Skip to main content

Transcriptional Regulation of Cell Adhesion at the Blood-Testis Barrier and Spermatogenesis in the Testis

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 763))

Abstract

Spermatogenesis involves precise co-ordination of multiple cellular events that take place in the seminiferous epithelium composed of Sertoli cells and developing germ cells during the seminiferous epithelial cycle. Given the cyclic and co-ordinated nature of spermatogenesis, temporal and spatial expression of certain genes pertinent to a specific cellular event are essential. As such, transcriptional regulation is one of the major regulatory machineries in controlling the cell type- and stage-specific gene expression, some of which are under the influence of gonadotropins (e.g., FSH and LH) and sex steroids (e.g., testosterone and estradiol-17β). Recent findings regarding transcriptional control of spermatogenesis, most notably target genes at the Sertoli-Sertoli and Sertoli-spermatid interface at the site of the blood-testis barrier (BTB) and apical ectoplasmic specialization (apical ES), respectively, involving in cell adhesion are reviewed and discussed herein. This is a much neglected area of research and a concerted effort by investigators is needed to understand transcriptional regulation of cell adhesion function in the testis particularly at the BTB during spermatogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Oakberg EF. Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. Am J Anat 1956; 99:507–516.

    Article  CAS  PubMed  Google Scholar 

  2. Russell L. Movement of spermatocytes from the basal to the adluminal compartment of the rat testis. Am J Anat 1977; 148:313–328.

    Article  CAS  PubMed  Google Scholar 

  3. Cheng CY, Mruk DD. A local autocrine axis in the testes that regulates spermatogenesis. Nature Rev Endocrinol 2010; 6:380–395.

    Article  CAS  Google Scholar 

  4. Johnston DS, Wright WW, Dicandeloro P et al. Stage-specific gene expression is a fundamental characteristic of rat spermatogenic cells and Sertoli cells. Proc Natl Acad Sci USA 2008; 105:8315–8320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. MacLean JA 2nd, Chen MA, Wayne CM et al. Rhox: a new homeobox gene cluster. Cell 2005; 120:369–382.

    Article  CAS  PubMed  Google Scholar 

  6. McKee BD, Handel MA. Sex chromosomes, recombination and chromatin conformation. Chromosoma 1993; 102:71–80.

    Article  CAS  PubMed  Google Scholar 

  7. Rao MK, Wayne CM, Meistrich ML et al. Pemhomeobox gene promoter sequences that direct transcription in a Sertoli cell-specific, stage-specific and androgen-dependent manner in the testis in vivo. Mol Endocrinol 2003; 17:223–233.

    Article  CAS  PubMed  Google Scholar 

  8. Hu Z, MacLean JA, Bhardwaj A et al. Regulation and function of the Rhox5 homeobox gene. Ann N Y Acad Sci 2007; 1120:72–83.

    Article  CAS  PubMed  Google Scholar 

  9. Ackerman SL, Kozak LP, Przyborski SA et al. The mouse rostralcerebellar malformation gene encodes an UNC 5 like protein. Nature 1997; 386:838–842.

    Article  CAS  PubMed  Google Scholar 

  10. Hu Z, Shanker S, MacLean JA 2nd et al. The RHOX5 homeodomain protein mediates transcriptional repression of the netrin-1 receptor gene Unc5c. J Biol Chem 2008; 283:3866–3876.

    Article  CAS  PubMed  Google Scholar 

  11. Maiti S, Doskow J, Li S et al. The Pemhomeobox gene. Androgen-dependent and-independent promoters and tissue-specific alternative RNA splicing. J Biol Chem 1996; 271:17536–17546.

    Article  CAS  PubMed  Google Scholar 

  12. Wang RS, Yeh S, Chen LM et al. Androgen receptor in Sertoli cell is essential for germ cell nursery and junction complex formation in mouse testes. Endocrinology 2006; 147:5624–5633.

    Article  CAS  PubMed  Google Scholar 

  13. Meng J, Holdcraft RW, Shima JE et al. Androgens regulate the permeability of the blood-testis barrier. Proc Natl Acad Sci USA 2005; 102:16696–16670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yan HHN, Mruk DD, Lee WM et al. Blood-testis barrier dynamics are regulated by testosterone and cytokines via their differential effects on the kinetics of protein endocytosis and recycling in Sertoli cells. FASEB J 2008; 22:1945–1959.

    Article  CAS  PubMed  Google Scholar 

  15. Su L, Mruk DD, Lee WM et al. Differential effects of testosterone and TGF-β3 on endocytic vesiclemediated protein trafficking events at the blood-testis barrier. Exp Cell Res 2010; 316:2945–2960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chung NPY, Cheng CY. Is cadmium chloride-induced inter-Sertoli tight junction permeability barrier disruption a suitable invitro model to study the events of junction disassembly during spermatogenesis in the rat testis? Endocrinology 2001; 142:1878–1888.

    Article  CAS  PubMed  Google Scholar 

  17. Janecki A, Jakubowiak A, Steinberger A. Effect of cadmium chloride on transepithelial electrical resistance of Sertoli cell monolayers in two-compartment cultures—a new model for toxicological investigations of the “blood-testis” barrier in vitro. Toxicol Appl Pharmacol 1992; 112:51–57.

    Article  CAS  PubMed  Google Scholar 

  18. Roy AK, Lavrovsky Y, Song CS et al. Regulation of androgen action. Vitam Horm 1999; 55:309–352.

    Article  CAS  PubMed  Google Scholar 

  19. Keller ET, Ershler WB, Chang C. The androgen receptor: a mediator of diverse responses. Front Biosci 1996; 1:d59–d71.

    Article  CAS  PubMed  Google Scholar 

  20. Heinlein CA, Chang C. Androgen receptor (AR) coregulators: an overview. Endocr Rev 2002; 23:175–200.

    Article  CAS  PubMed  Google Scholar 

  21. Rahman F, Christian HC. Nonclassical actions of testosterone: an update. Trends Endocrinol Metab 2007; 18:371–378.

    Article  CAS  PubMed  Google Scholar 

  22. Walker WH. Molecular mechanisms of testosterone action in spermatogenesis. Steroids 2009; 74:602–607.

    Article  CAS  PubMed  Google Scholar 

  23. Gorczynska E, Handelsman DJ. Androgens rapidly increase the cytosolic calcium concentration in Sertoli cells. Endocrinology 1995; 136:2052–2059.

    Article  CAS  PubMed  Google Scholar 

  24. Lyng FM, Jones GR, Rommerts FF. Rapid androgen actions on calcium signaling in rat sertoli cells and two human prostatic cell lines: similar biphasic responses between 1 picomolar and 100 nanomolar concentrations. Biol Reprod 2000; 63:736–747.

    Article  CAS  PubMed  Google Scholar 

  25. Fix C, Jordan C, Cano P et al. Testosterone activates mitogen-activated protein kinase and the cAMP response element binding protein transcription factor in Sertoli cells. Proc Natl Acad Sci USA 2004; 101:10919–10924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yeh S, Tsai MY, Xu Q et al. Generation and characterization of androgen receptor knockout (ARKO) mice: an in vivo model for the study of androgen functions in selective tissues. Proc Natl Acad Sci USA 2002; 99:13498–13503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Gendt K, Atanassova N, Tan KA et al. Development and function of the adult generation of Leydig cells in mice with Sertoli cell-selective or total ablation of the androgen receptor. Endocrinology 2005; 146:4117–4126.

    Article  PubMed  CAS  Google Scholar 

  28. Tsai MY, Yeh SD, Wang RS et al. Differential effects of spermatogenesis and fertility in mice lacking androgen receptor in individual testis cells. Proc Natl Acad Sci USA 2006; 103:18975–18980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Welsh M, Saunders PT, Atanassova N et al. Androgen action via testicular peritubular myoid cells is essential for male fertility. FASEB J 2009; 23:4218–4230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chang C, Chen YT, Yeh SD et al. Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc Natl Acad Sci USA 2004; 101:6876–6881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. De Gendt K, Swinnen JV, Saunders PT et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci USA 2004; 101:1327–1332.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Tsai MY, Yeh SD, Wang RS et al. Differential effects of spermatogenesis and fertility in mice lacking androgen receptor in individual testis cells. Proc Natl Acad Sci USA 2006; 103:18975–18980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu Q, Lin HY, Yeh SD et al. Infertility with defective spermatogenesis and steroidogenesis in male mice lacking androgen receptor in Leydig cells. Endocrine 2007; 32:96–106.

    Article  CAS  PubMed  Google Scholar 

  34. Denolet E, De Gendt K, Allemeersch J et al. The effect of a sertoli cell-selective knockout of the androgen receptor on testicular gene expression in prepubertal mice. Mol Endocrinol 2006; 20:321–334.

    Article  CAS  PubMed  Google Scholar 

  35. Wang RS, Yeh S, Chen LM et al. Androgen receptor in sertoli cell is essential for germ cell nursery and junctional complex formation in mouse testes. Endocrinology 2006; 147:5624–5633.

    Article  CAS  PubMed  Google Scholar 

  36. de Rooij D, Russell L. All you wanted to know about spermatogonia but were afraid to ask. J Androl 2000; 21:776–798.

    PubMed  Google Scholar 

  37. Nagano MC. Homing efficiency and proliferation kinetics of male germ line stem cells following transplantation in mice. Biol Reprod 2003; 69:701–707.

    Article  CAS  PubMed  Google Scholar 

  38. Nakagawa T, Nabeshima Y, Yoshida S. Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 2007; 12:195–206.

    Article  CAS  PubMed  Google Scholar 

  39. Kotaja N, Sassone-Corsi P. Plzf pushes stem cells. Nat Genet 2004; 36:551–553.

    Article  CAS  PubMed  Google Scholar 

  40. Oatley JM, Avarbock MR, Telaranta AI et al. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci USA 2006; 103:9524–9529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Manders PM, Hunter PJ, Telaranta AI et al. BCL6b mediates the enhanced magnitude of the secondary response of memory CD8+ T-lymphocytes. Proc Natl Acad Sci USA 2005; 102:7418–7425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Costoya JA, Hobbs RM, Barna M et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat Genet 2004; 36:653–659.

    Article  CAS  PubMed  Google Scholar 

  43. Beumer TL, Roepers-Gajadien HL, Gademan IS et al. Involvement of the D-type cyclins in germ cell proliferation and differentiation in the mouse. Biol Reprod 2000; 63:1893–1898.

    Article  CAS  PubMed  Google Scholar 

  44. deRooij DG. Proliferation and differentiation of spermatogonial stem cells. Reproduction 2001; 121:347–354.

    Article  CAS  Google Scholar 

  45. Filipponi D, Hobbs RM, Ottolenghi S et al. Repression of kit expression by Plzf in germ cells. Mol Cell Biol 2007; 27:6770–6781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen C, Ouyang W, Grigura V et al. ERM is required for transcriptional control of the spermatogonial stem cell niche. Nature 2005; 436:1030–1034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoon KA, Chae YM, Cho JY. FGF2 stimulates SDF-1 expression through the Erm transcription factor in Sertoli cells. J Cell Physiol 2009; 220:245–256.

    Article  CAS  PubMed  Google Scholar 

  48. Christensen JL, Wright DE, Wagers AJ et al. Circulation and chemotaxis of fetal hematopoietic stem cells. PLoS Biol 2004; 2:E75.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hess RA, Cooke PS, Hofmann MC et al. Mechanistic insights into the regulation of the spermatogonial stem cell niche. Cell Cycle 2006; 5:1164–1170.

    Article  CAS  PubMed  Google Scholar 

  50. Oatley JM, Avarbock MR, Brinster RL. Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem 2007; 282:25842–25851.

    Article  CAS  PubMed  Google Scholar 

  51. Carlomagno G, van Bragt MP, Korver CM et al. BMP4-induced differentiation of a rat spermatogonial stem cell line causes changes in its cell adhesion properties. Biol Reprod 2010; 83(5):742–9.

    Article  CAS  PubMed  Google Scholar 

  52. Monaco L, Kotaja N, Fienga G et al. Specialized rules of gene transcription in male germ cells: the CREM paradigm. Int J Androl 2004; 27:322–327.

    Article  CAS  PubMed  Google Scholar 

  53. Hogeveen KN, Sassone-Corsi P. Regulation of gene expression in post-meiotic male germ cells: CREM-signalling pathways and male fertility. Hum Fertil (Camb) 2006; 9:73–79.

    Article  CAS  Google Scholar 

  54. Toscani A, Mettus RV, Coupland R et al. Arrest of spermatogenesis and defective breast development in mice lacking A-myb. Nature 1997; 386:713–717.

    Article  CAS  PubMed  Google Scholar 

  55. Nakamura T, Yao R, Ogawa T et al. Oligo-astheno-teratozoospermia in mice lacking Cnot7, a regulator of retinoid X receptor beta. Nat Genet 2004; 36:528–533.

    Article  CAS  PubMed  Google Scholar 

  56. Berthet C, Morera AM, Asensio MJ et al. CCR4-associated factor CAF 1 is an essential factor for spermatogenesis. Mol Cell Biol 2004; 24:5808–5820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kastner P, Mark M, Leid M et al. Abnormal spermatogenesis in RXRbeta mutant mice. Genes Dev 1996; 10:80–92.

    Article  CAS  PubMed  Google Scholar 

  58. Vernet N, Dennefeld C, Klopfenstein M et al. Retinoid X receptor beta (RXRB) expression in Sertoli cells controls cholesterol homeostasis and spermiation. Reproduction 2008; 136:619–626.

    Article  CAS  PubMed  Google Scholar 

  59. Lui WY, Cheng CY. Regulation of cell junction dynamics by cytokines in the testis: a molecular and biochemical perspective. Cytokine Growth Factor Rev 2007; 18:299–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheng CY, Mruk DD. An intracellular trafficking pathway in the seminiferous epithelium regulating spermatogenesis: a biochemical and molecular perspective. Crit Rev Biochem Mol Biol 2009; 44:245–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lui WY, Lee WM. Regulation of junction dynamics in the testis—transcriptional and post-translational regulations of cell junction proteins. Mol Cell Endocrinol 2006; 250:25–35.

    Article  CAS  PubMed  Google Scholar 

  62. Cheng CY, Mruk DD. An intracellular trafficking pathway in the seminiferous epithelium regulating spermatogenesis: a biochemical and molecular perspective. Crit Rev Biochem Mol Biol 2009; 44:245–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lui WY, Lee WM. Molecular mechanisms by which hormones and cytokines regulate cell junction dynamics in the testis. J Mol Endocrinol 2009; 43:43–51.

    Article  CAS  PubMed  Google Scholar 

  64. Rao MK, Pham J, Imam JS et al. Tissue-specific RNAi reveals that WT1 expression in nurse cells controls germ cell survival and spermatogenesis. Genes Dev 2006; 20:147–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lui WY, Sze KL, Lee WM. Nectin-2 expression in testicular cells is controlled via the functional cooperation between transcription factors of the Sp1, CREB and AP-1 families. J Cell Physiol 2006; 207:144–157.

    Article  CAS  PubMed  Google Scholar 

  66. Sze KL, Lee WM, Lui WY. Expression of CLMP, a novel tight junction protein, is mediated via the interaction of GATA with the Kruppel family proteins, KLF4 and Sp1, in mouse TM4 Sertoli cells. J Cell Physiol 2008; 214:334–344.

    Article  CAS  PubMed  Google Scholar 

  67. Wang Y, Lui WY. Opposite effects of interleukin-1alpha and transforming growth factor-beta2 induce stage-specific regulation of junctional adhesion molecule-B gene in Sertoli cells. Endocrinology 2009; 150:2404–2412.

    Article  CAS  PubMed  Google Scholar 

  68. Lui WY, Wong EW, Guan Y et al. Dual transcriptional control of claudin-11 via an overlapping GATA/NF-Y motif: positive regulation through the interaction of GATA, NF-YA and CREB and negative regulation through the interaction of Smad, HDAC1 and mSin3A. J Cell Physiol 2007; 211:638–648.

    Article  CAS  PubMed  Google Scholar 

  69. Lui WY, Wong CH, Mruk DD et al. TGF-β3 regulates the blood-testis barrier dynamics via the p38 mitogen activated protein (MAP) kinase pathway: an in vivo study. Endocrinology 2003; 144:1139–1142.

    Article  CAS  PubMed  Google Scholar 

  70. Lui WY, Lee WM, Cheng CY. Transforming growth factor β3 regulates the dynamics of Sertoli cell tight junctions via the p38 mitogen-activated protein kinase pathway. Biol Reprod 2003; 68:1597–1612.

    Article  CAS  PubMed  Google Scholar 

  71. Xu J, Beyer AR, Walker WH et al. Developmental and stage-specific expression of Smad2 and Smad3 in rat testis. J Androl 2003; 24:192–200.

    Article  CAS  PubMed  Google Scholar 

  72. Martinez-Estrada OM, Culleres A, Soriano FX et al. The transcription factors Slug and Snail act as repressors of Claudin-1 expression in epithelial cells. Biochem J 2006; 394:449–457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ikenouchi J, Matsuda M, Furuse M et al. Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 2003; 116:1959–1967.

    Article  CAS  PubMed  Google Scholar 

  74. Peinado H, Portillo F, Cano A. Transcriptional regulation of cadherins during development and carcinogenesis. Int J Dev Biol 2004; 48:365–375.

    Article  CAS  PubMed  Google Scholar 

  75. Turner FE, Broad S, Khanim FL et al. Slug regulates integrin expression and cell proliferation in human epidermal keratinocytes. J Biol Chem 2006; 281:21321–21331.

    Article  CAS  PubMed  Google Scholar 

  76. Dufresne J, Cyr DG. Activation of an SP binding site is crucial for the expression of claudin 1 in rat epididymal principal cells. Biol Reprod 2007; 76:825–832.

    Article  CAS  PubMed  Google Scholar 

  77. Honda H, Pazin MJ, Ji H et al. Crucial roles of Sp1 and epigenetic modifications in the regulation of the CLDN4 promoter in ovarian cancer cells. J Biol Chem 2006; 281:21433–21444.

    Article  CAS  PubMed  Google Scholar 

  78. Block KL, Shou Y, Poncz M. An Ets/Sp1 interaction in the 5′-flanking region of the megakaryocyte-specific alpha IIb gene appears to stabilize Sp1 binding and is essential for expression of this TATA-less gene. Blood 1996; 88:2071–2080.

    CAS  PubMed  Google Scholar 

  79. Katabami K, Kato T, Sano R et al. Characterization of the promoter for the alpha3 integrin gene in various tumor cell lines: roles of the Ets-and Sp-family of transcription factors. J Cell Biochem 2006; 97:530–543.

    Article  CAS  PubMed  Google Scholar 

  80. Tajima A, Miyamoto Y, Kadowaki H et al. Mouse integrin alphav promoter is regulated by transcriptional factors Ets and Sp1 in melanoma cells. Biochim Biophys Acta 2000; 1492:377–3843.

    Article  CAS  PubMed  Google Scholar 

  81. Oyamada M, Oyamada Y, Takamatsu T. Regulation of connexin expression. Biochim Biophys Acta 2005; 1719:6–23.

    Article  CAS  PubMed  Google Scholar 

  82. Shiou SR, Singh AB, Moorthy K et al. Smad4 regulates claudin-1 expression in a transforming growth factor-beta-independent manner in colon cancer cells. Cancer Res 2007; 67:1571–1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nawshad A, Medici D, Liu CC et al. TGFbeta3 inhibits E-cadherin gene expression in palate medial-edge epithelial cells through a Smad2-Smad4-LEF1 transcription complex. J Cell Sci 2007; 120:1646–1653.

    Article  CAS  PubMed  Google Scholar 

  84. Linhares VL, Almeida NA, Menezes DC et al. Transcriptional regulation of the murine Connexin40 promoter by cardiac factors Nkx2-5, GATA4 and Tbx5. Cardiovasc Res 2004; 64:402–411.

    Article  CAS  PubMed  Google Scholar 

  85. Piechocki MP, Toti RM, Fernstrom MJ et al. Liver cell-specific transcriptional regulation of connexin32. Biochim Biophys Acta 2000; 1491:107–122.

    Article  CAS  PubMed  Google Scholar 

  86. Spath GF, Weiss MC. Hepatocyte nuclear factor 4 provokes expression of epithelial marker genes, acting as a morphogen in dedifferentiated hepatoma cells. J Cell Biol 1998; 140:935–946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vandewalle C, Comijn J, De Craene B et al. SIP1/ZEB2 induces EMT by repressing genes of different epithelial cell-cell junctions. Nucleic Acids Res 2005; 33:6566–6578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zhang H, Toyofuku T, Kamei J et al. GATA-4 regulates cardiac morphogenesis through transactivation of the N-cadherin gene. Biochem Biophys Res Commun 2003; 312:1033–1038.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wing-Yee Lui or C. Yan Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Lui, WY., Cheng, C.Y. (2013). Transcriptional Regulation of Cell Adhesion at the Blood-Testis Barrier and Spermatogenesis in the Testis. In: Cheng, C.Y. (eds) Biology and Regulation of Blood-Tissue Barriers. Advances in Experimental Medicine and Biology, vol 763. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4711-5_14

Download citation

Publish with us

Policies and ethics