Frare, E., Canton, M., Polverino de Laureto, P. and Fontana, A. (2010). The oleic acid complexes of proteolytic fragments of α-lactalbumin display apoptotic activity. FEBS J. 277, 163–173.

    Article  CAS  Google Scholar 

  • Tsuge, H., Ago, H., Noma, M., Nitta, K., Sugai, S. and Miyano, M. (1992). Crystallographic studies of a calcium binding lysozyme from equine milk at 2.5 Å resolution. J. Biochem. 111, 141–143.

    CAS  Google Scholar 

  • Urashima, T., Saito, T., Nakamura, T. and Messer, M. (2002). Oligosaccharides of milk and colostrum in non-human mammals. Glycoconjugate J. 18, 357–371.

    Article  Google Scholar 

  • Urashima, T., Kobayashi, M., Asakuma, S., Uemura, Y., Arai, I., Fukuda, K., Saito, T., Mogoe, T., Ishikawa, H. and Fukui, Y. (2007). Chemical characterization of the oligosaccharides in Bryde’s whale (Balaenoptera edeni) and Sei whale (Balaenoptera borealis Lesson) milk. Comp. Biochem. Physiol. B, 146, 153–159.

    Article  Google Scholar 

  • Vilotte, J.L., Soulier, S., Mercier, J.-C., Gaye, P., Hue-Delahaie, D. and Furet, J.R. (1987). Complete nucleotide sequence of bovine α-lactalbumin gene: comparison with its rat counterpart. Biochimie, 69, 609–620.

    Article  CAS  Google Scholar 

  • Wheeler, M.B. (2003). Production of transgenic livestock: Promise fulfilled. J. Anim. Sci. 81, 32–37.

    CAS  Google Scholar 

  • Wilhelm, K., Darinskas, A., Noppe, W., Duchardt, E., Mok, K.H., Vukojević, V., Schleucher, J. and Morozova-Roche, L.A. (2009). Protein oligomerization induced by oleic acid at the solid–liquid interface—equine lysozyme cytotoxic complexes. FEBS J. 276, 3975–3989.

    Article  CAS  Google Scholar 

  • Zhang, K., Gao, R., Zhang, H., Cai, X., Shen, C., Wu, C., Zhao, S. and Yu, L. (2005). Molecular cloning and characterization of three novel lysozyme-like genes, predominantly expressed in the male reproductive system of humans, belonging to the c-type lysozyme/α-lactalbumin family. Biol. Reprod. 73, 1064–1071.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank the many students and postdoctoral fellows who have previously contributed to studies of α-La and lactose synthase in his laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Brew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brew, K. (2013). α-Lactalbumin. In: McSweeney, P., Fox, P. (eds) Advanced Dairy Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4714-6_8

Download citation

Publish with us

Policies and ethics