Advertisement

How Might Computer Algebra Systems Change the Role of Algebra in the School Curriculum?

  • M. Kathleen Heid
  • Michael O. J. Thomas
  • Rose Mary Zbiek
Chapter
Part of the Springer International Handbooks of Education book series (SIHE, volume 27)

Abstract

Computer Algebra Systems (CAS) are software systems with the capability of symbolic manipulation linked with graphical, numerical, and tabular utilities, and increasingly include interactive symbolic links to spreadsheets and dynamical geometry programs. School classrooms that incorporate CAS allow for new explorations of mathematical invariants, active linking of dynamic representations, engagement with real data, and simulations of real and mathematical relationships. Changes can occur not only in the tasks but also in the modes of interaction among teachers and students, shifting the source of mathematical authority toward the students themselves, and students’ and teachers’ attention toward more global mathematical perspectives. With CAS a welcome partner in school algebra, different concepts can be emphasized, concepts that are taught can be done so more deeply and in ways clearly connected to technical skills, investigations of procedures can be extended, new attention can be placed on structure, and thinking and reasoning can be inspired. CAS can also create the opportunity to extend some algebraic procedures and introduce and assist exploration of new structures. A result is the enrichment of multiple views of algebra and changing classroom dynamics. Suggestions are offered for future research centred on the use of CAS in school algebra.

Keywords

Pedagogical Content Knowledge Computer Algebra System Symbolic Form Symbolic Manipulation Mathematical Content Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alonso, F., Garcia, A., Garcia, F., Hoya, S., Rodriguez, G., & de la Valla, A. (2001). Some unexpected results using computer algebra systems. International Journal of Computer Algebra in Mathematics Education, 8, 239–252.Google Scholar
  2. Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning of Mathematics, 14(3), 24–35.Google Scholar
  3. Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274. doi: 10.1023/A:1022103903080.CrossRefGoogle Scholar
  4. Arzarello, F., & Robutti, O. (2010). Multimodality in multi-representational environments. ZDM–International Journal of Mathematics Education, 42, 715–731. doi: 10.1007/s11858-010-0288-z.CrossRefGoogle Scholar
  5. Balacheff, N. (1994). La transposition informatique. Note sur un nouveau problème pour la didactique. In M. Artigue, R. Gras, C. Laborde, & P. Tavignot (Eds.), Vingt ans de didactique des mathématiques en France: Hommage à Guy Brousseau et à Gérard Vergnaud(pp. 364–370). Grenoble, France: La Pensée Sauvage.Google Scholar
  6. Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide? American Educator, 29(1), 14–17, 20–22, 43–46.Google Scholar
  7. Ball, L., & Stacey, K. (2004). A new practice evolving in learning mathematics: Differences in students’ written records with CAS. In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce, & A. Roche (Eds.), Building connections: Theory, research, and practice. Proceedings of the 28th Annual Conference of the Mathematics Education Research Group of Australasia, Melbourne (Vol. 1, pp. 177–184). Sydney, Australia: Mathematics Education Research Group of Australasia.Google Scholar
  8. Ball, L., & Stacey, K. (2005). Students’ views on using CAS in senior mathematics. Building connections: Theory, research, and practice.In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce, & A. Roche (Eds.), Building connections: Theory, research, and practice. Proceedings of the 28th Annual Conference of the Mathematics Education Research Group of Australasia, Melbourne (Vol. 1, pp. 121–128). Sydney, Australia: Mathematics Education Research Group of Australasia.Google Scholar
  9. Ball, L., & Stacey, K. (2006). Coming to appreciate the pedagogical uses of CAS. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education(Vol. 2, pp. 105–112). Prague, Czech Republic: International Group for the Psychology of Mathematics Education.Google Scholar
  10. Bednarz, N., & Janvier, B. (1996). Emergence and development of algebra as a problem-solving tool: Continuities and discontinuities with arithmetic. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching(pp. 115–136). Boston, MA: Kluwer.Google Scholar
  11. Boers van Oosterum, M. A. M. (1990). Understanding of variables and their uses acquired by students in their traditional and computer-intensive algebra(PhD dissertation). University of Maryland, College Park, MD.Google Scholar
  12. Böhm, J. (2007, June). Why is happening with CAS in classrooms? Example Austria. CAME 2007 Symposium: Connecting and Extending the Roles of Computer Algebra in Mathematics Education, Pécs, Hungary. Retrieved from http://www.lkl.ac.uk/research/came/events/CAME5/CAME5-Theme2-Boehm.pdf.
