Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod 2010; 82(6):1021–1029.
CAS
CrossRef
PubMed
Google Scholar
Bjersing L, Cajander S. Ovulation and the mechanism of follicle rupture. I. Light micreoscopic changes in rabbit ovbarian follicles prior to induced ovulation. Cell Tissue Res 1951; 149:287–299.
CrossRef
Google Scholar
Burr JH, Davis JR. The vascular system of the rabbit ovary and its relationship to ovulation. Anat Rec 1951; 111:273–297.
CrossRef
PubMed
Google Scholar
Byskov AG. Ultrastructural studies on preovulatory follicles in the mouse ovary. Z Zellforsch Mikrosk Anat 1969; 100:285–299.
CAS
CrossRef
PubMed
Google Scholar
Zachariae F. Studies on the mechanism of ovulation: permeability of the blood-liquor barrier. Acta Endocrinol 1958; 27:339–342.
CAS
CrossRef
Google Scholar
Shalgi R, Kraicer P, Rimon A et al. Proteins of human follicular fluid: the blood-follicle barrier. Fertil Steril 1973; 24:429–434.
CAS
CrossRef
PubMed
Google Scholar
Schweigert FJ, Gericke B, Wolfram W et al. Peptide and protein profiles in serum and follicular fluid of women undergoing IVF. Human Reprod 2006; 21:2960–2968.
CAS
CrossRef
Google Scholar
Angelucci S, Ciavardelli D, Di Giuseppe F et al. Proteome analysis of human follicular fluid. Biochim Biophys Acta 2006; 1764:1775–1785.
CAS
CrossRef
PubMed
Google Scholar
Gosden RG, Hunter RH, Telfer E et al. Physiological factors underlying the formation of ovarian follicular fluid. J Reprod Fertil 1988; 82:813–825.
CAS
CrossRef
PubMed
Google Scholar
Zachariae F. Studies on the mechanism of ovulation: permeability of the blood-liquor barrier. Acta Endocrinol (Copenh) 1958; 27:339–342.
CAS
CrossRef
Google Scholar
Cran DG, Moor RM, Hay MF. Permeability of ovarian follicles to electron-dense macromolecules. Acta Endocrinol (Copenh) 1976; 82:631–636.
CAS
CrossRef
Google Scholar
Hess KA, Chen L, Larsen WJ. The ovarian blood follicle barrier is both charge-and size-selective in mice. Biol Reprod 1998; 58:705–711.
CAS
CrossRef
PubMed
Google Scholar
Zhou H, Ohno N, Terada N et al. Involvement of follicular basement membrane and vascular endothelium in blood follicle barrier formation of mice revealed by‘in vivo cryotechnique’. Reproduction 2007; 134:307–317.
CAS
CrossRef
PubMed
Google Scholar
Bazzoni G. Endothelial tight junctions: permeable barriers of the vessel wall. Thromb Haemost 2006; 95:36–42.
CAS
CrossRef
PubMed
Google Scholar
Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 2009; 16:209–221.
CAS
CrossRef
PubMed
Google Scholar
Powers RW, Chen L, Russell PT et al. Gonadotropin-stimulated regulation of blood-follicle barrier is mediated by nitric oxide. Am J Physiol 1995; 269:E290–E298.
CAS
PubMed
Google Scholar
Holmquist P, Sjoblad S, Torffvit O. Pore size and charge selectivity of the glomerular membrane at the time of diagnosis of diabetes. Pediatr Nephrol 2004; 19:1361–1366.
CrossRef
PubMed
Google Scholar
Rodgers RJ, Irving-Rodgers HF, Russell DL. Extracellular matrix of the developing ovarian follicle. Reproduction 2003; 126:415–424.
CAS
CrossRef
PubMed
Google Scholar
Rodgers HF, Irvine CM, van Wezel IL et al. Distribution of the alpha1 to alpha6 chains of type IV collagen in bovine follicles. Biol Reprod 1998; 59:1334–1341.
CAS
CrossRef
PubMed
Google Scholar
Irving-Rodgers HF, Rodgers RJ. Extracellular matrix of the developing ovarian follicle. Semin Reprod Med 2006; 24(4):195–203.
CAS
CrossRef
PubMed
Google Scholar
McArthur ME, Irving-Rodgers HF, Byers S et al. Identification and immunolocalization of decorin, versican, perlecan, nidogen, and chondroitin sulfate proteoglycans in bovine small-antral ovarian follicles. Biol Reprod 2000; 63:913–924.
CAS
CrossRef
PubMed
Google Scholar
Ehrmann DA. Polycystic ovary syndrome. N Engl J Med 2005; 352:1223–1236.
