Skip to main content

The Blood-Follicle Barrier (BFB) In Disease and in Ovarian Function

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 763)

Abstract

The blood-follicle barrier (BFB) is one of the blood-tissue barriers in mammalian body found in developing follicles in the ovary. The BFB, besides the tight junction ^(TJ)-permeability barrier of the endothelial cells in the microvessels that surround the developing follicle, is constituted and contributed significantly by the basement membrane of the developing follicle which alters its composition rapidly during follicle development. While the concept of the BFB and its ultrastructure were described more than six decades ago, fewer than 20 reports are found in the literature that were dedicated to investigate the biology, regulation, and function of the BFB either in health or in disease. Furthermore, detailed analysis of the adhesion protein complexes and the regulation of the junction dynamics at the BFB are still missing in the literature. The goal of this short chapter is to provide an update on this important blood-tissue barrier, it is obvious that future investigation is much needed in the field to understand this ultrastructure better in order to treat and better ovarian disorders including ovarian cancer.

Keywords

  • Ovarian Cancer
  • Follicular Fluid
  • Ovarian Follicle
  • PCOS Patient
  • Follicle Development

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-4711-5_9
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-4711-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   249.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod 2010; 82(6):1021–1029.

    CAS  CrossRef  PubMed  Google Scholar 

  2. Bjersing L, Cajander S. Ovulation and the mechanism of follicle rupture. I. Light micreoscopic changes in rabbit ovbarian follicles prior to induced ovulation. Cell Tissue Res 1951; 149:287–299.

    CrossRef  Google Scholar 

  3. Burr JH, Davis JR. The vascular system of the rabbit ovary and its relationship to ovulation. Anat Rec 1951; 111:273–297.

    CrossRef  PubMed  Google Scholar 

  4. Byskov AG. Ultrastructural studies on preovulatory follicles in the mouse ovary. Z Zellforsch Mikrosk Anat 1969; 100:285–299.

    CAS  CrossRef  PubMed  Google Scholar 

  5. Zachariae F. Studies on the mechanism of ovulation: permeability of the blood-liquor barrier. Acta Endocrinol 1958; 27:339–342.

    CAS  CrossRef  Google Scholar 

  6. Shalgi R, Kraicer P, Rimon A et al. Proteins of human follicular fluid: the blood-follicle barrier. Fertil Steril 1973; 24:429–434.

    CAS  CrossRef  PubMed  Google Scholar 

  7. Schweigert FJ, Gericke B, Wolfram W et al. Peptide and protein profiles in serum and follicular fluid of women undergoing IVF. Human Reprod 2006; 21:2960–2968.

    CAS  CrossRef  Google Scholar 

  8. Angelucci S, Ciavardelli D, Di Giuseppe F et al. Proteome analysis of human follicular fluid. Biochim Biophys Acta 2006; 1764:1775–1785.

    CAS  CrossRef  PubMed  Google Scholar 

  9. Gosden RG, Hunter RH, Telfer E et al. Physiological factors underlying the formation of ovarian follicular fluid. J Reprod Fertil 1988; 82:813–825.

    CAS  CrossRef  PubMed  Google Scholar 

  10. Zachariae F. Studies on the mechanism of ovulation: permeability of the blood-liquor barrier. Acta Endocrinol (Copenh) 1958; 27:339–342.

    CAS  CrossRef  Google Scholar 

  11. Cran DG, Moor RM, Hay MF. Permeability of ovarian follicles to electron-dense macromolecules. Acta Endocrinol (Copenh) 1976; 82:631–636.

    CAS  CrossRef  Google Scholar 

  12. Hess KA, Chen L, Larsen WJ. The ovarian blood follicle barrier is both charge-and size-selective in mice. Biol Reprod 1998; 58:705–711.

    CAS  CrossRef  PubMed  Google Scholar 

  13. Zhou H, Ohno N, Terada N et al. Involvement of follicular basement membrane and vascular endothelium in blood follicle barrier formation of mice revealed by‘in vivo cryotechnique’. Reproduction 2007; 134:307–317.

    CAS  CrossRef  PubMed  Google Scholar 

  14. Bazzoni G. Endothelial tight junctions: permeable barriers of the vessel wall. Thromb Haemost 2006; 95:36–42.

    CAS  CrossRef  PubMed  Google Scholar 

  15. Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 2009; 16:209–221.

    CAS  CrossRef  PubMed  Google Scholar 

  16. Powers RW, Chen L, Russell PT et al. Gonadotropin-stimulated regulation of blood-follicle barrier is mediated by nitric oxide. Am J Physiol 1995; 269:E290–E298.

    CAS  PubMed  Google Scholar 

  17. Holmquist P, Sjoblad S, Torffvit O. Pore size and charge selectivity of the glomerular membrane at the time of diagnosis of diabetes. Pediatr Nephrol 2004; 19:1361–1366.

    CrossRef  PubMed  Google Scholar 

  18. Rodgers RJ, Irving-Rodgers HF, Russell DL. Extracellular matrix of the developing ovarian follicle. Reproduction 2003; 126:415–424.

    CAS  CrossRef  PubMed  Google Scholar 

  19. Rodgers HF, Irvine CM, van Wezel IL et al. Distribution of the alpha1 to alpha6 chains of type IV collagen in bovine follicles. Biol Reprod 1998; 59:1334–1341.

    CAS  CrossRef  PubMed  Google Scholar 

  20. Irving-Rodgers HF, Rodgers RJ. Extracellular matrix of the developing ovarian follicle. Semin Reprod Med 2006; 24(4):195–203.

    CAS  CrossRef  PubMed  Google Scholar 

  21. McArthur ME, Irving-Rodgers HF, Byers S et al. Identification and immunolocalization of decorin, versican, perlecan, nidogen, and chondroitin sulfate proteoglycans in bovine small-antral ovarian follicles. Biol Reprod 2000; 63:913–924.

    CAS  CrossRef  PubMed  Google Scholar 

  22. Ehrmann DA. Polycystic ovary syndrome. N Engl J Med 2005; 352:1223–1236.

    CAS  CrossRef  PubMed  Google Scholar 

  23. Legro RS. Polycystic ovary syndrome: the new millenium. Mol Cell Endocrinol 2001; 184:87–93.

    CAS  CrossRef  PubMed  Google Scholar 

  24. Franks S. Polycystic ovary syndrome: a changing perspective. Clin Endocrinol (Oxf) 1989; 31:87–120.

    CAS  CrossRef  Google Scholar 

  25. San Roman GA, Magoffin DA. Insulin-like growth factor binding proteins in ovarian follicles from women with polycystic ovarian disease: cellular source and levels in follicular fluid. J Clin Endocrinol Metab 1992; 75:1010–1016.

    CAS  PubMed  Google Scholar 

  26. Onalan G, Selam B, Baran Y et al. Serum and follicular fluid levels of soluble Fas, soluble Fas ligand and apoptosis of luteinized granulosa cells in PCOS patients undergoing IVF. Hum Reprod 2005; 20:2391–2395.

    CAS  CrossRef  PubMed  Google Scholar 

  27. Welt CK, Taylor AE, Fox J et al. Follicular arrest in polycystic ovary syndrome is associated with deficient inhibin A and B biosynthesis. J Clin Endocrinol Metab 2005; 90:5582–5587.

    CAS  CrossRef  PubMed  Google Scholar 

  28. Zhou H, Ohno N, Terada N et al. Permselectivity of blood follicle barriers in mouse ovaries of the mifepristone-induced polycystic ovary model revealed by in vivo cryotechnique. Reproduction 2008; 136:599–610.

    CAS  CrossRef  PubMed  Google Scholar 

  29. Siu MKY, Chan HY, Kong DS et al. p21-activated kinase 4 regulates ovarian cancer cell proliferation, migration, and invasion and contributes to poor prognosis in patients. Proc Natl Acad Sci U S A 2010; 107:18622–18627.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Siu MKY, Wong OG, Cheung AN. TrkB as a therapeutic target for ovarian cancer. Expert Opin Ther Targets 2009; 13:1169–1178.

    CAS  CrossRef  PubMed  Google Scholar 

  31. Bell DA. Origins and molecular pathology of ovarian cancer. Mod Pathol 2005; 18(Suppl 2):S19–S32.

    CAS  CrossRef  PubMed  Google Scholar 

  32. Feeley KM, Wells M. Precursor lesions of ovarian epithelial malignancy. Histopathology 2001; 38:87–95.

    CAS  CrossRef  PubMed  Google Scholar 

  33. Cheng CY, Mruk DD. The blood-testis barrier and its implication in male contraception. Pharmacol Rev 2012; 64:16–64.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57:173–185.

    CAS  CrossRef  PubMed  Google Scholar 

  35. Miller DS, Bauer B, Hartz AM. Modulation of P-glycoprotein at the blood-brain barrier: Opportunities to improve central nervous system pharmacotherapy. Pharmacol Rev 2008; 60:196–209.

    CAS  CrossRef  PubMed  Google Scholar 

  36. Pelletier RM. The blood-testis barrier: the junctional permeability, the proteins and the lipids. Prog Histochem Cytochem 2011; 46:49–127.

    CrossRef  PubMed  Google Scholar 

  37. Chen L, Mao SJT, Larsen WJ. Identification of a factor in fetal bovine serum that stabilizes the cumulus extracellular matrix. J Biol Chem 1992; 267:12380–12386.

    CAS  PubMed  Google Scholar 

  38. Chen L, Mao SJT, McLean LR et al. Proteins of the inter-a-trypsin family stabilize the cumulus extracellular matrix through direct binding with hyaluronic acid. J Biol Chem 1994; 269:28282–28287.

    CAS  PubMed  Google Scholar 

  39. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 1991; 432:109–142.

    Google Scholar 

  40. Gu Y, Dee CM, Shen J. Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability. Front Biosci 2011; 3:1216–1231.

    CrossRef  Google Scholar 

  41. Oberleithner H, Kusche-Vihrog K, Schillers H. Endothelial cells as vascular salt sensors. Kidney Int 2010; 77:490–494.

    CAS  CrossRef  PubMed  Google Scholar 

  42. Lee NPY, Cheng CY. Regulation of Sertoli cell tight junction dynamics in the rat testis via the nitric oxide synthase/soluble guanylate cyclase/3′,5′-cyclic guanosine monophosphate/protein kinase G signaling pathway: an in vitro study. Endocrinology 2003; 144:3114–3129.

    CAS  CrossRef  PubMed  Google Scholar 

  43. Bar-Joseph H, Ben-Aharon I, Rizel S et al. Doxorubicin-induced apoptosis in germal vesicle (GV) oocytes. Reprod Toxicol 2010; 30:566–572.

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle K. Y. Siu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Siu, M.K.Y., Cheng, C.Y. (2013). The Blood-Follicle Barrier (BFB) In Disease and in Ovarian Function. In: Cheng, C.Y. (eds) Biology and Regulation of Blood-Tissue Barriers. Advances in Experimental Medicine and Biology, vol 763. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4711-5_9

Download citation