Skip to main content

Nutritional Quality of Milk Proteins

  • Chapter
  • First Online:
Advanced Dairy Chemistry

Abstract

The first part of this chapter outlines general aspects concerning dietary proteins, i.e. protein requirements in human diet, role and nutritional quality of proteins and methods for its evaluation (CS, Protein Digestibility Corrected AA Score [PDCAAS]), protein digestibility and efficiency of protein utilisation.

The second part specifically focusses on the amino acid composition and nutritional properties of milk proteins, the peptides and amino acids deriving from their digestion (protein turnover, regulation of gastrointestinal function and antibody production, cell signalling) and the effects of milk processing on these properties.

This chapter concludes with an overview of functional foods obtained from specific milk proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AFSSA. (2007). Apport en protéins: consommation, qualité, besoins et recommandations. Agence Française de Sécurité Sanitaire des Aliments. http://www.afssa.fr/Documents/NUT-Ra-EtiquetageEN.pdf.

  • Agostoni, C., Carratù, B., Boniglia, C., Riva, E. and Sanzini, E. (2000). Free amino acid content in standard infant formula: comparison with human milk. J. Am. Coll. Nutr. 19, 434–438.

    Google Scholar 

  • Alkanhal, H.A., Al-Othman, A.A. and Hewedi, F.M. (2001). Changes in protein nutritional quality in fresh and recombined ultra high temperature treated milk during storage. Int. J. Food Sci. Nutr. 52, 509–514.

    Google Scholar 

  • Badger, T.M., Ronis, M.J. and Hakkak, R. (2001). Developmental effects and health aspects of soy protein isolate, casein, and whey in male and female rats. Int. J. Toxicol. 20, 165–174.

    Google Scholar 

  • Barth, C.A. and Behnke, U. (1997). Nutritional physiology of whey and whey components. Nahrung 41, 2–12.

    Google Scholar 

  • Baumrucker, C.R., Green, M.H. and Blum, J.W. (1994). Effects of dietary rhIGF-1 in neonatal calves on the appearance of glucose, insulin, D-xylose, globulins and γ-glutamyl transferase in blood. Dom. Anim. Endocrinol. 11, 393–403.

    Google Scholar 

  • Baumy, J. and Brule, G. (1988). Binding of bivalent cations to α-lactalbumin and β-lactoglobulin: effect of pH and ionic strength. Le Lait 68, 33–48.

    Google Scholar 

  • Beaulieu, J., Dupont, C. and Lemieux, P. (2006). Whey proteins and peptides: Beneficial effects on immune health. Therapy 3, 69–78.

    Google Scholar 

  • Boirie Y., Dangin M., Gachon P., Vasson M., Maubois, J. and Beaufrere, B. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA. 94, 14930–14935.

    Google Scholar 

  • Bos, C., Mahé, S., Gaudichon, C., Benamouzig, R., Gausserès, N., Luengo, C., Ferrière, F., Rauterau, J. and Tomé, D. (1999). Assessment of net postprandial protein dialization of 15N-labeled milk N in human subjects. Brit. J. Nutr. 81, 221–226.

    Google Scholar 

  • Bos, C., Gaudichon, C. and Tomé, D. (2000). Nutritional and physiological criteria in the assessment of milk protein quality for humans. J. Amer. College Nutr. 19, 191S–205S.

    Google Scholar 

  • Bos, C., Metges, C.C., Gaudichon, C., Petzke, K.J., Pueyo, M.E., Morens, C., Everwand, J., Benamouzig, R. and Tomé, D. (2003). Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J. Nutr. 133, 1308–1315.

    Google Scholar 

  • Bosze, Z. (2008). Bioactive Components of Milk. Springer, New York.

    Google Scholar 

  • Bounous, G. (2000). Whey protein concentrate (WPC) and glutathione modulation in cancer treatment. Anticancer Res. 20, 4785–4792.

    Google Scholar 

  • Boutrif, E. (1991). Recent developments in protein quality evaluation, in, Food, Nutrition and Agriculture. N. 2/3. Nutrient Requirements, J.P. Lupien, K. Richmond, A. Randell, M. Papetti, R.C. Weisell, R. Simmersbach and Boutrif E., eds. FAO/WHO International Conference on Nutrition, Rome.

    Google Scholar 

  • Boutry C., Bos, C. and Tomé D. (2008). Les besoins en acides amines. Nutr. Clin. Métabol. 22, 151–160.

    Google Scholar 

  • Boza, I., Jiménez, J., Martìnez, O., Suárez, M.D. and Gil, A. (1994). Nutritional value and antigenicity of two milk protein hydrolysates in rats and guinea pigs. J. Nutr. 124, 1978–1986.