CAS
CrossRef
PubMed
Google Scholar
Legro RS. Polycystic ovary syndrome: the new millenium. Mol Cell Endocrinol 2001; 184:87–93.
CAS
CrossRef
PubMed
Google Scholar
Franks S. Polycystic ovary syndrome: a changing perspective. Clin Endocrinol (Oxf) 1989; 31:87–120.
CAS
CrossRef
Google Scholar
San Roman GA, Magoffin DA. Insulin-like growth factor binding proteins in ovarian follicles from women with polycystic ovarian disease: cellular source and levels in follicular fluid. J Clin Endocrinol Metab 1992; 75:1010–1016.
CAS
PubMed
Google Scholar
Onalan G, Selam B, Baran Y et al. Serum and follicular fluid levels of soluble Fas, soluble Fas ligand and apoptosis of luteinized granulosa cells in PCOS patients undergoing IVF. Hum Reprod 2005; 20:2391–2395.
CAS
CrossRef
PubMed
Google Scholar
Welt CK, Taylor AE, Fox J et al. Follicular arrest in polycystic ovary syndrome is associated with deficient inhibin A and B biosynthesis. J Clin Endocrinol Metab 2005; 90:5582–5587.
CAS
CrossRef
PubMed
Google Scholar
Zhou H, Ohno N, Terada N et al. Permselectivity of blood follicle barriers in mouse ovaries of the mifepristone-induced polycystic ovary model revealed by in vivo cryotechnique. Reproduction 2008; 136:599–610.
CAS
CrossRef
PubMed
Google Scholar
Siu MKY, Chan HY, Kong DS et al. p21-activated kinase 4 regulates ovarian cancer cell proliferation, migration, and invasion and contributes to poor prognosis in patients. Proc Natl Acad Sci U S A 2010; 107:18622–18627.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Siu MKY, Wong OG, Cheung AN. TrkB as a therapeutic target for ovarian cancer. Expert Opin Ther Targets 2009; 13:1169–1178.
CAS
CrossRef
PubMed
Google Scholar
Bell DA. Origins and molecular pathology of ovarian cancer. Mod Pathol 2005; 18(Suppl 2):S19–S32.
CAS
CrossRef
PubMed
Google Scholar
Feeley KM, Wells M. Precursor lesions of ovarian epithelial malignancy. Histopathology 2001; 38:87–95.
CAS
CrossRef
PubMed
Google Scholar
Cheng CY, Mruk DD. The blood-testis barrier and its implication in male contraception. Pharmacol Rev 2012; 64:16–64.
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57:173–185.
CAS
CrossRef
PubMed
Google Scholar
Miller DS, Bauer B, Hartz AM. Modulation of P-glycoprotein at the blood-brain barrier: Opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 2008; 60:196–209.
CAS
CrossRef
PubMed
Google Scholar
Pelletier RM. The blood-testis barrier: the junctional permeability, the proteins and the lipids. Prog Histochem Cytochem 2011; 46:49–127.
CrossRef
PubMed
Google Scholar
Chen L, Mao SJT, Larsen WJ. Identification of a factor in fetal bovine serum that stabilizes the cumulus extracellular matrix. J Biol Chem 1992; 267:12380–12386.
CAS
PubMed
Google Scholar
Chen L, Mao SJT, McLean LR et al. Proteins of the inter-a-trypsin family stabilize the cumulus extracellular matrix through direct binding with hyaluronic acid. J Biol Chem 1994; 269:28282–28287.
CAS
PubMed
Google Scholar
Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 1991; 432:109–142.
Google Scholar
Gu Y, Dee CM, Shen J. Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability. Front Biosci 2011; 3:1216–1231.
CrossRef
Google Scholar
Oberleithner H, Kusche-Vihrog K, Schillers H. Endothelial cells as vascular salt sensors. Kidney Int 2010; 77:490–494.
CAS
CrossRef
PubMed
Google Scholar
Lee NPY, Cheng CY. Regulation of Sertoli cell tight junction dynamics in the rat testis via the nitric oxide synthase/soluble guanylate cyclase/3′,5′-cyclic guanosine monophosphate/protein kinase G signaling pathway: an in vitro study. Endocrinology 2003; 144:3114–3129.
CAS
CrossRef
PubMed
Google Scholar
Bar-Joseph H, Ben-Aharon I, Rizel S et al. Doxorubicin-induced apoptosis in germal vesicle (GV) oocytes. Reprod Toxicol 2010; 30:566–572.
CAS
CrossRef
PubMed
Google Scholar