  13. Buchberger, B. (1989). Should students learn integration rules? SIGSAM Bulletin, 24(1), 10–17.CrossRefGoogle Scholar
  14. Cedillo, T., & Kieran, C. (2003). Initiating students into algebra with symbol-manipulating calculators. In J. Fey, A. Cuoco, C. Kieran, L. McMullin, & R. M. Zbiek (Eds.), Computer algebra systems in secondary school mathematics education(pp. 219–239). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  15. Chazan, D., & Yerushalmy, M. (2003). On appreciating the cognitive complexity of school algebra: Research on algebra learning and directions of curricular change. In J. Kilpatrick, D. Schifter, & G. Martin (Eds.), A research companion to the Principles and Standards for School Mathematics(pp. 123–135). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  16. Clark-Wilson, A. (2010). Emergent pedagogies and the changing role of the teacher in the TI-Nspire Navigator-networked mathematics classroom. ZDM–International Journal of Mathematics Education, 42, 747–761. doi: 10.1007/s11858-010-0279-0.CrossRefGoogle Scholar
  17. Cuoco, A. (2002). Thoughts on reading Artigue’s “Learning mathematics in a CAS environment”. International Journal of Computers for Mathematical Learning, 7, 245–274. doi: 10.1023/A:1022112104897.CrossRefGoogle Scholar
  18. Dana-Picard, T. (2007). Motivating constraints of a pedagogy-embedded computer algebra system. International Journal of Science and Mathematics Education, 5, 217–235. doi: 10.1007/s10763-006-9052-9.CrossRefGoogle Scholar
  19. Dick, T. P. (1992). Symbolic-graphical calculators: Teaching tools for mathematics. School Science and Mathematics, 92, 1–5. doi: 10.1111/j.1949-8594.1992.tb12128.x.CrossRefGoogle Scholar
  20. Drijvers, P., & Weigand, H.-G. (2010). The role of handheld technology in the mathematics classroom. ZDM–International Journal of Mathematics Education, 42, 665–666. doi: 10.1007/s11858-010-0285-2.CrossRefGoogle Scholar
  21. Duncan, A. G. (2010). Teachers’ views on dynamically linked multiple representations, pedagogical practices and students’ understanding of mathematics using TI-Nspire in Scottish secondary schools. ZDM–International Journal of Mathematics Education, 42, 763–774. doi: 10.1007/s11858-010-0273-6.CrossRefGoogle Scholar
  22. Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103–131. doi: 10.1007/s10649-006-0400-z.CrossRefGoogle Scholar
  23. Edwards, M. T. (2001). The electronicother”: A study of calculator-based symbolic manipulation utilities with secondary school mathematics students(PhD dissertation). The Ohio State University, Columbus, OH.Google Scholar
  24. Evans, M., Norton, P., & Leigh-Lancaster, D. (2005). Mathematical methods Computer Algebra System: 2004 pilot examinations and links to a broader research agenda. In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce, & A. Roche (Eds.), Building connections: Theory, research, and practice(Proceedings of the 28th Annual Conference of the Mathematics Education Research Group of Australasia, Vol. 1, pp. 329–336). Melbourne, Australia: Mathematics Education Research Group of Australasia.Google Scholar
  25. Fey, J. T., Heid, M. K., Good, R. A., Sheets, C., Blume, G., & Zbiek, R. M. (1995). Concepts in algebra: A technological approach. Dedham, MA: Janson Publications, Inc.Google Scholar
  26. Fitzallen, N. (2005). Integrating ICT into professional practice: A case study of four mathematics teachers. In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce, & A. Roche (Eds.), Building connections: Theory, research, and practice(Proceedings of the 28th annual conference of the Mathematics Education Research Group of Australasia, Vol. 1, pp. 353–360). Melbourne, Australia: Mathematics Education Research Group of Australasia.Google Scholar
  27. Forgasz, H. J. (2006a). Factors that encourage and inhibit computer use for secondary mathematics teaching. Journal of Computers in Mathematics and Science Teaching, 25(1), 77–93. doi: 10.1007/s10857-006-9014-8.Google Scholar
  28. Forgasz, H. J. (2006b). Teachers, equity, and computers for secondary mathematics learning. Journal of Mathematics Teacher Education, 9, 437–469. doi: 10.1007/s10857-006-9014-8.CrossRefGoogle Scholar
  29. Geiger, V., Faragher, R., Redmond, T., & Lowe, J. (2008). CAS-enabled devices as provocative agents in the process of mathematical modeling. In M. Goos, R. Brown, & K. Makar (Eds.), Navigating currents and charting directions(Proceedings of the 30th Annual Conference of the Mathematics Education Research Group of Australasia, Vol. 1, pp. 219–226). Brisbane, Australia: Mathematics Education Research Group of Australasia.Google Scholar
  30. Godfrey, D., & Thomas, M. O. J. (2008). Student perspectives on equation: The transition from school to university. Mathematics Education Research Journal, 20(2), 71–92. doi: 10.1007/BF03217478.CrossRefGoogle Scholar
  31. Goos, M. (2005). A sociocultural analysis of the development of pre-service and beginning teachers’ pedagogical identities as users of technology. Journal of Mathematics Teacher Education, 8, 35–59. doi: 10.1007/s10857-005-0457-0.CrossRefGoogle Scholar
  32. Goos, M., & Bennison, A. (2005). The role of online discussion in building a community of practice for beginning teachers of secondary mathematics. In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce, & A. Roche (Eds.), Building connections: Theory, research, and practice(Proceedings of the 28th Annual Conference of the Mathematics Education Research Group of Australasia, Vol. 1, pp. 385–392). Melbourne, Australia: Mathematics Education Research Group of Australasia.Google Scholar
  33. Gray, E. M., & Tall, D. O. (1994). Duality, ambiguity and flexibility: A proceptual view of simple arithmetic. Journal for Research in Mathematics Education, 26, 115–141. doi: 10.2307/749505.Google Scholar
  34. Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal of Computers for Mathematical Learning, 3, 195–227.CrossRefGoogle Scholar
  35. Guin, D., Ruthven, K., & Trouche, L. (2005). The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument. New York, NY: Springer.CrossRefGoogle Scholar
  36. Harel, G. (2008). DNR perspectives on mathematics curriculum and instruction, Part I: Focus on proving. ZDM–International Journal of Mathematics Education, 40, 487–500. doi: 10.1007/s11858-008-0104-1.CrossRefGoogle Scholar
  37. Hasenbank, J. F., & Hodgson, T. (2007, February). A framework for developing algebraic understanding & procedural skill: An initial assessment. Paper presented at the tenth conference on Research in Undergraduate Mathematics Education, Special Interest Group of Mathematical Association of America (SIG-MAA), San Diego, CA.Google Scholar
  38. Hegedus, S., & Kaput, J. (2007). Lessons from SimCalc: What research says(Research Note 6). Dallas, TX: Texas Instruments.Google Scholar
  39. Heid, M. K. (1984). An exploratory study to examine the effects of resequencing concepts and skills in an applied calculus curriculum through the use of a microcomputer(PhD dissertation). University of Maryland, College Park, MD.Google Scholar
  40. Heid, M. K. (1988). Resequencing skills and concepts in applied calculus using the computer as a tool. Journal for Research in Mathematics Education, 19, 3–25. doi: 10.2307/749108.CrossRefGoogle Scholar
  41. Heid, M. K. (1992). Final report: Computer-intensive curriculum for secondary school algebra. Final report NSF project number MDR 8751499. University Park: The Pennsylvania State University, Department of Curriculum and Instruction.Google Scholar
  42. Heid, M. K. (1996). A technology-intensive functional approach to the emergence of algebraic thinking. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching(pp. 239–256). Boston, MA: Kluwer Academic Publishers.Google Scholar
  43. Heid, M. K. (1997). The technological revolution and the reform of school mathematics. American Journal of Education, 106, 5–61. doi: 10.1086/444175.CrossRefGoogle Scholar
  44. Heid, M. K., & Blume, G. W. (2008). Algebra and function development. In M. K. Heid & G. W. Blume (Eds.), Research on technology and the teaching and learning of mathematics(Research syntheses, Vol. 1, pp. 55–108). Charlotte, NC: Information Age Publishers.Google Scholar
  45. Heid, M. K., Sheets, C., Matras, M. A., & Menasian, J. (1988, April). Classroom and computer lab interaction in a computer-intensive algebra curriculum. Paper presented at the annual meeting of the American Educational Research Association, New Orleans.Google Scholar
  46. Hill, H., & Ball, D. L. (2004). Learning mathematics for teaching: Results from California’s mathematics professional development institutes. Journal for Research in Mathematics Education, 35, 330–351. doi: 10.2307/30034819.CrossRefGoogle Scholar
  47. Hillel, J., Kieran, C., & Gurtner, J. (1989). Solving structured geometric tasks on the computer: The role of feedback in generating strategies. Educational Studies in Mathematics, 20, 1–39. doi: 10.1007/BF00356039.CrossRefGoogle Scholar
  48. Hoehn, L. (1989, December). Solutions of xn+yn=zn+1. Mathematics Magazine, 342. doi:10.2307/2689491Google Scholar
  49. Hollar, J. C., & Norwood, K. (1999). The effects of a graphing-approach intermediate algebra curriculum on students’ understanding of function. Journal for Research in Mathematics Education, 30, 220–226. doi: 10.2307/749612.CrossRefGoogle Scholar
  50. Holton, D., Thomas, M. O. J., & Harradine, A. (2009). The excircle problem: A case study in how mathematics develops. In B. Davis & S. Lerman (Eds.), Mathematical action & structures of noticing: Studies inspired by John Mason(pp. 31–48). Rotterdam, The Netherlands: Sense.Google Scholar
  51. Hong, Y. Y., & Thomas, M. O. J. (2006). Factors influencing teacher integration of graphic calculators in teaching. In Proceedings of the 11th Asian Technology Conference in Mathematics(pp. 234–243). Hong Kong: Asian Technology Conference in Mathematics.Google Scholar
  52. Hoyles, C., & Noss, R. (2009). The technological mediation of mathematics and its learning. Human development, 52, 129–147. doi: 10.1159/000202730.CrossRefGoogle Scholar
  53. Judson, P. T. (1990). Elementary business calculus with computer algebra. Journal of Mathematical Behavior, 9, 153–157.Google Scholar
  54. Kendal, M., & Stacey, K. (1999). Varieties of teacher privileging for teaching calculus with computer algebra systems. The International Journal of Computer Algebra in Mathematics Education, 6, 233–247.Google Scholar
  55. Kendal, M., & Stacey, K. (2001). The impact of teacher privileging on learning differentiation with technology. International Journal of Computers for Mathematical Learning, 6, 143–165. doi: 10.1023/A:1017986520658.CrossRefGoogle Scholar
  56. Kidron, I. (2010). Constructing knowledge about the notion of limit in the definition of the horizontal asymptote. International Journal of Science and Mathematics Education[published online]. Retrieved from http://www.springerlink.com/content/b4757j83v8826527.
  57. Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning(pp. 707–762). Charlotte, NC: Information Age Publishing.Google Scholar
  58. Kieran, C., & Drijvers, P. (2006). The co-emergence of machine techniques, paper-and-pencil techniques, and theoretical reflection: A study of CAS use in secondary school algebra. International Journal of Computers for Mathematical Learning, 11, 205–263. doi: 10.1007/s10758-006-0006-7.CrossRefGoogle Scholar
  59. Kieran, C., & Saldanha, L. (2008). Designing tasks for the co-development of conceptual and technical knowledge in CAS activity: An example from factoring. In G. W. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics(Cases and perspectives, Vol. 2, pp. 393–414). Charlotte, NC: Information Age Publishing.Google Scholar
  60. Laborde, C. (2002). The process of introducing new tasks using dynamic geometry into the teaching of mathematics. In B. Barton, K. C. Irwin, M. Pfannkuch, & M. O. J. Thomas (Eds.), Mathematics education in the South Pacific(Proceedings of the 25th annual conference of the Mathematics Education Research Group of Australasia, pp. 15–33). Auckland, NZ: Mathematics Education Research Group of Australasia.Google Scholar
  61. Lagrange, J.-B. (1999). Complex calculators in the classroom: Theoretical and practical reflections on teaching pre-calculus. International Journal of Computers for Mathematical Learning, 4, 51–81. doi: 10.1023/A:1009858714113.CrossRefGoogle Scholar
  62. Lagrange, J.-B. (2002). Étudier les mathématiques avec les calculatrices symboliques. Quelle place pour les techniques? In D. Guin & L. Trouche (Eds.), Calculatrices Symboliques. Transformer un outil en un instrument du travail mathématique: Un problème didactique(pp. 151–185). Grenoble, France: La Pensée Sauvage.Google Scholar
  63. Lagrange, J.-B. (2003). Learning techniques and concepts using CAS: A practical and theoretical reflection. In J. T. Fey, A. Cuoco, C. Kieran, L. McMullin, & R. M. Zbiek (Eds.), Computer algebra systems in secondary school mathematics education(pp. 269–283). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  64. Lagrange, J.-B., Artigue, M., Laborde, C., & Trouche, L. (2003). Technology and math education: A multidimensional overview of recent research and innovation. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Second international handbook of mathematics education(Part 1, pp. 237–270). Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
  65. Lagrange, J.-B., & Chiappini, J. P. (2007). Integrating the learning of algebra with technology at the European level: Two examples in the ReMath Project. In Proceedings of Conference of European Society of Research in Mathematics Education(CERME 5) (pp. 903–912). Larnaca, Cyprus: European Society of Research in Mathematics Education.Google Scholar
  66. Lagrange, J.-B., & Gelis, J.-M. (2008). The Casyopee project: A computer algebra systems environment for students’ better access to algebra. International Journal of Continuing Engineering Education and Life-Long Learning, 18(5/6), 575–584. doi: 10.1504/IJCEELL.2008.022164.CrossRefGoogle Scholar
  67. Lee, L. (1996). An initiation into algebraic culture through generalization activities. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching(pp. 87–106). Boston, MA: Kluwer.Google Scholar
  68. Mason, J. (1995). Less may be more on a screen. In L. Burton & B. Jaworski (Eds.), Technology in mathematics teaching: A bridge between teaching and learning(pp. 119–134). London, UK: Chartwell-Bratt.Google Scholar
  69. Mason, J. (1996). Expressing generality and roots of algebra. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching(pp. 65–86). Boston, MA: Kluwer.Google Scholar
  70. Mason, J., Graham, A., & Johnston-Wilder, S. (2005). Developing thinking in algebra. London, UK: Paul Chapman Publishing and The Open University.Google Scholar
  71. Matras, M. A. (1988). The effects of curricula on students’ ability to analyze and solve problems in algebra(PhD dissertation). University of Maryland, College Park, MD.Google Scholar
  72. Mayes, R. (1995). The application of a computer algebra system as a tool in college algebra. School Science and Mathematics, 95, 61–68. doi: 10.1111/j.1949-8594.1995.tb15729.x.CrossRefGoogle Scholar
  73. Mayes, R. (2001). CAS applied in a functional perspective college algebra curriculum. Computers in the Schools, 17(1&2), 57–75. doi: 10.1300/J025v17n01_06.CrossRefGoogle Scholar
  74. McMullin, L. (2003). Activity 8. In J. Fey, A. Cuoco, C. Kieran, L. McMullin, & R. M. Zbiek (Eds.), Computer algebra systems in secondary school mathematics education(p. 268). Reston, VA: The National Council of Teachers of Mathematics.Google Scholar
  75. Monaghan, J. (2004). Teachers’ activities in technology-based mathematics lessons. International Journal of Computers for Mathematical Learning, 9, 327–357. doi: 10.1007/s10758-004-3467-6.CrossRefGoogle Scholar
  76. Nemirovsky, R. (1996). Mathematical narratives, modeling, and algebra. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching(pp. 197–220). Boston, MA: Kluwer.Google Scholar
  77. Norton, P., Leigh-Lancaster, D., Jones, P., & Evans, M. (2007). Mathematical methods and mathematical methods computer algebra systems (CAS) 2006—Concurrent implementation with a common technology free examination. In J. Watson & K. Beswick (Eds.), Mathematics: Essential research, essential practice(Proceedings of the 30th Annual Conference of the Mathematics Education Research Group of Australasia, Vol. 2, pp. 543–550). Hobart, Australia: Mathematics Education Research Group of Australasia.Google Scholar
  78. O’Callaghan, B. R. (1998). Computer-intensive algebra and students’ conceptual knowledge of functions. Journal for Research in Mathematics Education, 29, 21–40. doi: 10.2307/749716.CrossRefGoogle Scholar
  79. Oates, G. (2004). Measuring the degree of technology use in tertiary mathematics courses. In W.-C. Yang, S.-C. Chu, T. de Alwis, & K.-C. Ang (Eds.), Proceedings of the 9th Asian Technology Conference in Mathematics(pp. 282–291). Blacksburg, VA: Asian Technology Conference in Mathematics.Google Scholar
  80. Oates, G. (2009). Relative values of curriculum topics in undergraduate mathematics in an integrated technology environment. In R. Hunter, B. Bicknell, & T. Burgess (Eds.), Proceedings of the 32nd Annual Conference of the Mathematics Education Research Group of Australasia(Vol. 2, pp. 419–427). Palmerston North, New Zealand: Mathematics Education Research Group of Australasia.Google Scholar
  81. Palmiter, J. (1991). Effects of computer-algebra systems on concept and skill acquisition in calculus. Journal for Research in Mathematics Education, 22, 151–156. doi: 10.2307/749591.CrossRefGoogle Scholar
  82. Paterson, J., Thomas, M. O. J., & Taylor, S. (2011). Reaching decisions via internal dialogue: Its role in a lecturer professional development model. In B. Ubuz (Ed.), Proceedings of the 35th Conference of the International Group for the Psychology of Mathematics Education(Vol. 3, pp. 353–360). Ankara, Turkey: International Group for the Psychology of Mathematics Education.Google Scholar
  83. Pierce, R. (2005). Using CAS to enrich the teaching and learning of mathematics. In S.-C. Chu, H.-C. Lew, & W.-C. Yang (Eds.), Enriching technology and enhancing mathematics for all. Proceedings of the 10th Asian Conference on Technology in Mathematics(pp. 47–58). Blacksburg VA: Asian Technology Conference in Mathematics.Google Scholar
  84. Pierce, R., & Ball, L. (2009). Perceptions that may affect teachers’ intention to use technology in secondary mathematics classes. Educational Studies in Mathematics, 71, 299–317. doi: 10.1007/s10649-008-9177-6.CrossRefGoogle Scholar
  85. Pierce, R., Herbert, S., & Giri, J. (2004). CAS: Student engagement requires unambiguous advantages. In I. Putt, R. Faragher, & M. I. McLean (Eds.), Mathematics education for the third millennium: Towards 2010(Proceedings of the 27th Annual Conference of the Mathematics Education Group of Australasia, pp. 462–469). Townsville, Australia: Mathematics Education Research Group of Australasia.Google Scholar
  86. Pierce, R., & Stacey, K. (2010). Mapping pedagogical opportunities provided by mathematics analysis software. International Journal of Computers for Mathematical Learning, 15, 1–20. doi: 10.1007/s10758-010-9158-6.CrossRefGoogle Scholar
  87. Pierce, R., Stacey, K., & Wander, R. (2010). Examining the didactic contract when handheld technology is permitted in the mathematics classroom. ZDM–International Journal of Mathematics Education, 42, 683–695. doi: 10.1007/s11858-010-0271-8.CrossRefGoogle Scholar
  88. Rabardel, P. (1995). Les hommes et les technologies, approche cognitive des instruments contemporains. Paris, France: Armand Colin.Google Scholar
  89. Rojano, T. (1996). Developing algebraic aspects of problem solving within a spreadsheet environment. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra: Perspectives for research and teaching(pp. 137–146). Boston, MA: Kluwer.Google Scholar
  90. Roschelle, J., Vahey, P., Tatar, D., Kaput, J., & Hegedus, S. J. (2003). Five key considerations for networking in a handheld-based mathematics classroom. In N. A. Pateman, B. J. Dougherty, & J. T. Zilliox (Eds.), Proceedings of the 2003 Joint Meeting of PME and PMENA(Vol. 4, pp. 71–78). Honolulu, Hawaii: University of Hawaii.Google Scholar
  91. Ruthven, K. (1990). The influence of graphic calculator use on translation from graphic to symbolic forms. Educational Studies in Mathematics, 21(5), 431–450. doi: 10.1007/BF00398862.CrossRefGoogle Scholar
  92. Schoenfeld, A. H. (2008). On modeling teachers’ in-the-moment decision-making. In A. H. Schoenfeld (Ed.), A study of teaching: Multiple lenses, multiple views(Journal for Research in Mathematics Education Monograph No. 14, pp. 45–96). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  93. Schoenfeld, A. H. (2011). How we think. A theory of goal-oriented decision making and its educational applications. New York, NY: Routledge.Google Scholar
  94. Sheets, C. (1993). Effects of computer learning and problem-solving tools on the development of secondary school students’ understanding of mathematical functions(PhD dissertation). University of Maryland, College Park, MD.Google Scholar
  95. Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. doi: 10.3102/0013189X015002004.Google Scholar
  96. Stewart, S. (2005). Concerns relating to the use of CAS at university level. In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce, & A. Roche (Eds.), Building connections: Research, theory and practice(Proceedings of the 28th Annual Conference of the Mathematics Education Research Group of Australasia, Vol. 2, pp. 704–711). Melbourne, Australia: MERGA.Google Scholar
  97. Stewart, S., & Thomas, M. O. J. (2005). University student perceptions of CAS use in mathematics learning. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th Conference for the International Group for the Psychology of Mathematics Education(Vol. 4, pp. 233–240). Melbourne, Australia: The University of Melbourne.Google Scholar
  98. Stewart, S., Thomas, M. O. J., & Hannah, J. (2005). Towards student instrumentation of computer-based algebra systems in university courses. International Journal of Mathematical Education in Science and Technology, 36, 741–750. doi: 10.1080/00207390500271651.CrossRefGoogle Scholar
  99. Tall, D. O., Thomas, M. O. J., Davis, G., Gray, E., & Simpson, A. (2000). What is the object of the encapsulation of a process? Journal of Mathematical Behavior, 18, 223–241.CrossRefGoogle Scholar
  100. Thomas, M. O. J. (2006). Teachers using computers in the mathematics classroom: A longitudinal study. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education(Vol. 5, pp. 265–272). Prague, Czech Republic: Charles University.Google Scholar
  101. Thomas, M. O. J. (2008a). Developing versatility in mathematical thinking. Mediterranean Journal for Research in Mathematics Education, 7(2), 67–87.Google Scholar
  102. Thomas, M. O. J. (2008b). Conceptual representations and versatile mathematical thinking. In Proceedings of ICME-10(CD version of proceedings, pp. 1–18). Copenhagen, Denmark, Paper available from http://www.icme10.dk/proceedings/pages/regular_pdf/RL_Mike_Thomas.pdf.
  103. Thomas, M. O. J. (2009). Hand-held technology in the mathematics classroom: Developing pedagogical technology knowledge. In J. Averill, D. Smith, & R. Harvey (Eds.), Teaching secondary school students mathematics and statistics: Evidence-based practice(Vol. 2, pp. 147–160). Wellington, New Zealand: NZCER.Google Scholar
  104. Thomas, M. O. J., & Chinnappan, M. (2008). Teaching and learning with technology: Realising the potential. In H. Forgasz, A. Barkatsas, A. Bishop, B. Clarke, S. Keast, W.-T. Seah, P. Sullivan, & S. Willis (Eds.), Research in mathematics education in Australasia 2004-2007(pp. 167–194). Sydney, Australia: Sense Publishers.Google Scholar
  105. Thomas, M. O. J., & Hong, Y. Y. (2004). Integrating CAS calculators into mathematics learning: Issues of partnership. In M. J. Høines & A. B. Fuglestad (Eds.), Proceedings of the 28th Annual Conference of the International Group for the Psychology of Mathematics Education(Vol. 4, pp. 297–304). Bergen, Norway: Bergen University College.Google Scholar
  106. Thomas, M. O. J., & Hong, Y. Y. (2005a). Teacher factors in integration of graphic calculators into mathematics learning. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th Annual Conference of the International Group for the Psychology of Mathematics Education(Vol. 4, pp. 257–264). Melbourne, Australia: The University of Melbourne.Google Scholar
  107. Thomas, M. O. J., & Hong, Y. Y. (2005b). Learning mathematics with CAS calculators: Integration and partnership issues. The Journal of Educational Research in Mathematics, 15(2), 215–232.Google Scholar
  108. Thomas, M. O. J., Hong, Y. Y., Bosley, J., & delos Santos, A. (2008). Use of calculators in the mathematics classroom. The Electronic Journal of Mathematics and Technology (eJMT)[On-line Serial] 2(2). Retrieved from https://php.radford.edu/∼ejmt/ContentIndex.phpand http://www.radford.edu/ejmt.
  109. Thomas, M. O. J., Monaghan, J., & Pierce, R. (2004). Computer algebra systems and algebra: Curriculum, assessment, teaching, and learning. In K. Stacey, H. Chick, & M. Kendal (Eds.), The teaching and learning of algebra: The 12th ICMI study(pp. 155–186). Norwood, MA: Kluwer.Google Scholar
  110. Thomas, P. G., & Rickhuss, M. G. (1992). An experiment in the use of computer algebra in the classroom. Education & Computing, 8, 255–263. doi: 10.1016/0167-9287(92)92793-Y.CrossRefGoogle Scholar
  111. Trouche, L. (2005a). An instrumental approach to mathematics learning in symbolic calculator environments. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators(pp. 137–162). New York, NY: Springer.CrossRefGoogle Scholar
  112. Trouche, L. (2005b). Instrumental genesis, individual and social aspects. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators(pp. 197–230). New York, NY: Springer.CrossRefGoogle Scholar
  113. Usiskin, Z. (2004). A K-12 mathematics curriculum with CAS: What is it and what would it take to get it? In W. C. Yang, S. C. Chu, T. de Alwis, & K. C. Ang (Eds.), Proceedings of the 9th Asian Technology Conference in Mathematics(pp. 5–16). Blacksburg, VA: Asian Technology Conference in Mathematics.Google Scholar
  114. Vérillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of though [sic] in relation to instrumented activity. European Journal of Psychology of Education, 10, 77–101.CrossRefGoogle Scholar
  115. Yerushalmy, M., & Chazan, D. (2002). Flux in school algebra: Curricular change, graphing, technology, and research on student learning and teacher knowledge. In L. D. English (Ed.), Handbook of international research in mathematics education(pp. 725–755). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  116. Zbiek, R. M., & Heid, M. K. (2001). Dynamic aspects of function representations. In H. Chick, K. Stacey, J. Vincent, & J. Vincent (Eds.), Proceedings of the 12th ICMI on the future of the teaching and learning of algebra(pp. 682–689). Melbourne, Australia: The University of Melbourne.Google Scholar
  117. Zbiek, R. M., & Heid, M. K. (2011). Using technology to make sense of symbols and graphs and to reason about general cases. In T. Dick & K. Hollebrands (Eds.), Focus on reasoning and sense making: Technology to support reasoning and sense making(pp. 19–31). Reston, VA: National Council of Teachers of Mathematics.Google Scholar
  118. Zbiek, R. M., Heid, M. K., Blume, G. W., & Dick, T. P. (2007). Research on technology in mathematics education: A perspective of constructs. In F. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning(pp. 1169–1207). Charlotte, NC: Information Age Publishing.Google Scholar
  119. Zbiek, R. M., & Hollebrands, K. (2008). A research-informed view of the process of incorporating mathematics technology into classroom practice by inservice and prospective teachers. In M. K. Heid & G. W. Blume (Eds.), Research on technology and the teaching and learning of mathematics(Research syntheses, Vol. 1, pp. 287–344). Charlotte, NC: Information Age Publishing.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • M. Kathleen Heid
    • 1
  • Michael O. J. Thomas
    • 2
  • Rose Mary Zbiek
    • 1
  1. 1.The Pennsylvania State UniversityUniversity ParkUSA
  2. 2.The University of AucklandAucklandNew Zealand

Personalised recommendations