    Google Scholar 

  • Brix, S., Bovetto, L., Fritsché, R., Barkholt, V. and Frøkiaer, H. (2003). Immunostimulatory potential of β-lactoglobulin preparations: Effects caused by endotoxin contamination. J. Allergy Clin. Immunol. 112, 1216–1222.

    Google Scholar 

  • Burrin, D.G., Shulman, R.J., Reeds, P.J., Davis T.A. and Gravitt, K.R. (1992). Porcine colostrum and milk stimulate visceral organ and skeletal muscle protein synthesis in neonatal pigs. J. Nutr. 122, 1205–1213.

    Google Scholar 

  • Caillard, I. and Tomé, D. (1994). Modulation of β-lactoglobulin transport in rabbit ileum. Am. J. Physiol. 266, G1053–G1059.

    Google Scholar 

  • Carbonaro, M., Bonomi, F., Iametti, S. and Carnovale, S. (1996). Modifications in disulfide reactivity of milk induced by different pasteurization conditions. J. Food Sci. 61, 495–500.

    Google Scholar 

  • Cattaneo, S., Masotti, F. and Pellegrino, L. (2008a). Effect of overprocessing on heat damage of UHT milk. Eur. Food Res. Technol. 226, 937–948.

    Google Scholar 

  • Cattaneo, S., Hogenboom, J.A., Masotti, F., Rosi, V., Pellegrino, L. and Resmini, P. (2008b). Grated Grana Padano cheese: new hints on how to control quality and recognize imitations. Dairy Sci. Technol. 88, 595–605.

    Google Scholar 

  • Cattaneo, S., Masotti, F. and Pellegrino, L. (2009). Liquid infant formulas: technological tools for limiting heat damage. J. Agric. Food Chem. 57, 10689–10694.

    Google Scholar 

  • Chatterton, D.E.W., Smithers, G., Roupas, P. and Brodkorb, A. (2006). Bioactivity of β-lactoglobulin and α-lactalbumin–technological implications for processing. Int. Dairy J. 16, 1229–1240.

    Google Scholar 

  • Cotter, P.D. and Hill, C. (2003). Surviving the acid test: response of Gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67, 429–453.

    Google Scholar 

  • Cross, M.L. and Gill, H. S. (2000). Immunomodulatory properties of milk. Br. J. Nutr. 84 (Suppl. 1), S81–S89.

    Google Scholar 

  • Csapó, J., Varga-Visi, È., Lóki, K. and Albers, C. (2007). The influence of manufacture on the free D-amino acid content of Cheddar cheese. Amino Acids 32, 39–43.

    Google Scholar 

  • Daniel, H., Vohwinkel, M. and Rehner, G. (1990). Effect of casein and β-casomorphin on gastrointestinal motility in rats. J. Nutr. 120, 252–257.

    Google Scholar 

  • Darragh, A.J. and Hodgkinson, S.M. (2000). Quantifying the digestibility of dietary protein. J. Nutr. 130, 1850S–1856S.

    Google Scholar 

  • de Vrese, M., Frik, R., Roos, N. and Hagemeister, H. (2000). Protein-bound D-amino acids, and to a lesser extent lysinoalanine, decrease true ileal protein digestibility in minipigs as determined with 15N-labeling. J. Nutr. 130, 2026–2031.

    Google Scholar 

  • Deglaire, A., Moughan, P.J., Bos, C., Petzke, K., Rutherfurd, S.M. and Tomé, D. (2008). A casein hydrolysate does not enhance gut endogenous protein flows compared with intact casein when fed to growing rats. J. Nutr. 138, 556–561.

    Google Scholar 

  • Drewnowski, A. (2010). The nutrient rich foods index helps to identify healthy, affordable foods. Am. J. Clin. Nutr. 91S, 1095S–1101S.

    Google Scholar 

  • Etzel, M.R. (2004). Manufacture and use of dairy protein fractions. J. Nutr. 134, 996S–1002S

    Google Scholar 

  • European Food Safety Authority. (2009). Review of the potential health impact of β-casomorphins and related peptides. EFSA Scientific Report 231, 1–107.

    Google Scholar 

  • Faist, W., Drusch, S., Kiesner, C., Elmadfa, I. and Erbersdobler, H.F. (2000). Determination of lysinoalanine in foods containing milk protein by high performance chromatography after derivatization with dansyl chloride. Int. Dairy J. 10, 339–346.

    Google Scholar 

  • Fang, Y.Z., Yang, S. and Wu, G. (2002). Free radicals, antioxidants, and nutrition. Nutrition 8, 872–879.

    Google Scholar 

  • FAO/WHO. (1973). Energy and protein requirements: report of a joint FAO/WHO Ad Hoc expert committee. WHO Tech. Rep. Ser. N. 522, Rome and Geneva.

    Google Scholar 

  • FAO/WHO. (1991). Protein quality evaluation. Report of the Joint FAO/WHO Expert Consultation. Food and Nutrition Paper N. 51, United Nations, Rome, Italy.

    Google Scholar 

  • FAO/WHO/UNU. (2007). Protein and amino acid requirements in human nutrition: report of a joint WHO/FAO/UNU Expert Consultation. WHO Tech. Rep. Ser. N. 935. Geneva, Switzerland.

    Google Scholar 

  • Farnaud, S. and Evans, R.W. (2003). Lactoferrin—a multifunctional protein with antimicrobial properties. Molecular Immunol. 40, 395–405.

    Google Scholar 

  • Food and Agriculture COST Action FA1005. (2011). Improving health properties of food by sharing our knowledge on the digestive process (INFOGEST). http://www.cost.esf.org/domains_actions/fa/Actions/FA1005.

  • Fouillet, H., Bos, C., Gaudichon, C. and Tomé, D. (2002). Approaches to quantifying protein metabolism in response to nutrient ingestion. J. Nutr. 132, 3208S–3218S.

    Google Scholar 

  • Fox, P.F. and Kelly, A. (2003). Development in the chemistry and technology of milk proteins. 2 Minor milk proteins. Food Australia 55, 231–234.

    Google Scholar 

  • Fratelli, M., Goodwin, L.O., Ørom, U.A., Lombardi, S., Tonelli, R., Mengozzi, M. and Ghezzi, P. (2005). Gene expression profiling reveals a signaling role of glutathione in redox regulation. Proc. Natl. Acad. Sci. USA. 102, 13998–14003.

    Google Scholar 

  • Friedman, M. (1999a). Chemistry, biochemistry, nutrition and microbiology of lysinoalanine, lanthionine and histidinoalanine in food and other proteins. J. Agric. Food Chem. 47, 1295–1319.

    Google Scholar 

  • Friedman, M. (1999b). Chemistry, nutrition and microbiology of D-amino-acids. J. Agric. Food Chem. 47, 3457–3479.

    Google Scholar 

  • Gaudichon, C., Roos, N., Mahé, S., Sick, H., Bouley, C. and Tomé, D. (1994). Gastric emptying regulates the kinetics of N absorption from 15N-labeled milk and 15N-labeled yogurt in miniature pigs. J. Nutr. 124, 1970–1977.

    Google Scholar 

  • Gaudichon C., Mahe S., Roos N., Benamouzig R., Luengo C., Huneau J.F., Sick H., Bouley C., Rautureau J. and Tome D. (1995). Exogenous and endogenous N flow rates and level of protein hydrolysis in the human jejunum after [15N]milk and [15N]yoghurt ingestion. Br. J. Nutr. 74, 251–260.

    Google Scholar 

  • Gaudichon, C., Mahé, S., Benamouzig, R., Luengo, C., Fouillet, H., Daré, S., Van Oycke, M., Ferrière, F., Rautureau, J. and Tome D. (1999). Net postprandial utilization of [15N]-labeled milk protein N is influenced by diet composition in humans. J. Nutr. 129, 890–895.

    Google Scholar 

  • Gilani, G.S. and Sepehr, E. (2003). Protein digestibility and quality in products containing antinutritional factors are adversely affected by old age in rats. J. Nutr. 133, 220–225.

    Google Scholar 

  • Gomez, H.F., Ochoa, T.J., Herrera-Insua, I., Carlin, L.G. and Cleary, T.G. (2002). Lactoferrin protects rabbits from Shigella flexneri-induced inflammatory enteritis. Infection and Immunity 70, 7050–7053.

    Google Scholar 

  • Grimble, R.F. (2006). The effects of sulfur amino acids intake on immune function in humans. J. Nutr. 136, 1660S-1665S.

    Google Scholar 

  • Hakkak, R., Korourian, S., Shelnutt, S.R., Lensing, S., Ronis, M.J.J. and Badger, T.M. (2000). Diets containing whey proteins or soy protein isolate protect against 7,12-dimethylbenz(a)anthracene-induced mammary tumors in female rats. Cancer Epidemiol. Biomarkers Prev. 9,113–117.

    Google Scholar 

  • Hammon, H.M. and Blum, J.W. (1998). Metabolic and endocrine traits of neonatal calves are influenced by feeding colostrum for different durations or only milk replacer. J. Nutr. 128, 624632.

    Google Scholar 

  • Hara, H., Fujibayashi, A. and Kiriyama, S. (1992). Pancreatic protease secretion profiles after spontaneous feeding of casein or soybean protein diet in unrestrained conscious rats. J. Nutr. Biochem. 3, 176–181.

    Google Scholar 

  • Hartmann, R. and Meisel, H. (2007). Food-derived peptides with biological activity: from research to food applications. Curr. Opin. Biotechnol. 18, 163–169.

    Google Scholar 

  • Henle, T., Schwarzenbolz, U. and Klostermeyer, H. (1997). Detection and quantification of pentosidine in foods. Food Res. Technol. 204, 95–98.

    Google Scholar 

  • Hewitt, D. and Bancroft, H.J. (1985). Nutritional value of yogurt. J. Dairy Res. 52, 197–207.

    Google Scholar 

  • Hiller, B. and Lorenzen, P.C. (2010). Functional properties of milk proteins as affected by Maillard reaction induced oligomerisation. Food Res. Int. 43, 1155–1166.

    Google Scholar 

  • Hoffman, J.R. and Falvo, M.J. (2004). Protein which is best? J. Sports Sci. Med. 3, 118–130.

    Google Scholar 

  • Iwasa, M., Kaito, M., Ikoma, J., Takeo, M., Imoto, I., Adachi, Y., Yamauchi, K., Koizumi, R. and Teraguchi, S. (2002). Lactoferrin inhibits hepatitis C virus viremia in chronic hepatitis C patients with high viral loads and HCV genotype 1b. Am. J. Gastroenterol. 97, 766–767.

    Google Scholar 

  • Iyer, S. and Lonnerdal, B. (1993). Lactoferrin, lactoferrin receptors and iron metabolism. Eur. J. Clin. Nutr. 47, 232–241.

    Google Scholar 

  • Jenssen, H. (2005). Anti-herpes simplex virus activity of lactoferrin/lactoferricin: An example of antiviral activity of antimicrobial protein/peptide. Cell. Mol. Life Sci. 24, 3302–3313.

    Google Scholar 

  • Jeyarajah, S. and Allen, J.C. (1994). Calcium binding and salt-induced structural changes of native and preheated β-lactoglobulin. J. Agric. Food Chem. 42, 80–85.

    Google Scholar 

  • Kaito, M., Iwasa, M., Fujita, N., Kobayashi, Y., Kojima, Y., Ikoma, J., Imoto, I., Adachi, Y., Hamano, H. and Yamauchi, K. (2007). Effect of lactoferrin in patients with chronic hepatitis C: combination therapy with interferon and ribavirin. J. Gastroenterol. Hepatol. 22, 1984–1997.

    Google Scholar 

  • Kim, S.B., Ki, K.S., Khan, M.A., Lee, W.S., Lee, H., Ahn B.S. and Kim H.S. (2007a). Peptic and tryptic hydrolysis of native and heated whey protein to reduce its antigenicity. J. Dairy Sci. 90, 4043–4050.

    Google Scholar 

  • Kim, S.W., Mateo, R.D., Yin, Y.L. and Wu, G. (2007b). Functional amino acids and fatty acids for enhancing production performance of sows and piglets. Asian-Aust. J. Anim. Sci. 20, 295–306.

    Google Scholar 

  • Kimball, S.R. and Jefferson, L.S. (2001). Regulation of protein synthesis by branched-chain amino acid. Curr. Opin. Clin. Nutr. Metab. Care 4, 39‑43.

    Google Scholar 

  • Krause, I., Bockhardt, A. and Klostermeyer, H. (1997). Characterization of cheese ripening by free amino acids and biogenic amines and influence of bactofugation and heat-treatment of milk. Lait 77, 101–108.

    Google Scholar 

  • Lacroix, M., Bos, C., Léonil, J., Airinei, G., Luengo, C., Daré, S., Benamouzig, R., Fouillet, H., Fauquant, J., Tomé, D. and Gaudichon C. (2006). Compared with casein or total milk protein, digestion of milk soluble proteins is too rapid to sustain the anabolic postprandial amino acids requirement. Amer. J. Clin. Nutr. 84, 1070–1079.

    Google Scholar 

  • Lacroix, M., Bon, C., Bos, C., Léonil, J., Benamouzig, R., Luengo, C., Fauquant, J., Tomé, D. and Gaudichon, C. (2008). Ultra high temperature treatment, but not pasteurization, affects the postprandial kinetics of milk proteins in humans. J. Nutr. 138, 2342–2347.

    Google Scholar 

  • Laursen, I., Briand, P. and Lykkesfeldt, A.E. (1990). Serum albumin as a modulator on growth of the human breast cancer cell line MCF-7. Anticancer Res. 10, 343–352.

    Google Scholar 

  • Layman, D.K. and Baum, J.I. (2004). Dietary protein impact on glycemic control during weight loss. J. Nutr. 134, 968S-973S.

    Google Scholar 

  • Li, P., Yin, Y.L., Li, D.F., Kim, S.W. and Wu, G. (2007). Amino acids and immune function. Br. J. Nutr. 98, 237–252.

    Google Scholar 

  • Ma, L. and Xu, R.J. (1997). Oral insulin-like growth factor-I stimulates intestinal enzyme maturation in newborn rats. Life Sci. 61, 51–58.

    Google Scholar 

  • Madureira, A.R., Pereira, C.I. Gomes, A.M.P., Pintado, M.E. and Malcata, F.X. (2007). Bovine whey proteins–overview on their main biological properties. Food Res. Int. 40, 1197–1211.

    Google Scholar 

  • Mahé, S., Messing, B., Thuillier, F. and Tomé, D. (1991). Digestion of bovine milk proteins in patients with a high jejunostomy. Am. J. Clin. Nutr. 54, 534–538.

    Google Scholar 

  • Mahé, S., Benamouzig, R., Gaudichon, C., Huneau, J.F., De Cruz, I. and Tomé, D. (1995). N movements in the upper jejunum lumen in humans fed low amounts of caseins or β-lactoglobulin. Gastroenterol. Clin. Biol. 19, 20–26.

    Google Scholar 

  • Mahé, S., Roos, N., Benamouzig, R., Davin, L., Luengo, C., Gagnon, L., Gausseres, N., Rautureau, J. and Tomé, D. (1996). Gastrojejunal kinetics and the digestion of [15N]β-lactoglobulin and casein in humans: the influence of the nature and quantity of the protein. Am. J. Clin. Nutr. 63, 546–552.

    Google Scholar 

  • Mandalari G., Adel-Patient, K., Barkholt, V., Baro, C., Bennett, L., Bublin, M., Gaier, S., Graser, G., Ladics, G.S., Mierzejewska, D., Vassilopoulou, E., Vissers, Y.M., Zuidmeer, L., Rigby, N.M., Salt, L.J., Defernez, M., Mulholland, F., Mackie, A.R., Wickham, M.S.J. and Mills, E.N.C. (2009). In vitro digestibility of β-casein and β-lactoglobulin under simulated human gastric and duodenal conditions: a multi-laboratory evaluation. Regul. Toxicol. Pharmacol. 55, 372–381.

    Google Scholar 

  • Manna, P., Sinha, M. and Sil, P.C. (2009). Taurine plays a beneficial role against cadmium-induced oxidative renal dysfunction. Amino Acids 36, 417–428.

    Google Scholar 

  • Marchelli, R., Galaverna, G., Dossena, A., Palla, G., Bobbio, A., Santaguida, S., Grozeva, K., Corradini, R. and Sforza, S. (2008). D-amino acids in food, in, D-Amino Acids: A New Frontier in Amino Acid and Protein Research, K. Ryuichi, H. Brückner, A. D’Aniello, G. H. Fisher, N. Fujii and H. Homma, eds., Nova Science Publishers, New York, pp. 299–315.

    Google Scholar 

  • Mariotti, F., Pueyo, M.E., Tomé, D., Bérot, S., Benamouzig, R. and Mahé, S. (2001). The influence of the albumin fraction on the bioavailability and postprandial utilization of pea protein given selectively to humans. J. Nutr. 131, 1706–1713.

    Google Scholar 

  • Marshall, K. (2000). Therapeutic applications of whey protein. Altern. Med. Rev. 9, 136–156.

    Google Scholar 

  • McIntosh, G.H., Regester, G.O., Le Leu, R.K., Royle, P. and Smithers, G.W. (1995). Dairy proteins protect against dimethylhydrazine-induced intestinal cancers in rats. J. Nutr. 125, 809–816.

    Google Scholar 

  • McIntosh, G.H., Royle, P.J., Le Leu, R.K., Regester, G.O., Johnson, M.A., Grinsted, R.L., Kenward, R.S. and Smithers, G.W. (1998). Whey proteins as functional ingredients. Int. Dairy J. 8, 425–434.

    Google Scholar 

  • Meade, S.J., Reid, E.A. and Gerrard, J.A. (2005). The impact of processing on the nutritional quality of food proteins. J. AOAC Int. 88, 904–922.

    Google Scholar 

  • Mehra, R., Marnila, P. and Korhonen, M. (2006). Milk immunoglobulins for health promotion. Int. Dairy J. 16, 1262–1272.

    Google Scholar 

  • Mezzaroba, L.F.H., Carvalho, J.E., Ponezi, A.N., Antônio, M.A., Monteiro, K.M., Possenti, A. and Sgarbieri, V.C. (2006). Antiulcerative properties of bovine α-lactalbumin. Int. Dairy J. 16, 1005–1012.

    Google Scholar 

  • Michalski, M.C. and Januel, C. (2006). Does homogenization affect the human health properties of cow’s milk? Trends Food Sci. Technol. 17, 423–437.

    Google Scholar 

  • Millward, D.J., Layman, D.K., Tomé, D. and Schaafsma G. (2008). Protein quality assessment: impact of expanding understanding of protein and amino acid needs for optimal health. Am. J. Clin. Nutr. 87, 1576S-1581S.

    Google Scholar 

  • Mistry, N., Drobni, P., Naslund, J., Sunkari, V.G., Jenssen H. and Evander, M. (2007). The antipapillomavirus activity of human and bovine lactoferricin. Antiviral. Res. 75, 258–265.

    Google Scholar 

  • National Research Council. (1989). Recommended Dietary Allowances, 10th edn. National Academy Press, Washington, DC.

    Google Scholar 

  • Newsholme, P., Brennnan, L., Rubi, B. and Maechler, P. (2005). New insights into amino acid metabolism, beta-cell function and diabetes. Clin. Sci. 108, 185–194.

    Google Scholar 

  • Ney, D.M., Gleason, S.T., van Calcar S.C., MacLeod, E.L., Nelson, K.L., Etzel, M.R., Rice, G.M. and Wolff, J.A. (2009). Nutritional management of PKU with glycomacropeptide from cheese whey. J. Inherit. Metab. Dis. 32, 32–39.

    Google Scholar 

  • Nomura, M., Kimoto, H., Someya, Y., Furukawa, S. and Suzuki, I. (1998). Production of γ-aminobutyric acid by cheese starters during cheese ripening. J. Dairy Sci. 81, 1486–1491.

    Google Scholar 

  • Orlando, G.F., Wolf, G. and Engelmann, M. (2008). Role of neuronal nitric oxide synthase in the regulation of the neuroendocrine stress response in rodents: insights from mutant mice. Amino Acids 35, 17–27.

    Google Scholar 

  • Oste, R.E., Miller, R., Sjostrom, H. and Noren O. (1987). Effect of Maillard reaction products on protein digestion. Studies on pure compounds. J. Agric. Food Chem. 35, 938–942.

    Google Scholar 

  • Paddon-Jones, D. and Rasmussen, B.B. (2009). Dietary protein recommendations and the prevention of sarcopenia. Curr. Op. Clin. Nutr. Metab. Care. 12, 86–90.

    Google Scholar 

  • Pantako, T.O., Passos, M., Desrosiers, T. and Amiot, J. (1992). Effets des proteines laitieres sur l’absorption du Fe, du Mg et du Zn mesurée par les variations temporelles de leurs teneurs dans l’aorte et la veine porte chez le rat. Lait 72, 553–573.

    Google Scholar 

  • Pellegrini, A., Thomas, U., Bramaz, N., Hunziker P. and von Fellenberg, R. (1999). Isolation and identification of three bactericidal domains in the bovine α-lactalbumin molecule. Biochim. Biophys. Acta 1426, 439–448.

    Google Scholar 

  • Pellegrino, L., Resmini, P. and Luf, W. (1995). Assessment (indices) of heat treatment of milk, in, Heat-induced Changes in Milk, 2nd edn., P.F. Fox, ed., International Dairy Federation, Brussels, pp. 409–453.

    Google Scholar 

  • Pellegrino, L., Resmini, P., De Noni, I. and Masotti, F. (1996). Sensitive determination of lysinoalanine for distinguishing natural from imitation Mozzarella cheese. J. Dairy Sci. 79, 725–734.

    Google Scholar 

  • Pellegrino, L., van Boekel, M.A.J.S., Gruppen, H., Resmini, P. and Pagani, M.A. (1999). Heat induced aggregation and covalent linkages in β-casein model systems. Int. Dairy J. 9, 255–260.

    Google Scholar 

  • Pellegrino, L., Cattaneo, S. and De Noni I. (2011). Effects of processing on protein quality in milk and milk products, in, Encyclopedia of Dairy Science, 2nd edn., Vol. 3, Elsevier Ltd., Oxford, pp. 1067–1073.

    Google Scholar 

  • Pellett, P.L. and Young, V.R. (1980). Nutritional Evaluation of Protein Foods. The United Nations University Press, Tokyo.

    Google Scholar 

  • Pennings, B., Boirie, Y., Senden, J.M.G.M., Gijsen, P., Kuipers, H. and van Loon, L.J.C. (2011). Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. Am. J. Clin. Nutr. 93, 997–1005.

    Google Scholar 

  • Perta-Kajan, J., Twardowski, T. and Jakubowski, H. (2007). Mechanisms of homocysteine toxicity in humans. Amino Acids 32, 561–572.

    Google Scholar 

  • Peterson, J.D., Herzenberg, L.A., Vasquez, K. and Waltenbaugh, C. (1998). Glutathione levels in antigen-presenting cells modulate Th1 versus Th2 response patterns. Proc. Natl. Acad. Sci. USA. 95, 3071–3076

    Google Scholar 

  • Petroff, O.A.C. (2002). GABA and glutamate in the human brain. Neuroscientist 8, 562–573.

    Google Scholar 

  • Phillips, S.M. (2011). Symposium 2: Exercise and protein nutrition. The science of muscle hypertrophy: making dietary protein count. Proc. Nutr. Soc. 70, 100–103.

    Google Scholar 

  • Pihlanto-Leppala, A., Marnila, P., Hubert, L., Rokka, T., Korhonen, H.J. and Karp, M. (1999). The effect of α-lactalbumin and β-lactoglobulin hydrolysates on the metabolic activity of Escherichia coli JM103. J. Appl. Microbiol. 87, 540–545.

    Google Scholar 

  • Platell, C., Kong, S.E., McCauley, R. and Hall, J.C. (2000). Branched-chain amino acids. J. Gastroenterol. Hepatol. 15, 706–717.

    Google Scholar 

  • Rand, W.M. and Young, V.R. (1999). Statistical analysis of N balance data with reference to the lysine requirement in adults. J. Nutr. 129, 1920–1926.

    Google Scholar 

  • Reeds, P.J., Schaafsma, G., Tomé, D. and Young, V. (2000). Criteria and significance of dietary protein sources in humans. Summary of the workshop with recommendations. J. Nutr. 130, 1874S-1876S.

    Google Scholar 

  • Remer, T. (2001). Influence of nutrition on acid-base balance—metabolic aspects. Eur J. Nutr. 40, 214–220.

    Google Scholar 

  • Renner, E. (1993). Nutritional aspects of cheese, in, Cheese: Chemistry, Physics and Microbiology, P.F. Fox., ed., Chapman & Hall, London, pp. 557–579.

    Google Scholar 

  • Rennie, M.J., Bohé, J., Smith, K., Wackerhage, H. and Greenhaff, P. (2006). Branched-chain amino acid as fuels and anabolic signals in human muscle. J. Nutr. 136, 264S-268S.

    Google Scholar 

  • Rerat A., Calmes R., Vaissade P. and Finot P.A. (2002). Nutritional and metabolic consequences of the early Maillard reaction of heat treated milk in the pig. Significance for man. Eur. J. Nutr. 41, 1–11.

    Google Scholar 

  • Rogelj, I. (2000). Milk, dairy products, nutrition and health. Food Technol. Biotechnol. 38, 143–147.

    Google Scholar 

  • Roos, N., Mahé, S., Benamouzig, R., Sick, H., Rautureau, J. and Tomé, D. (1995). [15N]-labeled immunoglobulins from bovine colostrum are partially resistant to digestion in human intestine. J. Nutr. 125, 1238–1244.

    Google Scholar 

  • Rudloff, S. and Lonnerdal, B. (1992). Solubility and digestibility of milk proteins in infant formulas exposed to different heat treatments. J. Pediatr. Gastroenterol. Nutr. 15, 25–33.

    Google Scholar 

  • Sales, M.G.R., de Freitas, O., Zucoloto, S., Okano, N., Padovan, G.J., dos Santos, J.E. and Greene, L.J. (1995). Casein, hydrolyzed casein, and amino acids that simulate casein produce the same extent of mucosal adaptation to massive bowel resection in adult rats. Am. J. Clin. Nutr. 62, 87–92.

    Google Scholar 

  • Sarwar, G. (1997). The protein digestibility—corrected amino acid score method overestimates quality of proteins containing antinutritional factors and of poorly digestible proteins supplemented with limiting amino acids in rats. J. Nutr. 127, 758–764.

    Google Scholar 

  • Sarwar, G., Peace, R.W., Botting, H.G. and Brulè, D. (1989). Digestibility of protein and amino acids in selected foods as determined by a rat balance method. Plant Food Human Nutr. 39, 23–32.

    Google Scholar 

  • Sarwar Gilani, G., Cockell, K.A. and Sepehr, E. (2005). Effects of antinutritional factors on protein digestibility and amino acid availability in foods. J. AOAC Int. 88, 967–987.

    Google Scholar 

  • Schaafsma, G. (2000). The protein digestibility-corrected amino acid score. J. Nutr. 130, 1865S-1867S.

    Google Scholar 

  • Schaafsma, G. (2005). The protein digestibility—corrected amino acid score (PDCAAS)—A concept for describing protein quality in foods and food ingredients: a critical review. J. AOAC Int. 88, 988–994.

    Google Scholar 

  • Simons, J.W.F.A., Kosters, H.A., Visschers, R.W. and de Jongh, H.H.J. (2002). Role of calcium as trigger in thermal β-lactoglobulin aggregation. Arch. Biochem. Biophysics. 406, 143–152.

    Google Scholar 

  • Singh, H. and Creamer, L.K. (1993). In vitro digestibility of whey protein/κ-casein complexes isolated from heated concentrated milk. J. Food Sci. 58, 299–306.

    Google Scholar 

  • Stoll, B., Henry, J., Reeds, P.J., Yu, H., Jahoor, F. and Burrin, D.G. (1998). Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets. J. Nutr. 128, 606–614.

    Google Scholar 

  • Syndayikengera, S. and Xia, W.S. (2006). Nutritional evaluation of caseins and whey proteins and their hydrolysates from Protamex. J. Zhejiang Univ. Sci. B 7, 90–98.

    Google Scholar 

  • Tan, B., Li, X.G., Kong, X.F., Huang, R., Ruan, Z., Yao, K., Deng, Z., Xie, M., Shinzato, I., Yin, Y. and Wy, G. (2009). Dietary l-arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids 37, 323331.

    Google Scholar 

  • Tomé, D. (2010). Quantity and quality of proteins: the role of milk protein in meeting amino acid and protein requirements for humans. Proc. Symposium of Nutrient Density/Nutritional Aspects of Dairy, Amsterdam, May 21, 1994.

    Google Scholar 

  • Tomé, D. and Bos, C. (2000). Dietary protein and nitrose utilization. J. Nutr. 130, 1868S-1873S.

    Google Scholar 

  • Tomita, M., Takase, M., Bellamy, W. and Shimamura, S. (1994). A review: the active peptide of lactoferrin. Acta Paed. Japo. 36, 585–591.

    Google Scholar 

  • Tsuda, H., Sekine, K., Ushida, Y., Kuhara, T., Takasuka, N., Iigo, M., Seok, Han, B. and Moore, M.A.. (2000). Milk and dairy products in cancer prevention: focus on bovine lactoferrin. Mutat. Res. 462, 227–233.

    Google Scholar 

  • Tsuda, H., Kamachi, K., Xu, J., Sekine, K., Ohkubo, S., Takasuka, N. and Iigo, M. (2006). Prevention of carcinogenesis and cancer metastasis by bovine lactoferrin. Proc. Jap. Acad. Series B 7, 208–215.

    Google Scholar 

  • US National Academy of Sciences. (2005). Dietary reference intake for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids (macronutrients). Available at http://fnic.nal.usda.gov/.

  • USDEC. (2011). U. S. Dairy Export Council. Accessed May, 29th, 2011, at: http://www.usdec.org/.

  • Ushida, Y., Shimokawa, Y., Matsumoto, H., Toida, T. and Hayasawa, H. (2003). Effects of bovine α-lactalbumin on gastric defense mechanisms in naive rats. Biosci. Biotechnol. Biochem. 67, 577–583.

    Google Scholar 

  • Wang, Q., Allen, J.C. and Swaisgood, H.E. (1997). Binding of vitamin D and cholesterol to β-lactoglobulin. J. Dairy Sci. 80, 1054–1059.

    Google Scholar 

  • Weinberg, E.D. (2007). Antibiotic properties and applications of lactoferrin. Curr. Pharmaceut. Des. 13, 801811.

    Google Scholar 

  • Willis, A., Beander, H.U., Steel, G. and Valle, D. (2008). PRODH variants and risk for schizophrenia. Amino Acids 35, 673–679.

    Google Scholar 

  • Wu, G. (2009). Amino acids: metabolism, functions, and nutrition. Amino Acids 37, 1–17.

    Google Scholar 

  • Wu, G. and Morris, S.M. (1998). Arginine metabolism: nitric oxide and beyond. Biochem. J. 336, 1–17.

    Google Scholar 

  • Wu, G., Bazer, F.W., Wallace, J.M. and Spencer, T.E. (2006). Intrauterine growth retardation: implications for the animal sciences. J. Anim. Sci. 84, 2316–2337.

    Google Scholar 

  • Young, V.R. and Pellett, P.L. (1990). Current concepts concerning indispensable amino acid needs in adult and their implications for international nutrition planning. Food Nutr. Bull. 12, 289–300.

    Google Scholar 

  • Young, G.P., Taranto, T.M., Jonas, H.A., Cox, A.J., Hogg, A. and Werther, G.A. (1990). Insulin-like growth factors and the developing and mature rat small intestine: receptors and biological actions. Digestion 46, 240–252.

    Google Scholar 

  • Yudkoff, M. (1997). Brain metabolism of branched-chain amino acids. GLIA 21, 92–98.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Pellegrino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pellegrino, L., Masotti, F., Cattaneo, S., Hogenboom, J.A., de Noni, I. (2013). Nutritional Quality of Milk Proteins. In: McSweeney, P., Fox, P. (eds) Advanced Dairy Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4714-6_16

Download citation

Publish with us

Policies and ethics