Skip to main content

The Role of Photonics in Future Datacenter Networks

  • Chapter
  • First Online:
Optical Interconnects for Future Data Center Networks

Abstract

The datacenter today is almost everybody’s other computer. The primary computer is increasingly a mobile device such as a smart phone, tablet, or laptop. The bulk of both the computing and the storage is done in the datacenter since the mobile devices are energy constrained. Datacenters vary in both the size and the performance of the constituent components. They vary from large-scale supercomputers, through warehouse scale installations supporting social networking, cloud services, etc. to smaller scale enterprise or university installations. In 2011, 2% of the US energy consumption went to support this computing model and the growth in both the number and size of datacenter installations leads to an alarming energy consumption scenario. This chapter focuses on the potential role of optical/photonic communication technology and the impact that this technology may have on future energy-efficient datacenters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. U.S. Environmental Protection Agency ENERGY STAR Program (2007) Report to Congress on Server and Data Center Energy Efficiency Public Law 109–431 Washington D.C., USA

    Google Scholar 

  2. Ahn J, Binkert N, Davis A, McLaren M, Schreiber RS (2009) HyperX: topology, routing, and packaging of efficient large-scale networks, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, Portland, Oregon

    Google Scholar 

  3. Ahn J, Fiorentino M, Beausoleil R, Binkert N, Davis A, Fattal D, Jouppi N, McLaren M, Santori C, Schreiber R, Spillane S, Vantrease D, Xu Q (2009) Devices and architectures for photonic chip-scale integration. Appl Phys A: Mater Sci Process 95(4):989–997

    Google Scholar 

  4. Analui B, Guckenberger D, Kucharski D, Narasimha A (2006) A fully integrated 20-Gb/s optoelectronic transceiver implemented in a standard 0.13 micron CMOS SOI technology. IEEE J Solid-State Circ 41(25):2945–2955

    Google Scholar 

  5. Association SI (2009) International technology roadmap for semiconductors. http://www.itrs.net/

  6. Astfalk G (2009) Why Optical Data Communications and Why Now? Appl Phys A 95:933–940

    Google Scholar 

  7. Binkert NL, Dreslinski RG, Hsu LR, Lim KT, Saidi AG, Reinhardt SK (2006) The M5 Simulator: modeling networked systems. IEEE Micro 26(4):52–60

    Google Scholar 

  8. Broadcom (2010) BCM56840 series high capacity StrataXGS®;Ethernet switch series. http://www.broadcom.com/products/Switching/Data-Center/BCM56840-Series

  9. Chen L, Preston K, Manipatruni S, Lipson M (2009) Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors. Opt Express 17(17):15248–15256

    Google Scholar 

  10. Cummings U (2006) FocalPoint: a low-latency, high-bandwidth Ethernet switch chip. In: Hot Chips 18

    Google Scholar 

  11. Dimitrakopoulos G, Galanopoulos K (2008) Fast arbiters for on-chip network switches. In: International conference on computer design, pp 664–670

    Google Scholar 

  12. Fukuda K, Yamashita H, Ono G, Nemoto R, Suzuki E, Takemoto T, Yuki F, Saito T (2010) A 12.3mW 12.5Gb/s complete transceiver in 65nm CMOS. In: ISSCC, pp 368–369

    Google Scholar 

  13. Hewlett SJ, Love JD, Steblina VV (1996) Analysis and design of highly broad-band, planar evanescent couplers. Opt Quant Electron 28:71–81. URL http://dx.doi.org/10.1007/BF00578552, 10.1007/BF00578552

  14. Ho R (2003) On-Chip Wires: Scaling and Efficiency. PhD thesis, Stanford University

    Google Scholar 

  15. Hoelzle U, Barroso LA (2009) The datacenter as a computer: an introduction to the design of warehouse-scale machines, 1st edn. Morgan and Claypool Publishers

    Google Scholar 

  16. Karol M, Hluchyj M, Morgan S (1987) Input versus output queueing on a space-division packet switch. IEEE Trans Comm 35(12):1347 – 1356. DOI 10.1109/TCOM.1987.1096719

    Google Scholar 

  17. Kim J, Dally WJ, Towles B, Gupta AK (2005) Microarchitecture of a High-Radix Router. In ISCA ’05: Proceedings of the 32nd annual international symposium on computer architecture, IEEE Computer Society, pp 420–431

    Google Scholar 

  18. Kim J, Dally WJ, Abts D (2006) Adaptive Routing in High-Radix Clos Network. In: SC’06

    Google Scholar 

  19. Kim J, Dally WJ, Abts D (2007) Flattened butterfly: A cost-efficient topology for high-radix networks, Proceedings of the 34th annual international symposium on Computer architecture, San Diego, California, USA doi>10.1145/1250662.1250679

    Google Scholar 

  20. Kim J, Dally WJ, Scott S, Abts D (2008) Technology-Driven, Highly-Scalable Dragonfly Topology, Proceedings of the 35th International Symposium on Computer Architecture, Beijing, China, pp 77–88 doi>10.1109/ISCA.2008.19

    Google Scholar 

  21. Kirman N, Kirman M, Dokania RK, Martinez JF, Apsel AB, Watkins MA, Albonesi DH (2006) Leveraging optical technology in future bus-based chip multiprocessors. In: MICRO 39 Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture pp 492–503

    Google Scholar 

  22. Koch BR, Fang AW, Cohen O, Bowers JE (2007) Mode-locked silicon evanescent lasers. Opt Express 15(18):11225

    Google Scholar 

  23. Kogge (editor) PM (2008) Exascale computing study: technology challenges in achieving exascale systems. Tech. Rep. TR-2008-13, University of Notre Dame

    Google Scholar 

  24. Krishnamoorthy A, Ho R, Zheng X, Schwetman H, Lexau J, Koka P, Li G, Shubin I, Cunningham J (2009) The integration of silicon photonics and vlsi electronics for computing systems. In: International conference on photonics in switching, 2009. PS ’09, pp 1 –4. DOI 10.1109/PS.2009. 5307781

    Google Scholar 

  25. Lipson M (2005) Guiding, modulating, and emitting light on silicon–challenges and opportunities. J Lightwave Technol 23(12):4222–4238

    Google Scholar 

  26. Mora G, Flich J, Duato J, López P, Baydal E, Lysne O (2006) Towards an efficient switch architecture for high-radix switches. In ANCS ’06: Proceedings of the 2006 ACM/IEEE symposium on Architecture for networking and communications systems, New York, NY, USA, ACM, 2006, pp. 11–20.

    Google Scholar 

  27. Muralimanohar N, Balasubramonian R, Jouppi N (2007) Optimizing NUCA organizations and wiring alternatives for large caches with CACTI 6.0. In Proceedings of the 40th International Symposium on Microarchitecture (MICRO-40)

    Google Scholar 

  28. Palmer R, Poulton J, Dally WJ, Eyles J, Fuller AM, Greer T, Horowitz M, Kellam M, Quan F, Zarkeshvarl F (2007) Solid-State Circuits Conference. ISSCC 2007, Digest of Technical Papers. IEEE International, San Francisco, CA 440–614

    Google Scholar 

  29. Scott S, Abts D, Kim J, Dally WJ (2006) The black widow high-radix Clos network. Proceedings ISCA ’06 Proceedings of the 33rd annual international symposium on Computer Architecture, IEEE Computer Society, Washington, DC, USA pp 16–28

    Google Scholar 

  30. Semiconductor Industries Association (2009 Edition) International technology roadmap for semiconductors. http://www.itrs.net

  31. Shacham A, Bergman K, Carloni LP (2007) On the design of a photonic network-on-chip. In: First International Symposium on Digital Object Identifier, NOCS, pp 53–64

    Google Scholar 

  32. Tan MR, Rosenberg P, Yeo JS, McLaren M, Mathai S, Morris T, Kuo HP, Straznicky J, Jouppi NP, Wang SY (2009) A high-speed optical multidrop bus for computer interconnections. IEEE Micro 29(4):62–73

    Google Scholar 

  33. Vantrease D, Binkert N, Schreiber RS, Lipasti MH (2009) Light speed arbitration and flow control for nanophotonic interconnects. In: MICRO-42. 42nd Annual IEEE/ACM International Symposium on MICRO-42, pp 304–315

    Google Scholar 

  34. Warren D (2011) HP Optical Backplane Demonstration, InterOp. Http://www.youtube.com/watch?v=dILsG8C6qVE

  35. Watts MR, Zortman WA, Trotter DC, Nielson GN, Luck DL, Young RW (2009) Adiabatic resonant microrings (ARMs) with directly integrated thermal microphotonics. In: Lasers and Electro-Optics, 2009 Conference on Quantum electronics and Laser Science Conference, pp 1–2

    Google Scholar 

  36. Xu Q, Schmidt B, Pradhan S, Lipson M (2005) Micrometre-scale silicon electro-optic modulator. Nature 435:325–327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Al Davis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Davis, A. et al. (2013). The Role of Photonics in Future Datacenter Networks. In: Kachris, C., Bergman, K., Tomkos, I. (eds) Optical Interconnects for Future Data Center Networks. Optical Networks. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4630-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4630-9_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4629-3

  • Online ISBN: 978-1-4614-4630-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics