Role of Nematode-Trapping Fungi for Crop Improvement under Adverse Conditions

  • Rakesh Kumar SinghEmail author
  • Dipesh Kumar Trivedi
  • Amit Srivastava


Phytonematodes cause significant economic loss to a wide variety of crops by inducing biotic stress to the plant. They cause dramatic changes in the morphology and physiology of the host root system. The damage is difficult to recognize at first sight because biotic stress first begins in the rhizospheric soil and its symptoms resemble as stress caused by deficiency of water and nutrients. Nematode-trapping fungi show very good potential for biological control of plant parasitic nematodes due to formation of trapping structures. Even fungistasis acts as a boon for these fungi where it forms trapping structures directly from the spore i.e., conidial trap (CT), having similar ability to capture and kill phytonematodes as trapping structures formed on normal hyphae. Initial results of these nematode-trapping fungi as good biocontrol agents, were erratic and discouraging because of less understanding of the biology and failure of mechanism of augmentation in the soil. In the last three decades, commercial products of these nematode-trapping fungi have been developed and have shown promising results in the control of phytonematodes. The other advantages of using some nematode-trapping fungi are its mycoparasitic behavior to control some soil-borne diseases and as root endophytes which show resistance against biotic stresses caused by phytonematodes.


Biocontrol agents Crop improvement Genetic engineering Mycoparasitism Nematode trapping fungi Root endophytes 


  1. Ahman JB, Johansson T, Olsson M, Punt PJ, Van Den Hondel C, Tunlid A (2002) Improving the pathogenicity of a nematode trapping fungus by genetic engineering of B. subtilis with nematotoxic activity. Appl Environ microbial 68:3408–3415CrossRefGoogle Scholar
  2. Ahren D, Ursing BM, Tunlid A (1998) Phylogeny of nematode-trapping fungi based on 18r DNA sequences. FEMS Microbiol Lett 158:179–184PubMedCrossRefGoogle Scholar
  3. Ahren D, Faedo M, Rajashekar B, Tunlid A (2004) Low genetic diversity among isolates of the nematode trapping fungus Duddingtonia flagrans: evidence for recent worldwide dispersion from a single common ancestor. Mycol Res 108:1205–1214PubMedCrossRefGoogle Scholar
  4. Ashour EH, Mostafa FAM (1999) Effect of pollution with certain heavy metals on the growth of the nematophagous fungus, Arthrobotrys oligospora, trap formation, root-knot nematode infection and enzyme production. Pak J Biol Sci 2:515–522CrossRefGoogle Scholar
  5. Barron GL (1977) The nematode-destroying fungi. University of Guelph, Ontario. Lancaster, Pennsylvania: Lancaster Press. Top Mycobiol 1:1–140Google Scholar
  6. Bordallo JJ, Lopez-Llorca LV, Jansson H-B, Salinas J, Persmark L, Asensio L (2002) Effect of egg-parasitic and nematode trapping fungi on plant roots. New Phytol 154:491–499CrossRefGoogle Scholar
  7. Cayrol JC, Frankowski JP, Laniece A, D’Harde-mare G, Talon JP (1978) Contre les nematodes en champigonniere. Mise an point d’une methode de lutte biologique a l’aide d’un Hyphomycetes predateur: Arthrobotrys robusta souche antipolis’ (Royal 300). Pepinieristes, Horticulteurs, Maraichers, Revue Horticole 184:23–40Google Scholar
  8. Cayrol JC., Frankowski OP (1979) Une methode de lutte biologique contre les nematodes a galles desacines appartenant au genre Meloidogyne. Pepinieristes. Holticulteurs, Maraichers, Revue Horticole 193:15–23Google Scholar
  9. Chet I, Herman GER, Baker R (1981) Trichoderma hamatum: its hyphae interaction with Rhizoctonia solani and Pythium spp. Microb Ecol 7:29–38CrossRefGoogle Scholar
  10. Cooke RC (1964) Ecological characteristics of nematode-trapping hyphomycetes—II. Germination of conidia in soil. Ann Appl Biol 54:375–379CrossRefGoogle Scholar
  11. Dackman C, Nordbring-Hertz B (1992) Conidial traps—A new survival structure of the nematode trapping fungus Arthrobotrys oligospora. Mycol Res 96:194–198CrossRefGoogle Scholar
  12. Dong JY, Zhao ZX, Cai L, Liu SQ, Zhang HR, Duan M, Zhang KQ (2004) Nematicidal effect of freshwater fungal cultures against the pine-nematode, Bursaphelenchus xylophilus. Fung Divers 15:125–135Google Scholar
  13. Drechsler C (1937) Some hyphomycetes that prey on free-living terricolous nematodes. Mycologia 29:447–552CrossRefGoogle Scholar
  14. Duddington CL (1951) The ecology of predacious fungi. I. Preliminary survey. Trans Br Mycol Soc 34:322–331Google Scholar
  15. Duddington CL (1962) Predaceaus fungi and control of eelworms. In: Carthy JD, Duddington CL (eds) Viewpoints in Biology, Vol.1. Butterworth, London, pp 12Google Scholar
  16. Duponnois R, Mateille T, Gueye M (1995) Biological characteristics and effects of two strains of Arthrobotrys oligospora from Senegal on Meloidogyne species parasitizing tomato plants. Biocontrol Sci Technol 5:517–525CrossRefGoogle Scholar
  17. Glockling SL, Dick MW (1994) Dactylella megalobrocha, a new species of nematophagous fungus with constricting ring. Mycol Res 98:845–853CrossRefGoogle Scholar
  18. Gueye M, Duponnois R, Samb PI, Mateille T (1997) Study on 3 strains of Arthrobotrys oligospora: biological characterization and effects on Meloidogyne mayaguensis parasitic on tomato in Senegal. Tropicultura 15(3):109–115Google Scholar
  19. Haard K (1968) Taxonomic studies on the genus Arthrobotrys corda. Mycologia 60:1140–1159CrossRefGoogle Scholar
  20. Hagedorn G, Scholler M (1999) A reevaluation of predatory orbiliaceous fungi. I. Phylogenetic analysis using rDNA sequence data. Sydowia 51:27–48Google Scholar
  21. Heintz EC (1978) Assesing the predacity of nematode trapping fungi in vitro. Mycologia 70:1086–1100CrossRefGoogle Scholar
  22. Jaffee BA (2002) Soil cages for studying how organic amendments affect nematode trapping fungi. Appl Soil Ecol 21:1–9CrossRefGoogle Scholar
  23. Jaffee BA, Ferries H, Scow KM (1998) Nematode trapping fungi in organic and conventional cropping system. Ecol Population Biol 88(4):344–350Google Scholar
  24. Jaffee BA, Strong DR (2005) Strong bottom-up and weak top-down effects in soil: Nematode parasitized insects and nematode trapping fungi. Soil Biol Biochem 37:1011–1021CrossRefGoogle Scholar
  25. Jansson H-B, Lopez-Llocra LV (2004) Control of nematodes by fungi. In: Arora DK (ed) Fungal Biotechnology in agriculture, food, and environment application. Dekker. New York, pp 205–215Google Scholar
  26. Jeffries P (1997) In: Wicklow DT, Soderstorm DE (eds) Mycoparasitism. In the mycota vol 4. Environmental and Microbial relationship. Springers Verlag, New York, pp L149–L164Google Scholar
  27. Kano S, Aimi R, Masumoto A, Kitamoto Y, Morinaga T (2004) Physiology and molecular characteristics of a pinewilt nematode-trapping fungus, Monacrosporium megalosporum. Curr Microbiol 49:158–164PubMedCrossRefGoogle Scholar
  28. Kerry BR (1987) Biological control .In: Brown RH, Kerry BR (eds) 92 Biological control of nematodes: Prospects and opportunities Principles and practice of nematode control in crops. Academic Press, Sydney, pp 233–263Google Scholar
  29. Kumar D, Singh KP (2006) Assessment of predacity of Arthrobotrys dactyloides for biological control of root knot disease of tomato. J Phytopathol 154:1–5CrossRefGoogle Scholar
  30. Leinhos GME, Bauchenauer H (1992) Hyperparasitism of selected fungi on rust fungi on cereals. Z Pflazenschutz 99:482–498Google Scholar
  31. Li SD, Zhang YH, Miao ZQ, Liu XZ (2001) Nematode trapping hyphomycetes as mycoparasites on sclerotia of Sclerotinia sclerotiorum in soil. Phytopathology 91:555Google Scholar
  32. Li Y, Hyde KD, Jeewon R, Cai L, Vijaykrishna D, Zhang KQ (2005) Phylogenetics and evolution of nematode-trapping fungi estimated from nuclear & protein coding genes. Mycologia (97:1034–1046)Google Scholar
  33. Linford MB (1937) Stimulated activity of natural enemies of nematodes. Science 85:123–124PubMedCrossRefGoogle Scholar
  34. Liou GY, Tzean SS (1997) Phylogeny of the genus Arthrobotrys and allied nematode-trapping fungi based on rDNA sequences. Mycologia 89:876–884CrossRefGoogle Scholar
  35. Liu XF, Zhang KQ (2003) Dactylella shizishanna sp. nov., from Shizi Mountain, China. Fung Divers 14:103–107Google Scholar
  36. Liu XZ, Zhang KQ (1994) Nematode-trapping species of Monacrosporium with special reference to two new species. Mycol Res 98:862–868CrossRefGoogle Scholar
  37. Mankau R (1980) Biocontrol: Fungi as nematode control agents. J Nematol 12(4):244–252PubMedGoogle Scholar
  38. Matskevich NV, Kosovets VS, Udalova VB, Teplyakova, TV (1978) The possibility of using nematophagus fungi in the control of some plant nematodes under enclosed conditions. Biologicheskii- metod- vreditelyamii- bolezyami- rastenii- Nauchnye- Trudy- Vaskhnil 135–150Google Scholar
  39. Nordmeyer D (1992) The search for novel nematicidal compounds. In: Gommes FJ, Mass WTH (eds) Nematology from molecules to ecosystems. European Society of Nematologists. Invergowrie, Dundee, pp 281–293Google Scholar
  40. Nordbring-Hertz B, Jansson HB, Tunlid A (2006) Nematophagous fungi. In: Encyclopedia of Life Sciences. John Wiley, USAGoogle Scholar
  41. Olsson S, Persson Y (1994) Transfer of Phosphorous from Rhizoctonia solani to mycoparasute Arthrobotrys oligospora. Mycological Research 98:1065–1068CrossRefGoogle Scholar
  42. Persmark L, Jansson HB (1997) Nematophagous fungi in the rhizosphere of agricultural crops. FEMS Microbial Ecol 22:303–312CrossRefGoogle Scholar
  43. Pfister DH (1997) Castor, Pollux and life histories of fungi. Mycologia 89:1–23CrossRefGoogle Scholar
  44. Sasser JN (1989) Plant parasitic nematodes, farmer’s hidden enemy. Deptt Pl Prot. North Carolina State Uni, USA, p 13Google Scholar
  45. Sayre RM (1986) Pathogens for the biological control of nematodes. Crop Prot 5(4):268–276CrossRefGoogle Scholar
  46. Sayre RM, Walter DE (1991) Factors affecting the efficacy of natural enemies of nematodes. Ann Rev Phytopathol 29:149–166CrossRefGoogle Scholar
  47. Scholler M, Hagedorn G, Rubner A (1999) A reevalution of predatory orbiliaceous fungi. II. A new generic concept. Sydowia 51:89–113Google Scholar
  48. Schans J (1991) Plant Cell Environ 14(7):707–712Google Scholar
  49. Sikora RA (1992) Management of the antagonistic potential in agricultural ecosystems for the biological control of plant-parasitic nematodes. Ann Rev Phytopathol 30:245–270CrossRefGoogle Scholar
  50. Sikora RA, Schafer K, Dobabat AA (2007) Modes of action associated with microbially induced in planta suppression of plant parasitic nematods. Australasian Plant Pathology 36:124–134Google Scholar
  51. Singh RK, Gupta RC, Kumar Niranjan, Singh KP (2006) Effect of mass culture of Arthrobotrys oligospora for the control of root knot in rice (Oryza sativa). Indian J Plant Pathol 24(182):32–35Google Scholar
  52. Stirling GR, Mani A (1995) The activity of nematode-trapping fungi following their encapsulation in alginate. NematologicaGoogle Scholar
  53. Stirling GR, Smith LJ (1998a) Field test of formulated products containing either Verticillium chlamydosporium or Arthrobotrys dactyloides for biological control of root knot nematode. Biol Control 11:231–239CrossRefGoogle Scholar
  54. Stirling GR, Smith LJ, Licastro KA, Eden LM (1998b) Control of root knot nematode with formulation of nematode trapping fungus Arthrobotrys dactyloides. Biol Control 11:224–230CrossRefGoogle Scholar
  55. Tzean SS, Estey RH (1978) Nematode trapping fungi as mycoparasites. Phytopatology 68:1266–1270CrossRefGoogle Scholar
  56. Zhang KQ, Liu XZ, Cao L (1996a) A review of Dactylella and a new species. Mycosystema 7:111–118Google Scholar
  57. Zhang KQ, Liu XZ, Cao L (1996b) Nematophagous species of Monacrosporium from China. Mycol Res 100:274–276CrossRefGoogle Scholar
  58. Zinov’eva SV, Vasyukora NI, Ozeretskovskaya OL (2004) Biochemical aspects of plant interactions with phytoparasitic nematods: A Rev Appl Biochem Microbiol 40(2):111–119CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Rakesh Kumar Singh
    • 3
    Email author
  • Dipesh Kumar Trivedi
    • 2
  • Amit Srivastava
    • 1
  1. 1.School of Biotechnology, Faculty of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.Plant Molecular BiologyInternational Centre for Genetic Engineering and Biotechnology (ICGEB)New DelhiIndia
  3. 3.Department of Mycology & Plant Pathology, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia

Personalised recommendations