Skip to main content

Cosmic Crisis

  • Chapter
  • First Online:
Astronomy and the Climate Crisis

Part of the book series: Astronomers' Universe ((ASTRONOM))

  • 870 Accesses

Abstract

Milankovic’s theories were not the only ones to emerge out of the search for hidden clues to the large climate variations and epochs that have taken place throughout Earth’s history. However, it concerns only the domain of the Sun. Two related theories, with implications from far more distant places than any within the Sun’s realm, also have been at the heart of no less bitter a controversy and dispute than any we have encountered before. Probably the most esoteric and contested of them all, they link us to the very heart of the galaxy, involving the effects of galactic cosmic rays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ney EP (1959) Cosmic radiation and the weather. Nature 183:451–452

    Article  Google Scholar 

  2. Markson R (2000) The global circuit intensity; its measurement and variation over the last 50 years. Bull Am Meteorol Soc 88:223–241

    Article  Google Scholar 

  3. Svensmark H, Friis-Christensen E (1997) Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships. J Atmos Sol Terres Phys 59(11):1225–1232

    Article  CAS  Google Scholar 

  4. Jørgensen TS, Hansen AW (2000) Comment on “Variation of cosmic ray flux and cloud coverage – a missing link in solar-climate relationships”. J Atmos Phys 62:73–77

    Google Scholar 

  5. Svensmark H, Friis-Christensen E (1999) Reply to comments on “Variation of cosmic ray flux and global cloud coverage – a missing link in solar-climate relationships”. J Atmos Terres Phys 62:73–77

    Google Scholar 

  6. Svensmark H (1998) Influence of cosmic rays on Earth’s climate. Phys Rev Lett 81:5027–5030; Svensmark H (2000) Cosmic rays and Earth’s climate. Space Sci Rev 93:175–185; Marsh N, Svensmark H (2000) Cosmic rays, clouds, and climate. Space Sci Rev 94:215–230; Marsh ND, Svensmark H (2000) Low cloud properties influenced by cosmic rays. Phys Rev Lett 85:5004–5007

    Google Scholar 

  7. Landscheidt T (2000) Solar wind near Earth: indicator of variations in global temperature. In: Vázquez M, Schmieder B (eds) The solar cycle and terrestrial climate. Proceedings of the solar and space weather euroconference, vol 463. ESA SP, pp 497–500; Shumilov OI, Raspopov OM, Kasatkina EA, Turjansky VA, Durgachev VA, Prokorov NS (2000) Atmospheric aerosols created by varying cosmic ray activity – one of the key factors on non-direct solar forcing of climate. In: The Solar cycle and terrestrial climate. Proceedings of the solar and space weather euroconference, vol 463, ESA SP, pp 543–546; Tinsley BA, Yu F (2002) Atmospheric ionization and clouds as links between solar activity and climate. J Am Geophys Union 141:321–340

    Google Scholar 

  8. Lockwood M, Stamper R, Wild MN (1999) A doubling of the Sun’s coronal magnetic field during the last 100 years. Nature 399:437–439

    Article  CAS  Google Scholar 

  9. Laut P (2003) Solar activity and terrestrial climate: an analysis of some purported correlations. J Atmos Sol Terres Phys 65:801–812

    Article  Google Scholar 

  10. Kernthaler S, Toumi R, Haigh J (1999) Some doubts concerning a link between cosmic rays and global cloudiness. Geophys Res Lett 26:863–865; Wagner G, Livingston DM, Masarik J, Muschler R, Beer J (2001) Some results relevant to the discussion of a possible link between cosmic rays and Earth’s climate. J Geophys Res 106:3381–3388

    Google Scholar 

  11. Lassen K, Friis-Christensen E (2000) Reply to the article “Solar cycle lengths and climate: a reference revisited”. J Geophys Res Space 105:27493–27495

    Article  Google Scholar 

  12. Svensmark H (2003) Comments on Peter Laut’s paper, “Solar activity and terrestrial climate: an analysis of some purported correlations”. Danish Space Research Institute.

    Google Scholar 

  13. Laut P (2003) Comments by Peter Laut on: Henrik Svensmark’s “Comments on Peter Laut’s paper, ‘Solar activity and terrestrial climate: an analysis of some purported correlations’”. J Atmos Sol Terres Phys 65:801–802; Svensmark H, Laut P (2003) Technical University of Denmark, 2003

    Google Scholar 

  14. Pallé E (2005) Possible satellite perspective effects on the reported correlations between solar activity and clouds. Geophys Res Lett 32:L03802

    Article  Google Scholar 

  15. Svensmark H (2007) ‘Cosmoclimatology,’ a new theory emerges. Astron Geophys 48(1):1.18–1.24; Svensmark H, Bondo T, Svensmark J (2010) Cosmic ray decreases affect atmospheric aerosols and clouds. Geophys Res Lett 36:L15101

    Google Scholar 

  16. Shaviv NJ, Veizer J (2003) Celestial driver of Phanerozoic climate? GSA Today 13(7):4–10

    Article  Google Scholar 

  17. Shaviv NJ (2002) Cosmic ray diffusion from the galactic spiral arms, iron meteorites, and a possible climate connection? Phys Rev Lett 89:051102

    Article  Google Scholar 

  18. Tinsley BA, Deen GW (1991) Apparent tropospheric response to Mev-Gev particle flux variations: a connection via electrofreezing of supercooled water in high-level clouds. J Geophys Res 96:22283–22296

    Article  Google Scholar 

  19. Shaviv NJ (2002) The spiral structure of the Milky Way, cosmic rays, and ice age epochs on Earth. New Astron 8:39–77

    Google Scholar 

  20. Hoyle F, Wickramasinghe NC (1978) Comets, ice ages, and ecological catastrophes. Astrophys Space Sci 53:523–526

    Article  Google Scholar 

  21. Rahmstorf S, Archer D, Ebel DS, Eugster O, Jouzel J, Maraun D, Neu U, Schmidt GA, Severinghaus J, Weaver AJ, Zachos J (2004) Cosmic rays, carbon dioxide, and climate. Eos 85(4):38; Royer DL, Berner RA, Montañez IP, Tabor NJ, Beerling DJ (2004) CO2 as a primary driver of Phanerozoic climate. GSA Today 14:4–10; Overholt AC, Melott AL, Pohl M (2009) Testing the link between terrestrial climate change and galactic spiral arm transit. Astron J 705:L101; kfc (2009) Spiral arms did not cause climate change on Earth. Technology Review, Massachusetts Institute of Technology, June 2009

    Google Scholar 

  22. Shaviv NJ, Veizer J (2004) Detailed response to “Cosmic rays, carbon dioxide, and climate”. Eos 85(4):38

    Google Scholar 

  23. Shaviv NJ, Veizer J (2004) Further response to “Cosmic rays, carbon dioxide, and climate. www.phys.huja.ac.il/∼shaviv/ClimateDebate/RahmReplyReply.pdf

  24. Shaviv N, Veizer J (2004) CO2 as a primary driver of Phanerozoic climate: Comment. GSA Today; Shaviv NJ (2005) On climate response to changes in the cosmic ray flux and radiative budget. J Geophys Res 110:A08105

    Google Scholar 

  25. Bailer-Jones CAL (2009) Evidence for and against astronomical impacts on climate change and mass extinctions: a review. Int J Astrobiol 8:213–239; Usoskin IG, Marsh N, Kovaltsov GA, Mursula K, Gladysheva OG (2004) Latitudinal dependence of low cloud amount on cosmic ray induced ionization. Geophys Res Lett 31(16):L16109–L16110; Usoskin IG, Korte M, Kovaltsov GA (2007) Role of centennial geomagnetic changes in local atmospheric ionization. Geophys Res Lett 35:L05811; Usoskin IG, Desorgher L, Velinov P, Storini M, Flückiger EO, Bütikofer R, Gennady GA (2009) Ionization of the Earth’s atmosphere by solar and galactic cosmic rays. Acta Geophys 57(1):88–101; Harrison RG, Stephenson DB (2006) Empirical evidence for a nonlinear effect of galactic cosmic rays on clouds. Proc R Soc A Math Phys Eng Sci 462(2068):1221–1233

    Google Scholar 

  26. Marsh N, Svensmark H, Christiansen F (2005) Influences of solar activity cycle on Earth’s climate. February, Publication of the Danish National Space Center

    Google Scholar 

  27. Kristjansson JE, Stjern CW, Stordal F, Fjaeraa AM, Myhre G, Jonasson K (2008) Cosmic rays, cloud condensation nuclei and clouds – a reassessment using MODIS data. Atmos Chem Phys 8(24):7373–7387; Kulmala M, Rüpinen I, Neiminen T, Hulkkonen M, Sogacheva L, Manninen HE, Paasonen P, Petäjä T, Dal Maso M, Aalto PP, Viljanen A, Usokin I, Vainio R, Mirme S, Mirme A, Minikin A, Petzold A, Hõrrak U, Plaß-Dülmer C, Birmili W, Kerminen V-M (2010) Atmospheric data over a solar cycle: no correlation between galactic cosmic rays and new particle formation. Atmos Chem Phys 10:1885–1898; Erlykin AD, Sloan T, Wolfendale AW (2010) Cosmic rays and global warming. Europhys News 41(1):27–30. http://dx.doi.org/10.1051/epn/2010104; Calogovic J, Albert C, Arnold F, Beer J, Desorgher L, Flueckiger EO (2010) Sudden cosmic ray decreases: no change of global cloud cover. Geophys Res Lett 37(3):L03802

    Google Scholar 

  28. CERN. public.web.cern.ch/public/en/Research/Research-en.html

  29. The CLOUD experiment. public.web.cern.ch/public/en/Research/CLOUD-en.html

  30. CERN’s CLOUD experiment provides unprecedented insight into cloud formation. Press release, 25 Aug 2011. press.web.cern.ch/press/pressreleases/Releases2011/PR15.11E.html

  31. CLOUD experiment results. Supporting information: press.web.cern.ch/press/pressreleases/Releases2011/PR15.11E.html (− then:) CLOUD SI press-briefing 29JUL11.pdf

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cooke, A. (2012). Cosmic Crisis. In: Astronomy and the Climate Crisis. Astronomers' Universe. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4608-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4608-8_12

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4607-1

  • Online ISBN: 978-1-4614-4608-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics