Skip to main content

Accessing Anti-cancer Natural Products by Plant Cell Culture

  • Chapter
  • First Online:
Natural Products and Cancer Drug Discovery

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Natural products are a valuable part of drug discovery and represent key products in the marketplace. High-throughput screening of large, synthetic libraries has become a commonplace method in industrial drug development, partially due to past difficulties in sourcing large quantities of natural products. Plants have historically been key sources of blockbuster anti-cancer drugs, and new approaches to drug discovery and large-scale manufacturing are making innovative plant-derived natural products more available commercially and clinically. This chapter explores the growing capabilities of combinatorial biosynthesis in plants as well as technological developments in industrial plant cell culture, highlighting the stories of the plant anti-cancer agents paclitaxel and cyclopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMS:

Bristol-Myers Squibb

CMCs:

Cambial meristematic cells

CRADA:

Cooperative Research and Development Agreement

CYP450:

Cytochrome P450 enzyme

DMAPP:

Dimethylallyl diphosphate

FDA:

Food and Drug Administration

HRC:

Hairy root culture

IPP:

Isopentenyl diphosphate

MIA:

Monoterpene indole alkaloid

NCI:

National Cancer Institute

NP:

Natural product

PCC:

Plant cell culture

PCSC:

Plant cell suspension culture

SM:

Secondary metabolite

USDA:

United States Department of Agriculture

References

  • Ajikumar PK, Xiao W-H, Tyo KEJ et al (2010) Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science (New York, NY) 330:70–74. doi:10.1126/science.1191652

    Article  CAS  Google Scholar 

  • Baebler Å , Hren M, Camloh M et al (2005) Establishment of cell suspension cultures of yew (Taxus  ×  media Rehd.) and assessment of their genomic stability. In Vitro Cell Dev Biol Plant 41:338–343. doi:10.1079/IVP2005642

    Article  CAS  Google Scholar 

  • Bernhardt P, McCoy E, O’Connor SE (2007) Rapid identification of enzyme variants for reengineered alkaloid biosynthesis in periwinkle. Chem Biol 14:888–897. doi:10.1016/j.chembiol.2007.07.008

    Article  PubMed  CAS  Google Scholar 

  • Booth DR (1999) The hedgehog signalling pathway and its role in basal cell carcinoma. Cancer Metastasis Rev 18:261–284

    Article  PubMed  CAS  Google Scholar 

  • Bräutigam A, Gowik U (2010) What can next generation sequencing do for you? Next generation sequencing as a valuable tool in plant research. Plant Biol (Stuttg) 12:831–841. doi:10.1111/j.1438-8677.2010.00373.x

    Article  Google Scholar 

  • Bringi V, Kadkade PG, Prince CL, Roach BL (2007) Enhanced production of taxol and taxanes by cell cultures of Taxus species. Patent# 7264951

    Google Scholar 

  • Chemler JA, Koffas MAG (2008) Metabolic engineering for plant natural product biosynthesis in microbes. Curr Opin Biotechnol 19:597–605. doi:10.1016/j.copbio.2008.10.011

    Article  PubMed  CAS  Google Scholar 

  • Chen JK, Taipale J, Cooper MK, Beachy PA (2002) Inhibition of hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev 16:2743–2748. doi:10.1101/gad.1025302

    Article  PubMed  CAS  Google Scholar 

  • Cheng A-X, Y-gen L, Y-bo M et al (2007) Plant terpenoids: biosynthesis and ecological functions. J Integr Plant Biol 49:179–186. doi:10.1111/j.1672-9072.2006.00395.x

    Article  CAS  Google Scholar 

  • Christen A, Gibson DM, Bland J (1991) Production of taxol or taxol-like compounds in cell culture. Patent# 5019504

    Google Scholar 

  • Cooper MK, Porter JF, Young KE, Beachy PA (1998) Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 280:1603–1607. doi:10.1126/science.280.5369.1603

    Article  PubMed  CAS  Google Scholar 

  • Cragg G, Snader K (1991) Taxol: the supply issue. Cancer Cells 3:233–235

    PubMed  CAS  Google Scholar 

  • Cragg GM, Schepartz SA, Suffness M, Grever MR (1993) The taxol supply crisis. New NCI policies for handling the large-scale production of novel natural product anticancer and anti-HIV agents. J Nat Prod 56:1657–1668

    Article  PubMed  CAS  Google Scholar 

  • Cragg GM, Boyd MR, Grever MR et al (1995) Pharmaceutical prospecting and the potential for pharmaceutical crops. Natural product drug discovery and development at the United States National Cancer Institute. Ann Mo Bot Gard 82:47–53

    Article  Google Scholar 

  • Croteau R, Ketchum REB, Long RM et al (2006) Taxol biosynthesis and molecular genetics. Phytochem Rev 5:75–97. doi:10.1007/s11101-005-3748-2

    Article  PubMed  CAS  Google Scholar 

  • Denis J-N, Greene AE, Guenard D et al (1988) A highly efficient, practical approach to natural taxol. J Am Chem Soc 110:5917–5919

    Article  CAS  Google Scholar 

  • Dietrich JA, Yoshikuni Y, Fisher KJ et al (2009) A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450(BM3). ACS Chem Biol 4:261–267. doi:10.1021/cb900006h

    Article  PubMed  CAS  Google Scholar 

  • Eibl R, Eibl D (2007) Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev 7:593–598. doi:10.1007/s11101-007-9083-z

    Article  Google Scholar 

  • Evans BE, Rittle KE, Bock M et al (1988) Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J Med Chem 31:2235–2246

    Article  PubMed  CAS  Google Scholar 

  • Expósito O, Bonfill M, Moyano E et al (2009) Biotechnological production of taxol and related taxoids: current state and prospects. Anticancer Agents Med Chem 9:109–121

    Article  PubMed  Google Scholar 

  • Farkya S, Bisaria VS, Srivastava AK (2004) Biotechnological aspects of the production of the anticancer drug podophyllotoxin. Appl Microbiol Biotechnol 65:504–519. doi:10.1007/s00253-004-1680-9

    Article  PubMed  CAS  Google Scholar 

  • Firn RD, Jones CG (2003) Natural products? A simple model to explain chemical diversity. Nat Prod Rep 20:382. doi:10.1039/b208815k

    Article  PubMed  CAS  Google Scholar 

  • Fischbach MA, Clardy J (2007) One pathway, many products. Nat Chem Biol 3:353–355

    Article  PubMed  CAS  Google Scholar 

  • Gelvin SB (2003) Improving plant genetic engineering by manipulating the host. Trends Biotechnol 21:95–98

    Article  PubMed  CAS  Google Scholar 

  • Georgiev M, Pavlov A, Ilieva M (2006) Selection of high rosmarinic acid producing Lavandula vera MM cell lines. Process Biochem 41:2068–2071. doi:10.1016/j.procbio.2006.05.007

    Article  CAS  Google Scholar 

  • Georgiev MI, Weber J, Maciuk A (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol 83:809–823. doi:10.1007/s00253-009-2049-x

    Article  PubMed  CAS  Google Scholar 

  • Georgiev MI, Ludwig-Muller J, Bley T (2010) Hairy root culture: copying nature in new bioprocesses. In: Arora R (ed) Medicinal plant biotechnology. CABI, Cambridge, MA, pp 156–175

    Chapter  Google Scholar 

  • Giannis A, Heretsch P, Sarli V, Stössel A (2009) Synthesis of cyclopamine using a biomimetic and diastereoselective approach. Angew Chem Int Ed Engl 48:7911–7914. doi:10.1002/anie.200902520

    Article  PubMed  CAS  Google Scholar 

  • Gundlach H, Muller MJ, Kutchan TM, Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures C. Plant Biol 89:2389–2393

    CAS  Google Scholar 

  • Hale V, Keasling JD, Renninger N, Diagana TT (2007) Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs. Am J Trop Med Hyg 77:198–202

    PubMed  Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. Cryoletters 25:3–22

    PubMed  Google Scholar 

  • Hartmann T (2007) From waste products to ecochemicals: fifty years research of plant secondary metabolism. Phytochemistry 68:2831–2846. doi:10.1016/j.phytochem.2007.09.017

    Article  PubMed  CAS  Google Scholar 

  • Havnes M (2011) Plant may yield weapon in the war on cancer. Salt Lake Tribune

    Google Scholar 

  • Heretsch P, Tzagkaroulaki L, Giannis A (2010) Cyclopamine and hedgehog signaling: chemistry, biology, medical perspectives. Angew Chem Int Ed Engl 49:3418–3427. doi:10.1002/anie.200906967

    Article  PubMed  CAS  Google Scholar 

  • Holton RA, Somoza C, H-baik K et al (1994) First total synthesis of taxol. 1. Functionalization of the B ring. J Am Chem Soc 116:1597–1598

    Article  CAS  Google Scholar 

  • Kim Y, Wyslouzil BE, Weathers PJ (2002) Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol Plant 38:1–10. doi:10.1079/IVP2001243

    CAS  Google Scholar 

  • Kingston DGI (1994) Taxol: the chemistry and structure-activity relationships of a novel anticancer agent. Trends Biotechnol 12:222–227

    Article  PubMed  CAS  Google Scholar 

  • Koehn FE, Carter GT (2005) The evolving role of natural products in drug discovery. Nat Rev Drug Discov 4:206–220. doi:10.1038/nrd1657

    Article  PubMed  CAS  Google Scholar 

  • Kolewe ME, Gaurav V, Roberts SC (2008) Pharmaceutically active natural product synthesis and supply via plant cell culture technology. Mol Pharm 5:243–256. doi:10.1021/mp7001494

    Article  PubMed  CAS  Google Scholar 

  • Kolewe ME, Henson MA, Roberts SC (2011) Analysis of aggregate size as a process variable affecting paclitaxel accumulation in Taxus suspension cultures. Biotechnol Prog 27:1365–1372. doi:10.1002/btpr.655

    Article  PubMed  CAS  Google Scholar 

  • Kutchan TM (2005) A role for intra- and intercellular translocation in natural product biosynthesis. Curr Opin Plant Biol 8:292–300. doi:10.1016/j.pbi.2005.03.009

    Article  PubMed  CAS  Google Scholar 

  • Lee E-K, Jin Y-W, Park JH et al (2010) Cultured cambial meristematic cells as a source of plant natural products. Nat Biotechnol 28:1213–1217. doi:10.1038/nbt.1693

    Article  PubMed  CAS  Google Scholar 

  • Leonard E, Yan Y, Fowler ZL et al (2008) Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol Pharm 5:257–265. doi:10.1021/mp7001472

    Article  PubMed  CAS  Google Scholar 

  • Lipkus AH, Yuan Q, Lucas KA et al (2008) Structural diversity of organic chemistry. A scaffold analysis of the CAS registry. J Org Chem 73:4443–4451. doi:10.1021/jo8001276

    Article  PubMed  CAS  Google Scholar 

  • Ma R, Ritala A, Oksman-Caldentey K-M, Rischer H (2006) Development of in vitro techniques for the important medicinal plant Veratrum californicum. Planta Med 72:1142–1148. doi:10.1055/s-2006-946697

    Article  PubMed  CAS  Google Scholar 

  • Mas C, Ruiz i Altaba A (2010) Small molecule modulation of HH-GLI signaling: current leads, trials and tribulations. Biochem Pharmacol 80:712–723. doi:10.1016/j.bcp. 2010.04.016

    Article  PubMed  CAS  Google Scholar 

  • Mustafa NR, de Winter W, van Iren F, Verpoorte R (2011) Initiation, growth and cryopreservation of plant cell suspension cultures. Nat Protoc 6:715–742. doi:10.1038/nprot.2010.144

    Article  PubMed  CAS  Google Scholar 

  • Naik R, Kattige SL, Bhat SV et al (1988) An antiinflammatory cum immunomodulatory piperidinylbenzopyranone from dysoxylum binectariferum: isolation, structure and total synthesis. Tetrahedron 44:2081–2086

    Article  CAS  Google Scholar 

  • Naill MC, Roberts SC (2005a) Culture of isolated single cells from Taxus suspensions for the propagation of superior cell populations. Biotechnol Lett 27:1725–1730. doi:10.1007/s10529-005-2738-1

    Article  PubMed  CAS  Google Scholar 

  • Naill MC, Roberts SC (2005b) Flow cytometric identification of paclitaxel-accumulating subpopulations. Biotechnol Prog 21:978–983. doi:10.1021/bp049544l

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa A, Minami H, Kim J-S et al (2011) A bacterial platform for fermentative production of plant alkaloids. Nat Commun 2:326. doi:10.1038/ncomms1327

    Article  PubMed  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477. doi:10.1021/np068054v

    Article  PubMed  CAS  Google Scholar 

  • Ni X, Wen S, Wang W, et al. (2011) Enhancement of camptothecin production in Camptotheca acuminata hairy roots by overexpressing ORCA3 gene. Journal of Applied Pharmaceutical Science 01:85–88

    Google Scholar 

  • Nicolau KC, Yang Z, Liu JJ et al (1994) Total synthesis of taxol. Nature 367:630–634

    Article  Google Scholar 

  • Oatis JE, Brunsfeld P, Rushing JW et al (2008) Isolation, purification, and full NMR assignments of cyclopamine from Veratrum californicum. Chem Cent J 2:12. doi:10.1186/1752-153X-2-12

    Article  PubMed  Google Scholar 

  • Ortholand J-Y, Ganesan A (2004) Natural products and combinatorial chemistry: back to the future. Curr Opin Chem Biol 8:271–280. doi:10.1016/j.cbpa.2004.04.011

    Article  PubMed  CAS  Google Scholar 

  • Patil RA, Kolewe ME, Normanly J et al (2011) Taxane biosynthetic pathway gene expression in Taxus suspension cultures with different bulk paclitaxel accumulation patterns & a molecular approach to understand variability in paclitaxel accumulation. Biotechnol J 1–10. doi:10.1002/biot.201100183

  • Pollier J, Moses T, Goossens A (2011) Combinatorial biosynthesis in plants: a (p)review on its potential and future exploitation. Nat Prod Rep 1897–1916. doi:10.1039/c1np00049g

  • Read MA, Palombella VJ (2012) The hedgehog signaling pathway in cancer pathogenesis and therapy. In: Frank DA (ed) Signaling pathways in cancer pathogenesis and therapy. Springer, New York, NY, pp 55–79

    Chapter  Google Scholar 

  • Ritala A, Rischer H, Oksman-Caldentey K-M (2007) Plant cell lines established from the medicinal plant Veratrum californicum. Patent# US 2009/0305338 A1

    Google Scholar 

  • Ro D-K, Paradise EM, Ouellet M et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943. doi:10.1038/nature04640

    Article  PubMed  CAS  Google Scholar 

  • Roberts S, Kolewe M (2010) Plant natural products from cultured multipotent cells. Nat Biotechnol 28:1175–1176. doi:10.1038/nbt1110-1175

    Article  PubMed  CAS  Google Scholar 

  • Rubin LL, de Sauvage FJ (2006) Targeting the hedgehog pathway in cancer. Nat Rev Drug Discov 5:1026–1033. doi:10.1038/nrd2086

    Article  PubMed  CAS  Google Scholar 

  • Runguphan W, Qu X, O’Connor SE (2010) Integrating carbon-halogen bond formation into medicinal plant metabolism. Nature 468:461–464. doi:10.1038/nature09524

    Article  PubMed  CAS  Google Scholar 

  • Sánchez C, Zhu L, Braña AF et al (2005) Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc Natl Acad Sci U S A 102:461–466. doi:10.1073/pnas.0407809102

    Article  PubMed  Google Scholar 

  • Schäfer H, Wink M (2009) Medicinally important secondary metabolites in recombinant microorganisms or plants: progress in alkaloid biosynthesis. Biotechnol J 4:1684–1703. doi:10.1002/biot.200900229

    Article  PubMed  Google Scholar 

  • Schnur DM, Beno BR, Tebben AJ, Cavallaro C (2011) Methods for Combinatorial and Parallel Library Design. Chemoinformatics and Computational Chemical Biology. doi:10.1007/978-1-60761-839-3

  • Senger RS, Phisalaphong M, Karim MN, Linden JC (2006) Development of a culture sub-population induction model: signaling pathways synergy and taxanes production by Taxus canadensis. Biotechnol Prog 22:1671–1682. doi:10.1021/bp0602552

    PubMed  CAS  Google Scholar 

  • Solomon LD (2011) Synthetic biology: Science, Business, and Policy. 128–129

    Google Scholar 

  • Stitt M, Sulpice R, Keurentjes J (2010) Metabolic networks: how to identify key components in the regulation of metabolism and growth. Plant Physiol 152:428–444. doi:10.1104/pp. 109.150821

    Article  PubMed  CAS  Google Scholar 

  • Tremblay MR, Nevalainen M, Nair SJ et al (2008) Semisynthetic cyclopamine analogues as potent and orally bioavailable hedgehog pathway antagonists. J Med Chem 51:6646–6649. doi:10.1021/jm8008508

    Article  PubMed  CAS  Google Scholar 

  • Tremblay MR, Lescarbeau A, Grogan MJ et al (2009) Discovery of a potent and orally active hedgehog pathway antagonist (IPI-926). J Med Chem 52:4400–4418. doi:10.1021/jm900305z

    Article  PubMed  CAS  Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297. doi:10.1126/science.289.5477.295

    Article  PubMed  Google Scholar 

  • Verpoorte R, Heijden RVD, Hoopen HJG, Memelink J (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett 21:467–479

    Article  CAS  Google Scholar 

  • Weathers P, Liu C, Towler M, Wyslouzil B (2008) Mist reactors: principles, comparison of various systems, and case studies. Biotechnol Bioeng 3:29–37

    Google Scholar 

  • Werck-reichhart D, Feyereisen R (2000) Protein family review cytochromes P450: a success story. Genome 1:1–9

    Google Scholar 

  • Wilson RM, Danishefsky SJ (2006) Small molecule natural products in the discovery of therapeutic agents: the synthesis connection. J Org Chem 71:8329–8351. doi:10.1021/jo0610053

    Article  PubMed  CAS  Google Scholar 

  • Wilson SA, Roberts SC (2011) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 1–20. doi:10.1111/j.1467-7652.2011.00664.x

  • Yukimune Y, Tabata H, Higashi Y, Hara Y (1996) Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat Biotechnol 14:1129–1132

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333. doi:10.1016/j.biotechadv.2005.01.003

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of grants from the National Science Foundation (CBET 0730779) and the National Institutes of Health (GM070852).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan C. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leone, L.M., Roberts, S.C. (2013). Accessing Anti-cancer Natural Products by Plant Cell Culture. In: Koehn, F. (eds) Natural Products and Cancer Drug Discovery. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4654-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4654-5_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4653-8

  • Online ISBN: 978-1-4614-4654-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics