Design and Properties of LiFePO4 Nano-materials for High-Power Applications

  • K. Zaghib
  • A. Mauger
  • J. B. Goodenough
  • C. M. Julien
Part of the Nanostructure Science and Technology book series (NST)


This chapter presents a review of the structural and physicochemical properties of LiFePO4 which is considered as the most advanced positive electrode for lithium-ion batteries. Depending on the synthesis, the fundamental properties can be modified because impurities poison this material. These impurities are identified, and a quantitative estimate of their concentrations is deduced from the combination of analytical methods. An optimized preparation provides materials with carbon-coated particles free of any impurity phase, insuring structural stability and electrochemical performance that justify the use of this material as a cathode element in new generation of lithium secondary batteries operating for powering hybrid electric vehicles and full electric vehicles.


Carbon Coat LiFePO4 Particle FeO6 Octahedra LiFePO4 Powder LiFePO4 Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Padhi K, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J Electrochem Soc 144:1188CrossRefGoogle Scholar
  2. 2.
    Huang H, Yin SC, Nazar LF (2001) Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates. Electrochem Solid State Lett 4:A170CrossRefGoogle Scholar
  3. 3.
    Dominko D, Gaberscek M, Drofenik J, Bele M, Jamnik J (2003) Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochim Acta 48:3709CrossRefGoogle Scholar
  4. 4.
    Ravet N, Goodenough JB, Besner S, Simoneau M, Hovington P, Armand M (1999) Improved Iron based Cathode Material. Proceedings of the 196th ECS meeting, Honolulu, extended abstract n° 127Google Scholar
  5. 5.
    Ravet N, Chouinard Y, Magnan JF, Besner S, Gauthier M, Armand M (2001) Electroactivity of natural and synthetic triphylite. J Power Sources 97:503CrossRefGoogle Scholar
  6. 6.
    Bewlay SL, Konstantinov K, Wang GX, Dou SX, Liu HK (2004) Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Mater Lett 58:1788CrossRefGoogle Scholar
  7. 7.
    Chen Z, Dahn JR (2002) Reducing Carbon in LiFePO4/C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density. J Electrochem Soc 149:A1184CrossRefGoogle Scholar
  8. 8.
    Ravet N, Besner S, Simoneau M, Vallée A, Armand M, Magnan JF (2005) Electrode materials with high surface conductivity. US Patent 6,962,666; (2005) 6,855,273Google Scholar
  9. 9.
    Ait-Salah A, Mauger A, Julien CM, Gendron F (2006) Nano-sized impurity phases in relation to the mode of preparation of LiFePO4. Mater Sci Eng B 129:232CrossRefGoogle Scholar
  10. 10.
    Subramanya-Herle P, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater 3:147CrossRefGoogle Scholar
  11. 11.
    Ait-Salah A, Dodd J, Mauger A, Yazami R, Gendron F, Julien CM (2006) Structural and magnetic properties of LiFePO4 and lithium extraction effects. Z Allg Inorg Chem 632:1692Google Scholar
  12. 12.
    Zaghib K, Shim J, Guerfi A, Charest P, Striebel KA (2005) Effect of Carbon Source as Additives in LiFePO4 as Positive Electrode for Lithium-Ion Batteries. Electrochem Solid State Lett 8:A207CrossRefGoogle Scholar
  13. 13.
    Zaghib K, Armand M (2002) Electrode covered with a film obtained from an aqueous solution containing a water soluble binder, manufacturing process and uses thereof. Canadian Patent CA 2,411,695Google Scholar
  14. 14.
    Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for Lithium Battery Cathodes. J Electrochem Soc 148:A224CrossRefGoogle Scholar
  15. 15.
    Arcon D, Zorko A, Dominko R, Jaglicic Z (2004) A comparative study of magnetic properties of LiFePO4 and LiMnPO4. J Phys C 16:5531Google Scholar
  16. 16.
    Geller S, Durand JL (1960) Refinement of the structure of LiMnPO4. Acta Crystallogr 13:325CrossRefGoogle Scholar
  17. 17.
    Santorro RP, Newnham RE (1967) Antiferromagnetism of LiFePO4. Acta Crystallogr 22:344CrossRefGoogle Scholar
  18. 18.
    Streltsov VA, Belokoneva EL, Tsirelson VG, Hansen NK (1993) Multipole analysis of the electron density in triphylite LiFePO4, using X-ray diffraction data. Acta Crystallogr B 49:147CrossRefGoogle Scholar
  19. 19.
    Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. J Power Sources 97–98:498CrossRefGoogle Scholar
  20. 20.
    Rousse G, Rodriguez-Carvajal J, Patoux S, Masquelier C (2003) Magnetic structures of the triphylite LiFePO4 and its delithiated form FePO4. Chem Mater 15:4082CrossRefGoogle Scholar
  21. 21.
    Losey A, Rakovan J, Huges J, Francis CA, Dyar MD (2004) Structural variation in the lithiophilite-triphylite series and other olivine-group structures. Can Miner 42:1105CrossRefGoogle Scholar
  22. 22.
    Junod A, Wang KQ, Triscone G, Lamarche G (1995) Specific heat, magnetic properties and critical behaviour of Mn2SiS4 and Fe2GeS4. J Magn Magn Mater 146:21CrossRefGoogle Scholar
  23. 23.
    Moring J, Kostiner E (1986) The crystal structure of NaMnPO4. J Solid State Chem 61:379CrossRefGoogle Scholar
  24. 24.
    Nakamura T, Miwa Y, Tabuchi M, Yamada Y (2006) Structural and Surface Modifications of LiFePO4 Olivine Particles and Their Electrochemical Properties. J Electrochem Soc 153:A1108CrossRefGoogle Scholar
  25. 25.
    Striebel K, Shim J, Srinivasan V, Newman J (2005) Comparison of LiFePO4 from different sources. J Electrochem Soc 152:A664CrossRefGoogle Scholar
  26. 26.
    Ait Salah A, Mauger A, Zaghib K, Goodenough JB, Ravet N, Gauthier M, Gendron F, Julien CM (2006) Reduction Fe3+ of Impurities in LiFePO4 from Pyrolysis of Organic Precursor Used for Carbon Deposition. J Electrochem Soc 153:A1692CrossRefGoogle Scholar
  27. 27.
    Paques-Ledent MT, Tarte P (1974) Vibrational studies of olivine-type compounds—II Orthophosphates, -arsenates and -vanadates AIBIIXVO4. Spectrochim Acta A: Molecular Spectroscopy 30:673CrossRefGoogle Scholar
  28. 28.
    Burma CM, Frech R (2004) Raman and FTIR Spectroscopic Study of Li x FePO4 (0≤x≤1). J Electrochem Soc 151:A1032CrossRefGoogle Scholar
  29. 29.
    Kostecki R, Schnyder B, Alliata D, Song X, Kinoshita K, Kotz R (2001) Surface studies of carbon films from pyrolyzed photoresist. Thin Solid Films 396:36CrossRefGoogle Scholar
  30. 30.
    Julien CM, Massot M (2004) Vibrational spectroscopy of electrode materials for rechargeable lithium-ion batteries. III. Oxide frameworks. In: Stoynov Z, Vladikova D (eds) Proceedings of the international workshop on advanced techniques for energy sources investigation and testing, Bulgarian Academy of Sciences, SofiaGoogle Scholar
  31. 31.
    Julien CM, Zaghib K, Mauger A, Massot M, Ait-Salah A, Selmane M, Gendron F (2006) Characterization of the carbon coating onto LiFePO4 particles used in lithium batteries. J Appl Phys 100:63511CrossRefGoogle Scholar
  32. 32.
    Ait-Salah A, Jozwiak P, Zaghib K, Garbarczyk J, Gendron F, Mauger A, Julien CM (2006) FTIR features of lithium iron-phosphates as electrode materials for rechargeable lithium batteries. Spectrochim Acta A: Molecular and Biomolecular Spectroscopy 65:1007CrossRefGoogle Scholar
  33. 33.
    Hu Y, Doeff MM, Kostecki R, Finones R (2004) Electrochemical Performance of Sol-Gel Synthesized LiFePO4 in Lithium Batteries. J Electrochem Soc 151:A1279; Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of Surface Carbon Structure on the Electrochemical Performance of LiFePO4. Electrochem Solid-State Lett 6:A207Google Scholar
  34. 34.
    Tamor MA, Vassell WC, Carduner KR (1991) Atomic constraint in hydrogenated diamond-like carbon, Appl Phys Lett 58: 592Google Scholar
  35. 35.
    Robertson J (1992) Properties of diamond-like carbon. Surf Coat Technol 50:185CrossRefGoogle Scholar
  36. 36.
    Ramsteiner M, Wagner J (1987) Resonant Raman scattering of hydrogenated amorphous carbon: Evidence for π-bonded carbon clusters. Appl Phys Lett 51:1355CrossRefGoogle Scholar
  37. 37.
    Yoshikawa M, Katagani G, Ishida H, Ishitami A, Akamatsu T (1988) Resonant Raman scattering of diamond-like amorphous carbon films. Appl Phys Lett 52:1639CrossRefGoogle Scholar
  38. 38.
    Tamor MA, Vassell WC (1994) Raman “fingerprinting” of amorphous carbon films. J Appl Phys 76:3823CrossRefGoogle Scholar
  39. 39.
    Wada N, Gaczi PJ, Solin SA (1980) “Diamond-like” 3-fold coordinated amorphous carbon. J Non-Cryst Solids 35–36:543CrossRefGoogle Scholar
  40. 40.
    Knight DS, White WB (1989) Characterization of diamond films by Raman spectroscopy. J Mater Res 4:385CrossRefGoogle Scholar
  41. 41.
    Lespade P, Marchand A, Couzi M, Cruege F (1984) Caractérisation de matériaux carbonés par microspectrométrie Raman. Carbon 22:375Google Scholar
  42. 42.
    Dresselhaus MS, Dresselhaus G (1982) Light scattering in graphite intercalation compounds. In: Cardona M, Gunterhodt G (eds) Light scattering in solids III, vol 51, p. 3, Topics in applied physics. Springer, BerlinCrossRefGoogle Scholar
  43. 43.
    Nakamizo M, Tamai K (1984) Carbon Raman spectra of the oxidized and polished surfaces of carbon 22:197CrossRefGoogle Scholar
  44. 44.
    Matthews MJ, Bi XX, Dresselhaus MS, Endo M, Takahashi T (1996) Raman spectra of polyparaphenylene-based carbon prepared at low heat-treatment temperatures. Appl Phys Lett 68:1078CrossRefGoogle Scholar
  45. 45.
    Robertson J, O’Reilly EP (1987) Electronic and atomic structure of amorphous carbon. Phys Rev B 35:2946CrossRefGoogle Scholar
  46. 46.
    Ramsteiner M, Wagner J, Wild Ch, Koidl P (1987) Raman scattering from extremely thin hard amorphous carbon films. J Appl Phys 62:729CrossRefGoogle Scholar
  47. 47.
    Tamor MA, Haire JA, Wu CH, Hass KC (1989) Correlation of the optical gaps and Raman spectra of hydrogenated amorphous carbon films. Appl Phys Lett 54:123CrossRefGoogle Scholar
  48. 48.
    Santoro RP, Newnham RE, Nomura S (1966) Magnetic properties of Mn2SiO4 and Fe2SiO4. J Phys Chem Solids 27:655CrossRefGoogle Scholar
  49. 49.
    Santoro RP, Segal DJ, Newnham RE (1966) Magnetic properties of LiCoPO4 and LiNiPO4. J Phys Chem Solids 27:1192CrossRefGoogle Scholar
  50. 50.
    Dal D, Koo HJ, Rocquefelte X, Jobic S (2005) Analysis of the spin exchange interactions and the ordered magnetic structures of lithium transition metal phosphates LiMPO4 (M = Mn, Fe, Co, Ni) with the olivine structure. Inorg Chem 44:2407CrossRefGoogle Scholar
  51. 51.
    Mays JM (1963) Nuclear magnetic resonances and Mn-O-P-O-Mn superexchange linkages in paramagnetic and antiferromagnetic LiMnPO4. Phys Rev 131:38CrossRefGoogle Scholar
  52. 52.
    Ait-Salah A, Zaghib K, Mauger A, Gendron F, Julien CM (2006) Magnetic studies of the carbothermal effect on LiFePO4. Phys Status Solidi A 203:R1CrossRefGoogle Scholar
  53. 53.
    Zaghib K, Dontigny M, Charest P, Labrecque JF, Guerfi A, Kopec M, Mauger A, Gendron F, Julien CM (2008) Aging of LiFePO4 upon exposure to H2O. J Power Sources 185:698CrossRefGoogle Scholar
  54. 54.
    Manickam M, Singh P, Thurgate S, Prince KJ (2006) Redox behavior and surface characterization of LiFePO4 in lithium hydroxide electrolyte. J Power Sources 158:646CrossRefGoogle Scholar
  55. 55.
    Zaghib K (2003) BATT review meeting, BerkeleyGoogle Scholar
  56. 56.
    Porcher W, Moreau P, Lestriez B, Jouanneau S, Guyomard D (2008) Is LiFePO4 Stable in Water?: Toward Greener Li-Ion Batteries. Electrochem Solid State Lett 11:A4CrossRefGoogle Scholar
  57. 57.
    Zaghib K, Mauger A, Gendron F, Julien CM (2008) Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem Mater 20:462CrossRefGoogle Scholar
  58. 58.
    Liu HS, Zhang ZR, Gong ZL, Yang Y (2004) Origin of Deterioration for LiNiO2 Cathode Material during Storage in Air. Electrochem Solid State Lett 7:A190CrossRefGoogle Scholar
  59. 59.
    Zaghib K, Ravet N, Gauthier M, Gendron F, Mauger A, Goodenough JB, Julien CM (2006) Optimized electrochemical performance of LiFePO4 at 60°C with purity controlled by SQUID magnetometry. J Power Sources 163:560CrossRefGoogle Scholar
  60. 60.
    Zaghib K, Battaglia V, Charest P, Srinivasan V, Guerfi A, Kostecki R (2006) Extended abstract 35 of the IBA-HBC meeting, HawaiiGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • K. Zaghib
    • 1
  • A. Mauger
    • 2
  • J. B. Goodenough
    • 3
  • C. M. Julien
    • 4
  1. 1.Institut de Recherche d’Hydro-Québec (IREQ)VarennesCanada
  2. 2.Institut de Minéralogie et Physique de la Matière Condensée (IMPMC)Université Pierre et Marie Curie-Paris-6ParisFrance
  3. 3.The University of Texas at AustinAustinUSA
  4. 4.Physicochimie des Electrolytes, Colloïdes et Sciences Analytiques (PECSA)Université Pierre et Marie CurieParisFrance

Personalised recommendations