Skip to main content

Boron Toxicity and Tolerance in Crop Plants

  • Chapter
  • First Online:
Crop Improvement Under Adverse Conditions

Abstract

Boron toxicity is a common problem for many crop plants, especially those growing on soil with high levels of boron and low rainfall. Boron is transported through the plant in the xylem and boron not absorbed by other tissues is deposited at the end of leaf veins where necrosis develops. Inhibition of growth occurs at much lowerconcentrations than those required to cause necrosis. The causes of boron toxicity are poorly understood, but most probably involve disruption of genetic processes, such as transcription and translation. A wide variation in tolerance to boron toxicity has been reported for different crop species but also for different cultivars of the same species. Most of our current understanding of mechanisms of tolerance to high boron levels has come from physiological and molecular studies on cereals. The dominant tolerance mechanism is mediated by active efflux of boron from roots, and the genes encoding the efflux transporters in wheat and barley have recently been identified. At least one other gene, unrelated to membrane transporters, has been shown to be able to alter the sensitivity of some plants to high levels of boron. Attempts to improve crop yields by exploiting these tolerance mechanisms, have largely been unsuccessful because boron-toxic soils often contain other stresses such as high salinity or low moisture content that are more limiting to growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpaslan M, Gunes A (2001) Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. Plant and Soil 236:123–128

    Article  CAS  Google Scholar 

  • Avci M, Akar T (2005) Severity and spatial distribution of boron toxicity in barley in cultivated areas of Central Anatolia and Transitional Zones. Turkish J Agric For 29:377–382

    CAS  Google Scholar 

  • Ashworth LJ. Jr, Gaona SA, Surber E (1985) Nutritional diseases of pistachio trees: Potassium and phosphorus deficiencies and chloride and boron toxicities. Phytopathology 75:1084–1091

    Article  CAS  Google Scholar 

  • Bassil E, Hu H, Brown PH (2004) Use of phenylboronic acids to investigate boron function in plants. Possible role of boron in transvacuolar cytoplasmic strands and cell-to-wall adhesion. Plant Physiol 136:3383–3395

    Article  PubMed  CAS  Google Scholar 

  • Ben-Gal A, Shani U (2002) Yield, transpiration and growth of tomatoes under combined excess boron and salinity stress. Plant and Soil 247:211–221

    Article  CAS  Google Scholar 

  • Bingham FT, Strong JE, Rhoades JD, Keren R (1987) Effect of salinity and varying boron concentration on boron uptake and growth of wheat. Plant and Soil 97:345–351

    Article  CAS  Google Scholar 

  • Cartwright B, Zarcinas BA, Spouncer LA (1986) Boron toxicity in South Australian barley crops. Austr J Agri Res 37:351–359

    Article  CAS  Google Scholar 

  • Chesworth W (1991) Geochemistry of micronutrients. In: J Mortvedt J, Cox FR, Shumanand RLM, Welch M (eds) Micronutrients in Agriculture, Soil Sci Soc Am, Madison, WI, USA, pp 1–30

    Google Scholar 

  • Choi E, McNeill A, Coventry D, Stangoulis J (2006) Whole plant response of crop and weed species to high subsoil boron. Austr J Agri Res 57:761–770

    Article  CAS  Google Scholar 

  • Choi E-Y, Kolesik P, McNeill A, Collins H, Zhang Q, Huynh B-L, Graham R, Stangoulis J (2007) The mechanism of boron tolerance for maintenance of root growth in barley (Hordeumvulgare L.). Plant Cell Environ 30:984–993

    Article  PubMed  CAS  Google Scholar 

  • Dordas C, Brown PH (2000) Permeability of boric acid across lipid bilayers and factors affecting it. J Memb Biol 175:95–105

    Article  CAS  Google Scholar 

  • Emebiri L, Michael P, Moody D (2009) Enhanced tolerance to boron toxicity in two-rowed barley by marker-assisted introgression of favourable alleles derived from Sahara 3771, Plant and Soil 314:77–85

    Article  CAS  Google Scholar 

  • Erd RC (1980) The minerals of boron. In Thompson R (ed) Mellor’s comprehensive treatise on inorganic and theoretical chemistry. Suppl. to Vol. V. Longman, New York, pp 7–71

    Google Scholar 

  • Feigin A, Ravina I, Shalhevet J (1991) Irrigation with treated sewage effluent. Springer, New York

    Book  Google Scholar 

  • Ferreyra RE, Aljaro AU, Ruiz RS, Rojas LP, Oster JD (1997) Behavior of 42 crop species grown in saline soils with high boron concentrations. Agri Water Manage 34:111–124

    Article  Google Scholar 

  • Ghanati F, Morita A, Yokota H (2002). Induction of suberin and increase of lignin content by excess boron in tobacco cells. Soil Sci Plant Nutr 48:357–364

    Article  CAS  Google Scholar 

  • Goldberg S (1997) Reactions of boron with soils. Plant and Soil 193:35–48

    Article  CAS  Google Scholar 

  • Grattan SR, Shannon MC, Grieve CM, Poss JA, Suares D, Leland F (1997) Interaction effects of salinity and boron on the performance and water use Eucalyptus. Acta Hort 449:607–613

    CAS  Google Scholar 

  • Grieve CM, Poss JA (2000) Wheat response to interactive effects of boron and salinity. J Plant Nutr 23:1217–1226

    Article  CAS  Google Scholar 

  • Holloway RE, Alston M (1992) The effects of salt and boron on growth of wheat. Austr J Agri Res 43:987–1001

    Article  CAS  Google Scholar 

  • Hunt CD (2002) Boron-binding-biomolecules: a key to understanding the beneficial physiologic effects of dietary boron from prokaryotes to humans. In: Goldbach HE et al (ed) Boron in plant and animal nutrition. Kluwer Academic, New York, pp 21–36

    Chapter  Google Scholar 

  • Jefferies SP, Barr AR, Karakousis A, Kretschmer JM, Manning S, Chalmers KJ, Nelson JC, Islam AKMR, Langridge P (1999) Mapping of chromosome regions conferring boron tolerance in barley (Hordeumvulgare L.). Theoret and Appl Genet 98:1293–1303

    Article  CAS  Google Scholar 

  • Jefferies S, Pallotta M, Paull JG, Karakousis A, Kretschmer J, Manning S, Islam A, Langridge P, Chalmers K (2000) Mapping and validation of chromosome regions conferring boron toxicity tolerance in wheat (Triticum aestivum). Theoret Appl Genet 101:767–777

    Article  CAS  Google Scholar 

  • Karabal E, Yücel M, Hüseyin AÖ (2003) Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Science 164:925–933

    Article  CAS  Google Scholar 

  • Keren R, Bingham FT (1985) Boron in water, soils and plants. In: Stuart R (ed) Advances in Soil Science, vol 1. Springer, New York, pp 229–276

    Google Scholar 

  • Kaur S, Nicolas ME, Ford R, Norton RM, Taylor PWJ (2006) Selection of Brassica rapa genotypes for tolerance to boron toxicity. Plant and Soil 285:115–123

    Article  CAS  Google Scholar 

  • Kaur S, Ford R, Nicolas M, Taylor P (2008) Genetics of tolerance to high concentrations of boron in Brassica rapa. Euphytica 162:31–38

    Article  CAS  Google Scholar 

  • Liu D, Jiang W, Zhang L, Li L (2000) Effects of boron ions on root growth and cell division of broadbean (ViciafabaL.). Israel J Plant Sci 48:47–51

    Article  CAS  Google Scholar 

  • Lovatt CJ, Bates LM (1984) Early effects of excess boron on photosynthesis and growth of Cucurbitapepo. J Exp Bot 35:297–305

    Article  CAS  Google Scholar 

  • McDonald G, Eglinton J, Barr A (2009) Assessment of the agronomic value of QTL on chromosomes 2H and 4H linked to tolerance to boron toxicity in barley (Hordeumvulgare L.). Plant Soil 326:275–290

    Article  Google Scholar 

  • Matoh T (1997) Boron in plant cell walls. Plant and Soil 193:59–70

    Article  CAS  Google Scholar 

  • Matoh T (2000) Boron in plant nutrition and cell wall development. In:Ae N, Arihara J, Okada K, Srinivasan A (eds) Plant nutrient acquisition: New perspectives, Springer-Verlag, Tokyo, Japan, pp 227–250

    Google Scholar 

  • Matoh T, Kobayashi M (1998) Boron and calcium, essential inorganic constituents of pectic polysaccharides in higher plant cell walls. J Plant Res 111:179–190

    Article  CAS  Google Scholar 

  • Mertens J, Van Laer L, Salaets P, Smolders E (2011) Phytotoxic doses of boron in contrasting soils depend on soil water content. Plant Soil 342:73–82

    Article  CAS  Google Scholar 

  • Mikkelsen RL, Haghnia GH, Page AL, Bingham FT (1988) The influence of selenium, salinity, and boron on alfalfa tissue composition and yield. J Environ Q 17:85–88

    Article  CAS  Google Scholar 

  • Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T (2007) Plants tolerant of high boron levels. Science 318:1417

    Article  PubMed  CAS  Google Scholar 

  • Nable RO (1988) Resistance to boron toxicity amongst several barley and wheat cultivars: a preliminary examination of the resistance mechanism. Plant Soil 112:45–52

    Google Scholar 

  • Nable RO, Cartwright B, Lance RC (1990a) Genotypic differences in boron accumulation in barley: Relative susceptibilities to boron deficiency and toxicity. In: N. El Bassam NEI, Dambroth M, Loughman B (eds) Genetic Aspects of Plant Mineral Nutrition. Kluwer Academic Publishers, Dordrecht,: 243–251

    Chapter  Google Scholar 

  • Nable RO, Paull JG, Cartwright B (1990b) Problems associated with the use of foliar analysis for diagnosing boron toxicity in barley. PlantSoil 128:225–232

    CAS  Google Scholar 

  • Nable RO, Banuelos GS, Paull JG (1997) Boron toxicity. Plant Soil 198:181–198

    Article  Google Scholar 

  • Nuttall JG, Armstrong RD, Connor DJ (2006) Early growth of wheat is more sensitive to salinity than boron at levels encountered in alkaline soils of south-eastern Australia. Austr J Exp Agri 46:1507–1514

    Article  Google Scholar 

  • Ochiai K, Uemura S, Shimizu A, Okumoto Y, Matoh T (2008) Boron toxicity in rice (OryzasativaL.). I. Quantitative trait locus (QTL) analysis of tolerance to boron toxicity. Theoret Appl Genet 117:125–133

    Article  CAS  Google Scholar 

  • Ochiai K, Shimizu A, Okumoto Y, Fujiwara T, Matoh T (2011) Suppression of a NAC-like transcription factor gene improves boron-toxicity tolerance in rice (Oryzasativa L.). Plant Physiology (in press)

    Google Scholar 

  • Oertli JJ, Kohl HC (1961) Some considerations about the tolerance of various plant species to excessive supplies of boron. Soil Sci 92:243–347

    Article  CAS  Google Scholar 

  • Paull JG, Cartwright B, Rathjen A (1988) Responses of wheat and barley genotypes to toxic concentrations of soil boron. Euphytica 39:137–144

    Google Scholar 

  • Power PP, Woods WG (1997) The chemistry of boron and its speciation in plants. Plant Soil 193:1–13

    Article  CAS  Google Scholar 

  • Raven JA (1980) Short- and long-distance transport of boric acid in plants. New Phytol 84:231–249

    Article  CAS  Google Scholar 

  • Ravikovitch S, Margolin M, Navroth J (1961) Microelements in soils of Israel. Soil Sci 92:85–89

    Article  CAS  Google Scholar 

  • Reid R (2007) Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. Plant Cell Physiol 48:1673–1678

    Article  PubMed  CAS  Google Scholar 

  • Reid RJ, Hayes JE, Post A, Stangoulis JCR, Graham RD (2004) A critical analysis of the causes of boron toxicity in plants. Plant Cell Environ 27:1405–1414

    Article  CAS  Google Scholar 

  • Reid R, Fitzpatrick K (2009) Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiol 151:413–420

    Article  PubMed  CAS  Google Scholar 

  • Roldán M, Belver A, Rodríguez-Rosales P, Ferrol N, Donaire JP (1992) In vivo and in vitro effects of boron on the plasma membrane proton pump of sunflower roots. Physiol Plantarum 84:49–54

    Article  Google Scholar 

  • Ryan J, Singh M, Yau SK (1998) Spatial variability of soluble boron in Syrian soils. Soil Tillage Res 45:407–417

    Article  Google Scholar 

  • Tsadilas CD (1997) Soil contamination with boron due to irrigation with treated municipal waste water. In: Bell RW, Rerkasem B (eds) Boron in soils and plants. Kluwer, Dordrecht, pp 265–270

    Chapter  Google Scholar 

  • Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh SA, Tyerman SD, Langridge P, Sutton T (2010) Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol 153:1706–1715

    Article  PubMed  CAS  Google Scholar 

  • Shani U, Hanks RJ (1993) Model of integrated effects of boron, inert salt, and water flow on crop yield. Agron J 85:713–717

    Article  Google Scholar 

  • Shomron N, Ast G (2003) Boric acid reversibly inhibits the second step of pre-mRNA splicing. FEBS Lett 552:219–224

    Article  PubMed  CAS  Google Scholar 

  • Shorrocks VM (1964) Boron toxicity in Heveabrasiliensis. Nature 204:599–600

    Article  CAS  Google Scholar 

  • Sutton T, Baumann U, Hayes J, Collins NC, Shi B-J, Schnurbusch T, Hay A, Mayo G Pallotta M, Tester M, Langridge P (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318:1446–1449

    Google Scholar 

  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420:337–339

    Article  Google Scholar 

  • Takano J, Miwa K, Yuan L, von Wiren N, Fujiwara T (2005) Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proceed Nat Acad Sci 102:12276–12281

    Article  CAS  Google Scholar 

  • Tanaka H (1967) Boron absorption by plant roots. Plant and Soil 27:300

    Article  CAS  Google Scholar 

  • Warington K (1923) The effect of boric acid and borax on the broad bean and certain other plants. Annal Bot 37:457–466

    Google Scholar 

  • Wimmer MA, Lochnit G, Bassil E, Mühling KH, Goldbach HE (2009) Membrane-associated, boron-interacting proteins isolated by borate affinity chromatography. Plant Cell Physiol 50:1292–1304

    Article  PubMed  CAS  Google Scholar 

  • Yermiyahu U, Ben-Gal A, Keren R, Reid R (2008) Combined effect of salinity and excess boron on plant growth and yield. Plant Soil 304:73–87

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J Reid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reid, R. (2013). Boron Toxicity and Tolerance in Crop Plants. In: Tuteja, N., Gill, S. (eds) Crop Improvement Under Adverse Conditions. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4633-0_15

Download citation

Publish with us

Policies and ethics