Skip to main content

Graphene-Based Composite Anodes for Lithium-Ion Batteries

  • Chapter
  • First Online:
Nanotechnology for Lithium-Ion Batteries

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Graphene has emerged as a novel, highly promising material with exceptional properties and potential application in a wide range of technologies. As an anode material for lithium-ion batteries, it was shown that it cannot be used in the pure form due to its large irreversible capacity but as part of a composite with other active materials. Transition metal oxides, silicon, and tin have been explored as active anode materials to replace graphite because of their high theoretical capacities. However, these materials have large volume changes during cycling that leads to the failure of the batteries. To resolve this problem, additives have been added to these materials to mitigate this volume change. In recent years, graphene has been employed as an encapsulating agent for these materials. In this chapter, an overview of the work exploring composites made of graphene as a novel support for nanoscale materials that react with lithium and provide high capacities will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  Google Scholar 

  2. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb Carbon: A Review of Graphene. Chem Rev 110:132–145

    CAS  Google Scholar 

  3. Ströck M (2006) WikimediaCommons. http://commons.wikimedia.org/wiki/File:Eight_Allotropes_of_Carbon.png

  4. Brodie BC (1859) On the atomic weight of graphite. Philos Trans Roy Soc Lond 149:249–259

    Google Scholar 

  5. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    CAS  Google Scholar 

  6. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    CAS  Google Scholar 

  7. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    CAS  Google Scholar 

  8. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    CAS  Google Scholar 

  9. Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsäure. Berichte der deutschen chemischen Gesellschaft 31:1481–1487

    Google Scholar 

  10. Takami N, Satoh A, Hara M, Ohsaki T (1995) Structural and kinetic characterization of lithium intercalation into carbon anodes for secondary lithium batteries. J Electrochem Soc 142:371–379

    CAS  Google Scholar 

  11. Funabiki A, Inaba M, Ogumi Z, Yuasa S-i, Otsuji J, Tasaka A (1998) Impedance study on the electrochemical lithium intercalation into natural graphite powder. J Electrochem Soc 145:172–178

    CAS  Google Scholar 

  12. Guo H-j, Li X-h, Zhang X-m, Wang H-q, Wang Z-x, Peng W-j (2007) Diffusion coefficient of lithium in artificial graphite, mesocarbon microbeads, and disordered carbon. New Carbon Mater 22:7–10

    CAS  Google Scholar 

  13. Paek S-M, Yoo E, Honma I (2009) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9:72–75

    CAS  Google Scholar 

  14. Xiang H, Zhang K, Ji G, Lee JY, Zou C, Chen X, Wu J (2011) Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability. Carbon 49:1787–1796

    CAS  Google Scholar 

  15. Fuhrer MS, Lau CN, MacDonald AH (2010) Graphene: materially better carbon. MRS Bull 35:289–295

    CAS  Google Scholar 

  16. Hu Y-S, Adelhelm P, Smarsly BM, Hore S, Antonietti M, Maier J (2007) Synthesis of hierarchically porous carbon monoliths with highly ordered microstructure and their application in rechargeable lithium batteries with high-rate capability. Adv Funct Mater 17:1873–1878

    CAS  Google Scholar 

  17. Wallace GG, Chen J, Li D, Moulton SE, Razal JM (2010) Nanostructured carbon electrodes. J Mater Chem 20:3553–3562

    CAS  Google Scholar 

  18. Landi BJ, Ganter MJ, Cress CD, DiLeo RA, Raffaelle RP (2009) Carbon nanotubes for lithium ion batteries. Energy Environ Sci 2:638–654

    CAS  Google Scholar 

  19. Dahn JR, Zheng T, Liu Y, Xue JS (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270:590–593

    CAS  Google Scholar 

  20. Liang M, Zhi L (2009) Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem 19:5871–5878

    CAS  Google Scholar 

  21. Kaskhedikar NA, Maier J (2009) Lithium storage in carbon nanostructures. Adv Mater 21:2664–2680

    CAS  Google Scholar 

  22. Guo P, Song H, Chen X (2009) Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries. Electrochem Commun 11:1320–1324

    CAS  Google Scholar 

  23. Wang C, Li D, Too CO, Wallace GG (2009) Electrochemical properties of graphene paper electrodes used in lithium batteries. Chem Mater 21:2604–2606

    CAS  Google Scholar 

  24. Abouimrane A, Compton OC, Amine K, Nguyen ST (2010) Non-annealed graphene paper as a binder-free anode for lithium-ion batteries. J Phys Chem C 114:12800–12804

    CAS  Google Scholar 

  25. Bhardwaj T, Antic A, Pavan B, Barone V, Fahlman BD (2010) Enhanced electrochemical lithium storage by graphene nanoribbons. J Am Chem Soc 132:12556–12558

    CAS  Google Scholar 

  26. Yoo E, Kim J, Hosono E, Zhou H-s, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277–2282

    CAS  Google Scholar 

  27. Yata S, Kinoshita H, Komori M, Ando N, Kashiwamura T, Harada T, Tanaka K, Yamabe T (1994) Structure and properties of deeply Li-doped polyacenic semiconductor materials beyond C6Li stage. Synth Met 62:153–158

    CAS  Google Scholar 

  28. Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 55:3909–3914

    CAS  Google Scholar 

  29. Wan L, Ren Z, Wang H, Wang G, Tong X, Gao S, Bai J (2011) Graphene nanosheets based on controlled exfoliation process for enhanced lithium storage in lithium-ion battery. Diamond Relat Mater 20:756–761

    CAS  Google Scholar 

  30. Shanmugharaj AM, Choi WS, Lee CW, Ryu SH (2011) Electrochemical performances of graphene nanosheets prepared through microwave radiation. J Power Sources 196:10249–10253

    CAS  Google Scholar 

  31. Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G (2010) High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat Mater 9:353–358

    CAS  Google Scholar 

  32. Derrien G, Hassoun J, Panero S, Scrosati B (2007) Nanostructured Sn-C Composite as an advanced anode material in high-performance lithium-ion batteries. Adv Mater 19:2336–2340

    CAS  Google Scholar 

  33. Kim H, Han B, Choo J, Cho J (2008) Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew Chem Int Ed 47:10151–10154

    CAS  Google Scholar 

  34. Zhang T, Fu L, Gao J, Yang L, Wu Y, Wu H (2006) Core-shell Si/C nanocomposite as anode material for lithium ion batteries. Pure Appl Chem 78:1889–1896

    CAS  Google Scholar 

  35. Nazri G-A, Pistoia G (2004) Lithium batteries: science and technology. Kluwer, Boston/Dordrecht/New York/London, p 708

    Google Scholar 

  36. Inoue H (2006) High capacity negative-electrode materials next to carbon; Nexelion. In: International meeting on lithium batteries, Biarritz

    Google Scholar 

  37. Kim H, Cho J (2008) Superior lithium electroactive mesoporous Si@Carbon core-shell nanowires for lithium battery anode material. Nano Lett 8:3688–3691

    CAS  Google Scholar 

  38. Park M-H, Kim MG, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J (2009) Silicon nanotube battery anodes. Nano Lett 9:3844–3847

    CAS  Google Scholar 

  39. Cui L-F, Yang Y, Hsu C-M, Cui Y (2009) Carbon − silicon core − shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett 9:3370–3374

    CAS  Google Scholar 

  40. Chan CK, Patel RN, O’Connell MJ, Korgel BA, Cui Y (2010) Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 4:1443–1450

    CAS  Google Scholar 

  41. Cui L-F, Ruffo R, Chan CK, Peng H, Cui Y (2009) Crystalline-amorphous core − shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett 9:491–495

    CAS  Google Scholar 

  42. Beattie SD, Larcher D, Morcrette M, Simon B, Tarascon JM (2008) Si electrodes for Li-ion batteries–-a new way to look at an old problem. J Electrochem Soc 155:A158–A163

    CAS  Google Scholar 

  43. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    CAS  Google Scholar 

  44. Fasolino A, Los JH, Katsnelson MI (2007) Intrinsic ripples in graphene. Nat Mater 6:858–861

    CAS  Google Scholar 

  45. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    CAS  Google Scholar 

  46. Larcher D, Beattie S, Morcrette M, Edstrom K, Jumas J-C, Tarascon J-M (2007) Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J Mater Chem 17:3759–3772

    CAS  Google Scholar 

  47. Obrovac MN, Christensen L (2004) Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid State Lett 7:A93–A96

    CAS  Google Scholar 

  48. CRC Handbook of Chemistry and Physics, 91st ed. CRC Press (2011–2012) http://www.hbcpnetbase.com. Accessed December 2011

  49. Li J, Christensen L, Obrovac MN, Hewitt KC, Dahn JR (2008) Effect of Heat Treatment on Si Electrodes Using Polyvinylidene Fluoride Binder. J Electrochem Soc 155:A234–A238

    CAS  Google Scholar 

  50. Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163:1003–1039

    CAS  Google Scholar 

  51. Balbuena PB, Wang Y (2004) Lithium-Ion Batteries: Solid-Electrolyte Interphase. Imperial College Press, London

    Google Scholar 

  52. Lee JK, Smith KB, Hayner CM, Kung HH (2010) Silicon nanoparticles-graphene paper composites for Li ion battery anodes. Chem Commun 46:2025–2027

    CAS  Google Scholar 

  53. Chou S-L, Wang J-Z, Choucair M, Liu H-K, Stride JA, Dou S-X (2010) Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochem Commun 12:303–306

    CAS  Google Scholar 

  54. Wang X-L, Han W-Q (2011) Graphene Enhances Li Storage Capacity of Porous Single-Crystalline Silicon Nanowires. ACS Appl Mater Interfaces 2:3709–3713

    Google Scholar 

  55. Tao H-C, Fan L-Z, Mei Y, Qu X (2011) Self-supporting Si/reduced graphene oxide nanocomposite films as anode for lithium ion batteries. Electrochem Commun 13(12):1332–1335

    CAS  Google Scholar 

  56. Choucair M, Thordarson P, Stride JA (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nano 4:30–33

    CAS  Google Scholar 

  57. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nano 3:31–35

    CAS  Google Scholar 

  58. Buqa H, Holzapfel M, Krumeich F, Veit C, Novák P (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources 161:617–622

    CAS  Google Scholar 

  59. Besenhard JO, Yang J, Winter M (1997) Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? J Power Sources 68:87–90

    CAS  Google Scholar 

  60. Brousse T, Crosnier O, Santos-Peña J, Sandu I, Fragnaud P, Schleich DM (2002) Recent progress in the development of tin-based negative electrodes for Li-ion batteries. In: Kumagai N, Komaba S (eds) Materials chemistry in lithium batteries. Research Signpost, Kerala

    Google Scholar 

  61. Wang Z, Zhang H, Li N, Shi Z, Gu Z, Cao G (2010) Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries. Nano Res 3:748–756

    CAS  Google Scholar 

  62. Courtney IA, Dahn JR (1997) Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. J Electrochem Soc 144:2045–2052

    CAS  Google Scholar 

  63. Du Z, Yin X, Zhang M, Hao Q, Wang Y, Wang T (2010) In situ synthesis of SnO2/graphene nanocomposite and their application as anode material for lithium ion battery. Mater Lett 64:2076–2079

    CAS  Google Scholar 

  64. Yao J, Shen X, Wang B, Liu H, Wang G (2009) In situ chemical synthesis of SnO2-graphene nanocomposite as anode materials for lithium-ion batteries. Electrochem Commun 11:1849–1852

    CAS  Google Scholar 

  65. Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S (2010) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48:255–259

    CAS  Google Scholar 

  66. Wang X, Zhou X, Yao K, Zhang J, Liu Z (2011) A SnO2/graphene composite as a high stability electrode for lithium ion batteries. Carbon 49:133–139

    CAS  Google Scholar 

  67. Liang S, Zhu X, Lian P, Yang W, Wang H (2011) Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries. J Solid State Chem 184:1400–1404

    CAS  Google Scholar 

  68. Zhao B, Zhang G, Song J, Jiang Y, Zhuang H, Liu P, Fang T (2011) Bivalent tin ion assisted reduction for preparing graphene/SnO2 composite with good cyclic performance and lithium storage capacity. Electrochim Acta 56:7340–7346

    CAS  Google Scholar 

  69. Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Reduced graphene oxide/tin oxide composite as an enhanced anode material for lithium ion batteries prepared by homogenous coprecipitation. J Power Sources 196:6473–6477

    CAS  Google Scholar 

  70. Chang K, Wang Z, Huang G, Li H, Chen W, Lee JY (2012) Few-layer SnS2/graphene hybrid with exceptional electrochemical performance as lithium-ion battery anode. J Power Sources 201:259–266

    CAS  Google Scholar 

  71. Wang G, Wang B, Wang X, Park J, Dou S, Ahn H, Kim K (2009) Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem 19:8378–8384

    CAS  Google Scholar 

  72. Chen S, Chen P, Wu M, Pan D, Wang Y (2010) Graphene supported Sn-Sb@carbon core-shell particles as a superior anode for lithium ion batteries. Electrochem Commun 12:1302–1306

    CAS  Google Scholar 

  73. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    CAS  Google Scholar 

  74. Banerjee B, Lahiry S (1983) Superparamagnetism in γ-Mn2O3–α-Fe2O3–α-Mn2O3 system. Phys Status Solidi 76:683–694

    CAS  Google Scholar 

  75. Li H, Richter G, Maier J (2003) Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv Mater 15:736–739

    CAS  Google Scholar 

  76. Dhaouadi H, Madani A, Touati F (2010) Synthesis and spectroscopic investigations of Mn3O4 nanoparticles. Mater Lett 64:2395–2398

    CAS  Google Scholar 

  77. Hu J, Li H, Huang X, Chen L (2006) Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries. Solid State Ion 177:2791–2799

    CAS  Google Scholar 

  78. Anisimov VI, Korotin MA, Kurmaev EZ (1990) Band-structure description of Mott insulators (NiO, MnO, FeO, CoO). J Phys Condens Matter 2:3973–3987

    CAS  Google Scholar 

  79. Wang H, Cui L-F, Yang Y, Sanchez Casalongue H, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980

    CAS  Google Scholar 

  80. Lavoie N, Malenfant PRL, Courtel FM, Abu-Lebdeh Y, Davidson IJ (2012) High gravimetric capacity and long cycle life in Mn3O4/graphene platelet/LiCMC composite lithium ion batteries anodes. J Power Sources 213:249–254

    Google Scholar 

  81. Xing L, Cui C, Ma C, Xue X (2011) Facile synthesis of α-MnO2/graphene nanocomposites and their high performance as lithium-ion battery anode. Mater Lett 65:2104–2106

    CAS  Google Scholar 

  82. Yu A, Park HW, Davies A, Higgins DC, Chen Z, Xiao X (2011) Free-standing layer-by-layer hybrid thin film of graphene-MnO2 nanotube as anode for lithium ion batteries. J Phys Chem Lett 2(15):1855–1860

    CAS  Google Scholar 

  83. Courtel FM, Duncan H, Abu-Lebdeh Y, Davidson IJ (2011) High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A = Co, Ni, and Zn). J Mater Chem 21:10206–10218

    CAS  Google Scholar 

  84. Fang X, Lu X, Guo X, Mao Y, Hu Y-S, Wang J, Wang Z, Wu F, Liu H, Chen L (2010) Electrode reactions of manganese oxides for secondary lithium batteries. Electrochem Commun 12:1520–1523

    CAS  Google Scholar 

  85. Gao J, Lowe MA, Abruna HD (2011) Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chem Mater 23:3223–3227

    CAS  Google Scholar 

  86. Zhu Y, Stoller MD, Cai W, Velamakanni A, Piner RD, Chen D, Ruoff RS (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4:1227–1233

    CAS  Google Scholar 

  87. Ban C, Wu Z, Gillaspie DT, Chen L, Yan Y, Blackburn JL, Dillon AC (2010) Nanostructured Fe3O4/SWNT electrode: binder-free and high-rate Li-ion anode. Adv Mater 22:E145–E149

    CAS  Google Scholar 

  88. Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338

    CAS  Google Scholar 

  89. Wang G, Liu T, Luo Y, Zhao Y, Ren Z, Bai J, Wang H (2011) Preparation of Fe2O3/graphene composite and its electrochemical performance as an anode material for lithium ion batteries. J Alloys Compd 509:L216–L220

    CAS  Google Scholar 

  90. Ji L, Tan Z, Kuykendall TR, Aloni S, Xun S, Lin E, Battaglia V, Zhang Y (2011) Fe3O4 nanoparticle-integrated graphene sheets for high-performance half and full lithium ion cells. Phys Chem Chem Phys 13:7170–7177

    CAS  Google Scholar 

  91. Wang J-Z, Zhong C, Wexler D, Idris NH, Wang Z-X, Chen L-Q, Liu H-K (2011) Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries. Chem Eur J 17:661–667

    CAS  Google Scholar 

  92. Lian P, Zhu X, Xiang H, Li Z, Yang W, Wang H (2010) Enhanced cycling performance of Fe3O4-graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:834–840

    CAS  Google Scholar 

  93. Zhang M, Lei D, Yin X, Chen L, Li Q, Wang Y, Wang T (2010) Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries. J Mater Chem 20:5538–5543

    CAS  Google Scholar 

  94. Zhou G, Wang D-W, Li F, Zhang L, Li N, Wu Z-S, Wen L, Lu GQ, Cheng H-M (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313

    CAS  Google Scholar 

  95. Wang G, Liu T, Xie X, Ren Z, Bai J, Wang H (2011) Structure and electrochemical performance of Fe3O4/graphene nanocomposite as anode material for lithium-ion batteries. Mater Chem Phys 128:336–340

    CAS  Google Scholar 

  96. Li Y, Tan B, Wu Y (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8:265–270

    CAS  Google Scholar 

  97. Yao W-L, Wang J-L, Yang J, Du G-D (2008) Novel carbon nanofiber-cobalt oxide composites for lithium storage with large capacity and high reversibility. J Power Sources 176:369–372

    CAS  Google Scholar 

  98. Wu Z-S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H-M (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4:3187–3194

    CAS  Google Scholar 

  99. Yang S, Cui G, Pang S, Cao Q, Kolb U, Feng X, Maier J, Müllen K (2010) Fabrication of cobalt and cobalt oxide/graphene composites: towards high-performance anode materials for lithium ion batteries. ChemSusChem 3:236–239

    CAS  Google Scholar 

  100. Li B, Cao H, Shao J, Li G, Qu M, Yin G (2011) Co3O4@graphene composites as anode materials for high-performance lithium ion batteries. Inorg Chem 50:1628–1632

    CAS  Google Scholar 

  101. Chen SQ, Wang Y (2010) Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J Mater Chem 20:9735–9739

    CAS  Google Scholar 

  102. Yang S, Feng X, Ivanovici S, Müllen K (2010) Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew Chem Int Ed 49:8408–8411

    CAS  Google Scholar 

  103. Kim H, Seo D-H, Kim S-W, Kim J, Kang K (2010) Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon 49:326–332

    Google Scholar 

  104. Zhu J, Sharma YK, Zeng Z, Zhang X, Srinivasan M, Mhaisalkar S, Zhang H, Hng HH, Yan Q (2011) Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. J Phys Chem C 115:8400–8406

    CAS  Google Scholar 

  105. Wang B, Wang Y, Park J, Ahn H, Wang G (2011) In situ synthesis of Co3O4/graphene nanocomposite material for lithium-ion batteries and supercapacitors with high capacity and supercapacitance. J Alloys Compd 509:7778–7783

    CAS  Google Scholar 

  106. Tao L, Zai J, Wang K, Zhang H, Xu M, Shen J, Su Y, Qian X (2012) Co3O4 nanorods/graphene nanosheets nanocomposites for lithium ion batteries with improved reversible capacity and cycle stability. J Power Sources 202:230–235

    Google Scholar 

  107. Zou Y, Wang Y (2011) NiO nanosheets grown on graphene nanosheets as superior anode materials for Li-ion batteries. Nanoscale 3:2615–2620

    CAS  Google Scholar 

  108. Wang B, Wu X-L, Shu C-Y, Guo Y-G, Wang C-R (2010) Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. J Mater Chem 20:10661–10664

    CAS  Google Scholar 

  109. Zhou J, Ma L, Song H, Wu B, Chen X (2011) Durable high-rate performance of CuO hollow nanoparticles/graphene-nanosheet composite anode material for lithium-ion batteries. Electrochem Commun 13(12):1357–1360

    CAS  Google Scholar 

  110. Mai YJ, Wang XL, Xiang JY, Qiao YQ, Zhang D, Gu CD, Tu JP (2011) CuO/graphene composite as anode materials for lithium-ion batteries. Electrochim Acta 56:2306–2311

    CAS  Google Scholar 

  111. Lu LQ, Wang Y (2012) Facile synthesis of graphene supported shuttle- and urchin-like CuO for high and fast Li-ion storage. Electrochem Commun 14(1):82–85

    Google Scholar 

  112. Hashimoto A, Suenaga K, Urita K, Shimada T, Sugai T, Bandow S, Shinohara H, Iijima S (2005) Atomic correlation between adjacent graphene layers in double-wall carbon nanotubes. Phys Rev Lett 94:045504

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Abu-Lebdeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lavoie, N., Courtel, F.M., Malenfant, P.R.L., Abu-Lebdeh, Y. (2012). Graphene-Based Composite Anodes for Lithium-Ion Batteries. In: Abu-Lebdeh, Y., Davidson, I. (eds) Nanotechnology for Lithium-Ion Batteries. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4605-7_6

Download citation

Publish with us

Policies and ethics