Skip to main content

The Role of Notch Signaling in Multiple Myeloma

  • Chapter
  • First Online:
Genetic and Molecular Epidemiology of Multiple Myeloma

Abstract

The bone marrow (BM) microenvironment plays a critical role in the multiple myeloma (MM) cell growth and survival. As a highly conserved cell signaling system, the Notch pathway is considered to regulate cell-fate determination, stem cell self-renewal, proliferation, and apoptosis. Notch receptors and ligands are expressed both in MM cells and the BM microenvironment. In this review, we mainly discuss the canonical Notch signaling pathway including background and components of the signaling, its activation, the downstream targets, its regulation, and cross talk with other pathways. We further focus on the role of Notch signaling in multiple myeloma cell growth, angiogenesis, differentiation, drug resistance, bone disease, metastasis, and stem cell biology. A better understanding of Notch signaling in myeloma may provide new strategies to improve current treatment and overall survival.

Both authors contributed equally

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allman D, Punt JA, Izon DJ et al (2002) An invitation to T and more: notch signaling in lymphopoiesis. Cell 109(Suppl):S1–11

    PubMed  CAS  Google Scholar 

  • Androutsellis-Theotokis A, Leker RR, Soldner F et al (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826

    PubMed  CAS  Google Scholar 

  • Armstrong F, Brunet de la Grange P, Gerby B et al (2009) NOTCH is a key regulator of human T-cell acute leukemia initiating cell activity. Blood 113:1730–1740

    PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas S, Matsuno K, Fortini ME (1995) Notch signaling. Science 268:225–232

    PubMed  CAS  Google Scholar 

  • Bai S, Kopan R, Zou W et al (2008) NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem 283:6509–6518

    PubMed  CAS  Google Scholar 

  • Balakumaran A, Robey PG, Fedarko N et al (2010) Bone marrow microenvironment in myelomagenesis: its potential role in early diagnosis. Expert Rev Mol Diagn 10:465–480

    PubMed  Google Scholar 

  • Benedito R, Roca C, Sorensen I et al (2009) The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell 137:1124–1135

    PubMed  CAS  Google Scholar 

  • Bolos V, Blanco M, Medina V et al (2009) Notch signalling in cancer stem cells. Clin Transl Oncol 11:11–19

    PubMed  CAS  Google Scholar 

  • Bommert K, Bargou RC, Stuhmer T (2006) Signalling and survival pathways in multiple myeloma. Eur J Cancer 42:1574–1580

    PubMed  CAS  Google Scholar 

  • Borggrefe T, Oswald F (2009) The Notch signaling pathway: transcriptional regulation at Notch target genes. Cell Mol Life Sci 66:1631–1646

    PubMed  CAS  Google Scholar 

  • Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689

    PubMed  CAS  Google Scholar 

  • Brou C, Logeat F, Gupta N et al (2000) A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol Cell 5:207–216

    PubMed  CAS  Google Scholar 

  • Burns CE, Traver D, Mayhall E et al (2005) Hematopoietic stem cell fate is established by the Notch-Runx pathway. Genes Dev 19:2331–2342

    PubMed  CAS  Google Scholar 

  • Cheng X, Huber TL, Chen VC et al (2008) Numb mediates the interaction between Wnt and Notch to modulate primitive erythropoietic specification from the hemangioblast. Dev 135:3447–3458

    CAS  Google Scholar 

  • Chiba S (2006) Notch signaling in stem cell systems. Stem Cells 24:2437–2447

    PubMed  CAS  Google Scholar 

  • Cruickshank MN, Ulgiati D (2010) The role of notch signaling in the development of a normal B-cell repertoire. Immunol Cell Biol 88:117–124

    PubMed  CAS  Google Scholar 

  • Dallas MH, Varnum-Finney B, Delaney C et al (2005) Density of the Notch ligand Delta1 determines generation of B and T cell precursors from hematopoietic stem cells. J Exp Med 201:1361–1366

    PubMed  CAS  Google Scholar 

  • Delaney C, Varnum-Finney B, Aoyama K et al (2005) Dose-dependent effects of the Notch ligand Delta1 on ex vivo differentiation and in vivo marrow repopulating ability of cord blood cells. Blood 106:2693–2699

    PubMed  CAS  Google Scholar 

  • Demarest RM, Ratti F, Capobianco AJ (2008) It’s T-ALL about Notch. Oncogene 27:5082–5091

    PubMed  CAS  Google Scholar 

  • Dezorella N, Pevsner-Fischer M, Deutsch V et al (2009) Mesenchymal stromal cells revert multiple myeloma cells to less differentiated phenotype by the combined activities of adhesive interactions and interleukin-6. Exp Cell Res 315:1904–1913

    PubMed  CAS  Google Scholar 

  • Dotto GP (2008) Notch tumor suppressor function. Oncogene 27:5115–5123

    PubMed  CAS  Google Scholar 

  • Dotto GP (2009) Crosstalk of Notch with p53 and p63 in cancer growth control. Nat Rev Cancer 9:587–595

    PubMed  CAS  Google Scholar 

  • D’Souza B, Miyamoto A, Weinmaster G (2008) The many facets of Notch ligands. Oncogene 27(38):5148–5167

    PubMed  Google Scholar 

  • Dufraine J, Funahashi Y, Kitajewski J (2008) Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene 27:5132–5137

    PubMed  CAS  Google Scholar 

  • Edwards CM (2008) Wnt signaling: Bone’s defense against myeloma. Blood 112:216–217

    PubMed  CAS  Google Scholar 

  • Edwards CM, Zhuang J, Mundy GR (2008) The pathogenesis of the bone disease of multiple myeloma. Bone 42:1007–1013

    PubMed  CAS  Google Scholar 

  • Efferson CL, Winkelmann CT, Ware C et al (2010) Downregulation of notch pathway by a {gamma}-secretase inhibitor attenuates AKT/mammalian target of rapamycin signaling and glucose uptake in an ERBB2 transgenic breast cancer model. Cancer Res 70:2476–2484

    PubMed  CAS  Google Scholar 

  • Ellisen LW, Bird J, West DC et al (1991) TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66:649–661

    PubMed  CAS  Google Scholar 

  • Fehon RG, Kooh PJ, Rebay I et al (1990) Molecular interactions between the protein products of the neurogenic loci Notch and Delta, two EGF-homologous genes in Drosophila. Cell 61:523–534

    PubMed  CAS  Google Scholar 

  • Fischer A, Gessler M (2007) Delta-Notch–and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res 35:4583–4596

    PubMed  CAS  Google Scholar 

  • Fiuza UM, Arias AM (2007) Cell and molecular biology of Notch. J Endocrinol 194:459–474

    PubMed  CAS  Google Scholar 

  • Fortini ME, Bilder D (2009) Endocytic regulation of Notch signaling. Curr Opin Genet Dev 19:323–328

    PubMed  CAS  Google Scholar 

  • Gal H, Amariglio N, Trakhtenbrot L et al (2006) Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia 20:2147–2154

    PubMed  CAS  Google Scholar 

  • Ghoshal P, Nganga AJ, Moran-Giuati J et al (2009) Loss of the SMRT/NCoR2 corepressor correlates with JAG2 overexpression in multiple myeloma. Cancer Res 69:4380–4387

    PubMed  CAS  Google Scholar 

  • Gordon WR, Arnett KL, Blacklow SC (2008) The molecular logic of Notch signaling – a structural and biochemical perspective. J Cell Sci 121:3109–3119

    PubMed  CAS  Google Scholar 

  • Grabher C, von Boehmer H, Look AT (2006) Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 6:347–359

    PubMed  CAS  Google Scholar 

  • Guo YQ, Chen SL (2006) The significance of IGF-1, VEGF, IL-6 in multiple myeloma progression. Zhonghua Xue Ye Xue Za Zhi 27:231–234

    PubMed  CAS  Google Scholar 

  • Guo D, Ye J, Dai J et al (2009) Notch-1 regulates Akt signaling pathway and the expression of cell cycle regulatory proteins cyclin D1, CDK2 and p21 in T-ALL cell lines. Leukemia Res 33:678–685

    CAS  Google Scholar 

  • Hideshima T, Anderson KC (2002) Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer 2:927–937

    PubMed  CAS  Google Scholar 

  • Hideshima T, Bergsagel PL, Kuehl WM et al (2004) Advances in biology of multiple myeloma: clinical applications. Blood 104:607–618

    PubMed  CAS  Google Scholar 

  • Houde C, Li Y, Song L et al (2004) Overexpression of the NOTCH ligand JAG2 in malignant plasma cells from multiple myeloma patients and cell lines. Blood 104:3697–3704

    PubMed  CAS  Google Scholar 

  • Hsieh JJ, Zhou S, Chen L et al (1999) CIR, a corepressor linking the DNA binding factor CBF1 to the histone deacetylase complex. Proc Natl Acad Sci USA96:23–28

    PubMed  CAS  Google Scholar 

  • Ingram WJ, McCue KI, Tran TH et al (2008) Sonic Hedgehog regulates Hes1 through a novel mechanism that is independent of canonical Notch pathway signalling. Oncogene 27:1489–1500

    PubMed  CAS  Google Scholar 

  • Iso T, Chung G, Hamamori Y et al (2002) HERP1 is a cell type-specific primary target of Notch. J Biol Chem 277:6598–6607

    PubMed  CAS  Google Scholar 

  • Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237–255

    PubMed  CAS  Google Scholar 

  • Jakob C, Sterz J, Zavrski I et al (2006) Angiogenesis in multiple myeloma. Eur J Cancer 42:1581–1590

    PubMed  CAS  Google Scholar 

  • Jaleco AC, Neves H, Hooijberg E et al (2001) Differential effects of Notch ligands Delta-1 and Jagged-1 in human lymphoid differentiation. J Exp Med 194:991–1002

    PubMed  CAS  Google Scholar 

  • Jang MS, Miao HX, Carlesso N et al (2004) Notch-1 regulates cell death independently of differentiation in murine erythroleukemia cells through multiple apoptosis and cell cycle pathways. J Cell Physiol 199:418–433

    PubMed  CAS  Google Scholar 

  • Jarriault S, Brou C, Logeat F et al (1995) Signalling downstream of activated mammalian Notch. Nat 377:355–358

    CAS  Google Scholar 

  • Jeffery R, Mitchison NA (2001) IL-6 polymorphism, anti-IL-6 therapy and animal models of multiple myeloma. Cytokine 16:87

    PubMed  CAS  Google Scholar 

  • Jin G, Zhang F, Chan KM et al (2011) MT1-MMP cleaves Dll1 to negatively regulate Notch signalling to maintain normal B-cell development. Embo J 30:2281–2293

    PubMed  CAS  Google Scholar 

  • Joshi S, Khan R, Sharma M et al (2011) Angiopoietin-2: a potential novel diagnostic marker in multiple myeloma. Clin Biochem 44:590–595

    PubMed  CAS  Google Scholar 

  • Jundt F, Probsting KS, Anagnostopoulos I et al (2004) Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells. Blood 103:3511–3515

    PubMed  CAS  Google Scholar 

  • Kamakura S, Oishi K, Yoshimatsu T et al (2004) Hes binding to STAT3 mediates crosstalk between Notch and JAK-STAT signalling. Nat Cell Biol 6:547–554

    PubMed  CAS  Google Scholar 

  • Kao HY, Ordentlich P, Koyano-Nakagawa N et al (1998) A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev 12:2269–2277

    PubMed  CAS  Google Scholar 

  • Karsan A (2005) The role of notch in modeling and maintaining the vasculature. Can J Physiol Pharmacol 83:14–23

    PubMed  CAS  Google Scholar 

  • Katoh M (2004) Identification and characterization of human HESL, rat Hesl and rainbow trout hesl genes in silico. Inter J Mol Med 14:747–751

    CAS  Google Scholar 

  • Katoh M (2006) NUMB is a break of WNT-Notch signaling cycle. Inter J Mol Med 18:517–521

    CAS  Google Scholar 

  • Katoh M (2007a) Integrative genomic analyses on HES/HEY family: Notch-independent HES1, HES3 transcription in undifferentiated ES cells, and Notch-dependent HES1, HES5, HEY1, HEY2, HEYL transcription in fetal tissues, adult tissues, or cancer. Inter J Oncol 31:461–466

    CAS  Google Scholar 

  • Katoh M (2007b) WNT antagonist, DKK2, is a Notch signaling target in intestinal stem cells: augmentation of a negative regulation system for canonical WNT signaling pathway by the Notch-DKK2 signaling loop in primates. Inter J Mol Med 19:197–201

    CAS  Google Scholar 

  • Katoh M, Katoh M (2006) Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells. Inter J Mol Med 17:681–685

    CAS  Google Scholar 

  • Kelly T, Borset M, Abe E et al (2000) Matrix metalloproteinases in multiple myeloma. Leukemia Lymphoma 37:273–281

    PubMed  CAS  Google Scholar 

  • Kerbel RS (2008) Tumor angiogenesis. N Engl J Med 358:2039–2049

    PubMed  CAS  Google Scholar 

  • Klein B, Seckinger A, Moehler T et al (2011) Molecular pathogenesis of multiple myeloma: chromosomal aberrations, changes in gene expression, cytokine networks, and the bone marrow microenvironment. Recent Results Cancer Res 183:39–86

    PubMed  Google Scholar 

  • Koch U, Radtke F (2007) Notch and cancer: a double-edged sword. Cell Mol Life Sci 64:2746–2762

    PubMed  CAS  Google Scholar 

  • Kondoh K, Sunadome K, Nishida E (2007) Notch signaling suppresses p38 MAPK activity via induction of MKP-1 in myogenesis. J Biol Chem 282:3058–3065

    PubMed  CAS  Google Scholar 

  • Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    PubMed  CAS  Google Scholar 

  • Kovall RA (2007) Structures of CSL, Notch and Mastermind proteins: piecing together an active transcription complex. Curr Opin Struct Biol 17:117–127

    PubMed  CAS  Google Scholar 

  • Krop IE, Kosh M, Fearen I et al (2006) Phase I pharmacokinetic, and pharmacodynamic trial of the novel oral notch inhibitor MK-0752 in patients with advanced breast cancer and other solid tumors. Breast Cancer Res Treat 100:S287–S287

    Google Scholar 

  • Kunnimalaiyaan M, Chen H (2007) Tumor suppressor role of Notch-1 signaling in neuroendocrine tumors. Oncologist 12:535–542

    PubMed  CAS  Google Scholar 

  • Lage H (2008) An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci 65:3145–3167

    PubMed  CAS  Google Scholar 

  • Lai EC (2002) Keeping a good pathway down: transcriptional repression of Notch pathway target genes by CSL proteins. Embo Rep 3:840–845

    PubMed  CAS  Google Scholar 

  • Lamar E, Deblandre G, Wettstein D et al (2001) Nrarp is a novel intracellular component of the Notch signaling pathway. Genes Dev 15:1885–1899

    PubMed  CAS  Google Scholar 

  • Le Borgne R (2006) Regulation of Notch signalling by endocytosis and endosomal sorting. Curr Opin Cell Biol 18:213–222

    PubMed  Google Scholar 

  • Le Bras S, Loyer N, Le Borgne R (2011) The multiple facets of ubiquitination in the regulation of notch signaling pathway. Traffic 12:149–161

    PubMed  Google Scholar 

  • Leong KG, Karsan A (2006) Recent insights into the role of Notch signaling in tumorigenesis. Blood 107:2223–2233

    PubMed  CAS  Google Scholar 

  • Li JL, Harris AL (2009) Crosstalk of VEGF and Notch pathways in tumour angiogenesis: therapeutic implications. Front Biosci 14:3094–3110

    PubMed  CAS  Google Scholar 

  • Li ZW, Chen H, Campbell RA et al (2008) NF-kappaB in the pathogenesis and treatment of multiple myeloma. Curr Opin Hematol 15:391–399

    PubMed  CAS  Google Scholar 

  • Li H, Wolfe MS, Selkoe DJ (2009) Toward structural elucidation of the gamma-secretase complex. Structure 17:326–334

    PubMed  CAS  Google Scholar 

  • Lin S, Lai SL, Yu HH et al (2010) Lineage-specific effects of Notch/Numb signaling in post-embryonic development of the Drosophila brain. Dev 137:43–51

    CAS  Google Scholar 

  • Liu ZJ, Xiao M, Balint K et al (2006) Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res 66:4182–4190

    PubMed  CAS  Google Scholar 

  • Liu W, Singh SR, Hou SX (2010) JAK-STAT is restrained by Notch to control cell proliferation of the Drosophila intestinal stem cells. J Cell Biochem 109:992–999

    Google Scholar 

  • Lobov IB, Renard RA, Papadopoulos N et al (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci USA104:3219–3224

    PubMed  CAS  Google Scholar 

  • Mancini SJ, Mantei N, Dumortier A et al (2005) Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood 105:2340–2342

    PubMed  CAS  Google Scholar 

  • Mandinova A, Lefort K, Tommasi di Vignano A et al (2008) The FoxO3a gene is a key negative target of canonical Notch signalling in the keratinocyte UVB response. Embo J 27:1243–1254

    PubMed  CAS  Google Scholar 

  • Matsui W, Wang Q, Barber JP et al (2008) Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res 68:190–197

    PubMed  CAS  Google Scholar 

  • Mazaleyrat SL, Fostier M, Wilkin MB et al (2003) Down-regulation of Notch target gene expression by suppressor of deltex. Dev Biol 255:363–372

    PubMed  CAS  Google Scholar 

  • Mead TJ, Yutzey KE (2009) Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development. Proc Natl Acad Sci USA106:14420–14425

    PubMed  CAS  Google Scholar 

  • Meads MB, Hazlehurst LA, Dalton WS (2008) The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 14:2519–2526

    PubMed  CAS  Google Scholar 

  • Meurette O, Stylianou S, Rock R et al (2009) Notch activation induces Akt signaling via an autocrine loop to prevent apoptosis in breast epithelial cells. Cancer Res 69:5015–5022

    PubMed  CAS  Google Scholar 

  • Moellering RE, Cornejo M, Davis TN et al (2009) Direct inhibition of the NOTCH transcription factor complex. Nat 462:182–188

    CAS  Google Scholar 

  • Mohr OL (1919) Character changes caused by mutation of an entire region of a Chromosome in Drosophila. Genetics 4:275–282

    PubMed  CAS  Google Scholar 

  • Mumm JS, Schroeter EH, Saxena MT et al (2000) A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol Cell 5:197–206

    PubMed  CAS  Google Scholar 

  • Nefedova Y, Landowski TH, Dalton WS (2003) Bone marrow stromal-derived soluble factors and direct cell contact contribute to de novo drug resistance of myeloma cells by distinct mechanisms. Leukemia 17:1175–1182

    PubMed  CAS  Google Scholar 

  • Nefedova Y, Cheng P, Alsina M et al (2004) Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood 103:3503–3510

    PubMed  CAS  Google Scholar 

  • Nefedova Y, Sullivan DM, Bolick SC et al (2008) Inhibition of Notch signaling induces apoptosis of myeloma cells and enhances sensitivity to chemotherapy. Blood 111:2220–2229

    PubMed  CAS  Google Scholar 

  • Niessen K, Fu Y, Chang L et al (2008) Slug is a direct Notch target required for initiation of cardiac cushion cellularization. J Cell Biol 182:315–325

    PubMed  CAS  Google Scholar 

  • Noguera-Troise I, Daly C, Papadopoulos NJ et al (2006) Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nat 444:1032–1037

    CAS  Google Scholar 

  • Noseda M, Chang L, McLean G et al (2004) Notch activation induces endothelial cell cycle arrest and participates in contact inhibition: Role of p21(Cip1) repression. MolCell Biol 24:8813–8822

    CAS  Google Scholar 

  • Noseda M, Fu Y, Niessen K et al (2006) Smooth Muscle alpha-actin is a direct target of Notch/CSL. Circ Res 98:1468–1470

    PubMed  CAS  Google Scholar 

  • Oldershaw RA, Tew SR, Russell AM et al (2008) Notch signaling through Jagged-1 is necessary to initiate chondrogenesis in human bone marrow stromal cells but must be switched off to complete chondrogenesis. Stem Cells 26:666–674

    PubMed  CAS  Google Scholar 

  • Osipo C, Golde TE, Osborne BA et al (2008) Off the beaten pathway: the complex cross talk between Notch and NF-kappaB. Lab Investigation 88:11–17

    CAS  Google Scholar 

  • Oswald F, Liptay S, Adler G et al (1998) NF-kappaB2 is a putative target gene of activated Notch-1 via RBP-Jkappa. Mol Cell Biol 18:2077–2088

    PubMed  CAS  Google Scholar 

  • Palomero T, Lim WK, Odom DT et al (2006) NOTCH1 directly regulates c-MYC and activates a feed-forward-loop transcriptional network promoting leukemic cell growth. Proc Natl Acad Sci USA103:18261–18266

    PubMed  CAS  Google Scholar 

  • Pannequin J, Bonnans C, Delaunay N et al (2009) The wnt target jagged-1 mediates the activation of notch signaling by progastrin in human colorectal cancer cells. Cancer Res 69:6065–6073

    PubMed  CAS  Google Scholar 

  • Pece S, Serresi M, Santolini E et al (2004) Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J Cell Biol 167:215–221

    PubMed  CAS  Google Scholar 

  • Phng LK, Gerhardt H (2009) Angiogenesis: a team effort coordinated by notch. Dev Cell 16:196–208

    PubMed  CAS  Google Scholar 

  • Pirot P, van Grunsven LA, Marine JC et al (2004) Direct regulation of the Nrarp gene promoter by the Notch signaling pathway. Biochem Biophys Res Commun 322:526–534

    PubMed  CAS  Google Scholar 

  • Podar K, Chauhan D, Anderson KC (2009) Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 23:10–24

    PubMed  CAS  Google Scholar 

  • Puthier D, Derenne S, Barille S et al (1999) Mcl-1 and Bcl-xL are co-regulated by IL-6 in human myeloma cells. Br J Haematol 107:392–395

    PubMed  CAS  Google Scholar 

  • Radtke F, Raj K (2003) The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nat Rev Cancer 3:756–767

    PubMed  CAS  Google Scholar 

  • Radtke F, Wilson A, MacDonald HR (2004) Notch signaling in T- and B-cell development. Curr Opin Immunol 16:174–179

    PubMed  CAS  Google Scholar 

  • Ramakrishnan V, Ansell S, Haug J et al (2011) MRK003, a gamma-secretase inhibitor exhibits promising in vitro pre-clinical activity in multiple myeloma and non-Hodgkin’s lymphoma. Leukemia 26:340–348

    PubMed  Google Scholar 

  • Rampal R, Li AS, Moloney DJ et al (2005) Lunatic fringe, manic fringe, and radical fringe recognize similar specificity determinants in O-fucosylated epidermal growth factor-like repeats. J BiolChem 280:42454–42463

    CAS  Google Scholar 

  • Reedijk MJ, Cohen B, Shimizu M et al (2009) Cyclin D1 is a direct target of JAG-mediated notch signaling in breast cancer. Cancer Res 69:641s–641s

    Google Scholar 

  • Reguart N (2009) Identifying cancer stem cells prognostic markers: Notch. J Thoracic Oncol 4:S82–S83

    Google Scholar 

  • Ridgway J, Zhang G, Wu Y et al (2006) Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nat 444:1083–1087

    CAS  Google Scholar 

  • Rodilla V, Villanueva A, Obrador-Hevia A et al (2009) Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci USA106:6315–6320

    PubMed  CAS  Google Scholar 

  • Ronchini C, Capobianco AJ (2001) Induction of cyclin D1 transcription and CDK2 activity by Notch(ic): implication for cell cycle disruption in transformation by Notch(ic). Mol Cell Biol 21:5925–5934

    PubMed  CAS  Google Scholar 

  • Roy M, Pear WS, Aster JC (2007) The multifaceted role of Notch in cancer. Curr Opin Genet Dev 17:52–59

    PubMed  CAS  Google Scholar 

  • Sahlgren C, Gustafsson MV, Jin S et al (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci USA105:6392–6397

    PubMed  CAS  Google Scholar 

  • San-Juan BP, Baonza A (2011) The bHLH factor deadpan is a direct target of Notch signaling and regulates neuroblast self-renewal in Drosophila. Dev Biol 352:70–82

    PubMed  CAS  Google Scholar 

  • Santos MA, Sarmento LM, Rebelo M et al (2007) Notch1 engagement by Delta-like-1 promotes differentiation of B lymphocytes to antibody-secreting cells. Proc Natl Acad Sci USA104:15454–15459

    PubMed  CAS  Google Scholar 

  • Schuster-Gossler K, Harris B, Johnson KR et al (2009) Notch signalling in the paraxial mesoderm is most sensitive to reduced Pofut1 levels during early mouse development. Bmc Dev Biol 9:6

    PubMed  Google Scholar 

  • Schwarzenbach H (2002) Expression of MDR1/P-glycoprotein, the multidrug resistance protein MRP, and the lung-resistance protein LRP in multiple myeloma. Med Oncol 19:87–104

    PubMed  CAS  Google Scholar 

  • Schwarzer R, Kaiser M, Acikgoez O et al (2008) Notch inhibition blocks multiple myeloma cell-induced osteoclast activation. Leukemia 22:2273–2277

    PubMed  CAS  Google Scholar 

  • Shih IM, Wang TL (2007) Notch signaling, gamma-secretase inhibitors, and cancer therapy. Cancer Res 67:1879–1882

    PubMed  CAS  Google Scholar 

  • Shimizu M, Cohen B, Goldvasser P et al (2011) Plasminogen activator uPA is a direct transcriptional target of the JAG1-Notch receptor signaling pathway in breast cancer. Cancer Res 71:277–286

    PubMed  CAS  Google Scholar 

  • Sivasankaran B, Degen M, Ghaffari A et al (2009) Tenascin-C is a novel RBPJkappa-induced target gene for Notch signaling in gliomas. Cancer Res 69:458–465

    PubMed  CAS  Google Scholar 

  • Six EM, Ndiaye D, Sauer G et al (2004) The notch ligand Delta1 recruits Dlg1 at cell-cell contacts and regulates cell migration. J Biol Chem 279:55818–55826

    PubMed  CAS  Google Scholar 

  • Sjolund J, Manetopoulos C, Stockhausen MT et al (2005) The Notch pathway in cancer: differentiation gone awry. Eur J Cancer 41:2620–2629

    PubMed  Google Scholar 

  • Smith EM, Akerblad P, Kadesch T et al (2005) Inhibition of EBF function by active Notch signaling reveals a novel regulatory pathway in early B-cell development. Blood 106:1995–2001

    PubMed  CAS  Google Scholar 

  • Stahl M, Uemura K, Ge C et al (2008) Roles of Pofut1 and O-fucose in mammalian Notch signaling. J Biol Chem 283:13638–13651

    PubMed  CAS  Google Scholar 

  • Stanley P, Guidos CJ (2009) Regulation of Notch signaling during T- and B-cell development by O-fucose glycans. Immunological Rev 230:201–215

    CAS  Google Scholar 

  • Stylianou S, Clarke RB, Brennan K (2006a) Aberrant activation of notch signaling in human breast cancer. Cancer Res 66:1517–1525

    PubMed  CAS  Google Scholar 

  • Stylianou S, Collu GM, Clarke RB et al (2006b) Aberrant activation of Notch signalling in human breast cancer. Breast Cancer Res 8:S3–S3

    Google Scholar 

  • Suchting S, Freitas C, le Noble F et al (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA104:3225–3230

    PubMed  CAS  Google Scholar 

  • Suda T, Kamiyama S, Suzuki M et al (2004) Molecular cloning and characterization of a human multisubstrate specific nucleotide-sugar transporter homologous to Drosophila fringe connection. J Biol Chem 279:26469–26474

    PubMed  CAS  Google Scholar 

  • Suzuki T, Chiba S (2005) Notch signaling in hematopoietic stem cells. Inter J Hematol 82:285–294

    CAS  Google Scholar 

  • Takeuchi T, Adachi Y, Ohtsuki Y (2005) Skeletrophin, a novel ubiquitin ligase to the intracellular region of Jagged-2, is aberrantly expressed in multiple myeloma. Am J Pathol 166:1817–1826

    PubMed  CAS  Google Scholar 

  • Tammela T, Enholm B, Alitalo K et al (2005) The biology of vascular endothelial growth factors. Cardiovasc Res 65:550–563

    PubMed  CAS  Google Scholar 

  • Tanigaki K, Kuroda K, Han H et al (2003) Regulation of B cell development by Notch/RBP-J signaling. Semin Immunol 15:113–119

    PubMed  CAS  Google Scholar 

  • Thurston G, Kitajewski J (2008) VEGF and Delta-Notch: interacting signalling pathways in tumour angiogenesis. Br J Cancer 99:1204–1209

    PubMed  CAS  Google Scholar 

  • Thurston G, Noguera-Troise I, Yancopoulos GD (2007) The Delta paradox: DLL4 blockade leads to more tumour vessels but less tumour growth. Nat Rev Cancer 7:327–331

    PubMed  CAS  Google Scholar 

  • Tun T, Hamaguchi Y, Matsunami N et al (1994) Recognition sequence of a highly conserved DNA binding protein RBP-J kappa. Nucleic Acids Res 22:965–971

    PubMed  CAS  Google Scholar 

  • Ullah MF (2008) Cancer multidrug resistance (MDR): a major impediment to effective chemotherapy. Asian Pac J Cancer Prev 9:1–6

    PubMed  Google Scholar 

  • Vacca A, Ribatti D (2006) Bone marrow angiogenesis in multiple myeloma. Leukemia 20:193–199

    PubMed  CAS  Google Scholar 

  • Van de Walle I, De Smet G, Gartner M et al (2011) Jagged2 acts as a Delta-like Notch ligand during early hematopoietic cell fate decisions. Blood 117:4449–4459

    PubMed  Google Scholar 

  • Van Es JH, van Gijn ME, Riccio O et al (2005) Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435:959–963

    PubMed  Google Scholar 

  • Van Tetering G, van Diest P, Verlaan I et al (2009) Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. J Biol Chem 284:31018–31027

    PubMed  Google Scholar 

  • Van Valckenborgh E, Lub S, Xu D et al (2011) Functional properties of CD138- and CD138+ cells in multiple myeloma: study in the 5T33MM model. Haematologica 96(Suppl 1):34

    Google Scholar 

  • Wall DS, Wallace VA (2009) Hedgehog to Hes1: the heist of a Notch target. Cell Cycle 8:1301–1302

    PubMed  CAS  Google Scholar 

  • Wang Z, Li Y, Banerjee S et al (2010) Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-kappaB signaling pathways. J Cell Biochem 109:726–736

    PubMed  CAS  Google Scholar 

  • Weber JM, Calvi LM (2010) Notch signaling and the bone marrow hematopoietic stem cell niche. Bone 46:281–285

    PubMed  CAS  Google Scholar 

  • Weng AP, Millholland JM, Yashiro-Ohtani Y et al (2006) c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 20:2096–2109

    PubMed  CAS  Google Scholar 

  • Wharton KA, Johansen KM, Xu T et al (1985) Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43:567–581

    PubMed  CAS  Google Scholar 

  • Wilson JJ, Kovall RA (2006) Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell 124:985–996

    PubMed  CAS  Google Scholar 

  • Wong GT, Manfra D, Poulet FM et al (2004) Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 279:12876–12882

    PubMed  CAS  Google Scholar 

  • Wu F, Stutzman A, Mo YY (2007) Notch signaling and its role in breast cancer. Front Biosci 12:4370–4383

    PubMed  CAS  Google Scholar 

  • Xu D, Hu J, De Bruyne E et al (2010) Involvement of Dll1/Notch interaction in MM drug resistance, clonogenic growth and in vivo engraftment. Blood-ASH Annual Meet Abst 116:1223

    Google Scholar 

  • Xu D, Hu J, De Bruyne E et al (2011) Dll1/Notch interaction induces drug resistance to Bortezomib by two distinct mechanism in multiple myeloma. Haematologica 96(s1):s36–37

    Google Scholar 

  • Xu D, Hu J, Xu S et al (2012a) Dll1/Notch activation accelerates multiple myeloma disease development by promoting CD138+ MM cell proliferation. Leukemia 26:1402–1405

    Google Scholar 

  • Xu D, Hu J, De Bruyne E et al (2012b) Dll1/Notch activation contributes to bortezomib resistance by upregulating CYP1A1 in multiple myeloma. Biochem Biophys Res Commun (in press)

    Google Scholar 

  • Yamada T, Yamazaki H, Yamane T et al (2003) Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood 101:2227–2234

    PubMed  CAS  Google Scholar 

  • Yamamoto N, Yamamoto S, Inagaki F et al (2001) Role of Deltex-1 as a transcriptional regulator downstream of the Notch receptor. J Biol Chem 276:45031–45040

    PubMed  CAS  Google Scholar 

  • Yan B, Raben N, Plotz P (2002) The human acid alpha-glucosidase gene is a novel target of the Notch-1/Hes-1 signaling pathway. J Biol Chem 277:29760–29764

    PubMed  CAS  Google Scholar 

  • Yin L (2005) Chondroitin synthase 1 is a key molecule in myeloma cell-osteoclast interactions. J Biol Chem 280:15666–15672

    PubMed  CAS  Google Scholar 

  • Zanotti S, Canalis E (2010) Notch and the skeleton. Mol Cell Biol 30:886–896

    PubMed  CAS  Google Scholar 

  • Zanotti S, Smerdel-Ramoya A, Stadmeyer L et al (2008) Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology 149:3890–3899

    PubMed  CAS  Google Scholar 

  • Zhang XP, Zheng G, Zou L et al (2008) Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol Cell Biochem 307:101–108

    PubMed  CAS  Google Scholar 

  • Zhao G, Liu Z, Ilagan MX et al (2010) Gamma-secretase composed of PS1/Pen2/Aph1a can cleave notch and amyloid precursor protein in the absence of nicastrin. J Neurosci 30:1648–1656

    PubMed  CAS  Google Scholar 

  • Zweidler-McKay PA, He Y, Xu L et al (2005) Notch signaling is a potent inducer of growth arrest and apoptosis in a wide range of B-cell malignancies. Blood 106:3898–3906

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Els Van Valckenborgh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Xu, D., Hu, J., De Bruyne, E., Menu, E., Vanderkerken, K., Van Valckenborgh, E. (2013). The Role of Notch Signaling in Multiple Myeloma. In: Lentzsch, S. (eds) Genetic and Molecular Epidemiology of Multiple Myeloma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4660-6_5

Download citation

Publish with us

Policies and ethics