Skip to main content

Beyond Intercalation: Nanoscale-Enabled Conversion Anode Materials for Lithium-Ion Batteries

  • Chapter
  • First Online:
Nanotechnology for Lithium-Ion Batteries

Abstract

The use of transition metal oxides as anode materials in lithium-ion batteries offers great advantages over graphitic carbon due to their ability to deliver much higher specific capacities. The mechanism with which they electrochemically react with lithium was found to be peculiar and termed “conversion” to distinguish it from other mechanisms such as intercalation, insertion, and alloying. In this chapter, we have reviewed the behavior of a wide variety of transition metal oxides in lithium-ion batteries and the effect of structure/property relationship on their performance. It was found that a key enabler to the electrochemical reactivity of transition metal oxides is the nanosize effect and essentially the formation of nanoparticles and nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ravet N, Goodenough J, Besner S, Simoneau M, Hovington P, Armand M (1999) Improved iron based cathode material. In: Electrochemical society meeting abstracts, 99(2):Abstract #127

    Google Scholar 

  2. Huang H, Yin SC, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem Solid State Lett 4(10):A170–A172

    CAS  Google Scholar 

  3. Armand M, Gauthier M, Magnan J-F, Ravet N (2002) Method for synthesis of carbon-coated redox materials with controlled size. Patent number: WO 02/27823, PCT/CA01/01349

    Google Scholar 

  4. Yabuuchi N, Ohzuku T (2003) Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources 119–121:171–174

    Google Scholar 

  5. Belharouak I, Lu W, Vissers D, Amine K (2006) Safety characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2. Electrochem Commun 8(2):329–335

    CAS  Google Scholar 

  6. Weaving JS, Coowar F, Teagle DA, Cullen J, Dass V, Bindin P, Green R, Macklin WJ (2001) Development of high energy density Li-ion batteries based on LiNi1−x−yCoxAlyO2. J Power Sources 97–98:733–735

    Google Scholar 

  7. Primak W, Fuchs LH (1954) Electrical conductivities of natural graphite crystals. Phys Rev 95(1):22

    Google Scholar 

  8. Inoue H (2006) High capacity negative-electrode materials next to carbon; Nexelion. In: International meeting on lithium batteries, Biarritz

    Google Scholar 

  9. Mizutani S, Inoue H (2005) Negative active material and method for production thereof, non-aqueous electrolyte secondary cell using the same. Patent number: 2005-0208378

    Google Scholar 

  10. Kawakami S, Asao M (2005) Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery. Patent number: 6,949,312

    Google Scholar 

  11. Dahn JR, Mar RE, Abouzeid A (2006) Combinatorial study of Sn1−xCox (0 < x < 0.6) and [Sn0.55Co0.45]1−yCy (0 < y < 0.5) alloy negative electrode materials for Li-ion batteries. J Electrochem Soc 153(2):A361–A365

    CAS  Google Scholar 

  12. Hassoun J, Ochal P, Panero S, Mulas G, Bonatto Minella C, Scrosati B (2008) The effect of CoSn/CoSn2 phase ratio on the electrochemical behaviour of Sn40Co40C20 ternary alloy electrodes in lithium cells. J Power Sources 180(1):568–575

    CAS  Google Scholar 

  13. Hassoun J, Mulas G, Panero S, Scrosati B (2007) Ternary Sn-Co-C Li-ion battery electrode material prepared by high energy ball milling. Electrochem Commun 9(8):2075–2081

    CAS  Google Scholar 

  14. Ferguson PP, Todd ADW, Dahn JR (2008) Comparison of mechanically alloyed and sputtered tin-cobalt-carbon as an anode material for lithium-ion batteries. Electrochem Commun 10(1):25–31

    CAS  Google Scholar 

  15. Hassoun J, Panero S, Mulas G, Scrosati B (2007) An electrochemical investigation of a Sn-Co-C ternary alloy as a negative electrode in Li-ion batteries. J Power Sources 171(2):928–931

    CAS  Google Scholar 

  16. SonyCorporation (2011) Sony, the market for notebook PC; development of a tin-based amorphous anode, for high-capacity rechargeable lithium-ion battery 3.5Ah: the “Nexelion” (trans). Accessed January, 2012. Available from http://www.sony.co.jp/SonyInfo/News/Press/201107/11-078/

  17. Ohzuku T, Ueda A, Yamamoto N (1995) Zero-strain insertion material of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells. J Electrochem Soc 142(5):1431–1435

    CAS  Google Scholar 

  18. Amatucci GG, Badway F, Pasquier AD, Zheng T (2001) An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc 148(8):A930–A939

    CAS  Google Scholar 

  19. Thackeray MM, Goodenough JB (1985) Solid state cell wherein an anode, solid electrolyte and cathode each comprise a cubic-close-packed framework structure. Patent number: 4,504,371

    Google Scholar 

  20. Guerfi A, Sévigny S, Lagacé M, Hovington P, Kinoshita K, Zaghib K (2003) Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators. J Power Sources 119–121:88–94

    Google Scholar 

  21. Plitz I, DuPasquier A, Badway F, Gural J, Pereira N, Gmitter A, Amatucci GG (2006) The design of alternative nonaqueous high power chemistries. Appl Phys Mater Sci Process 82(4):615–626

    CAS  Google Scholar 

  22. Du Pasquier A (2008) Nanosized titanium oxides for energy storage and conversion. In: Eftekhari A (ed) Nanostructured materials in electrochemistry. Wiley-VCH, Weinheim, pp 387–408

    Google Scholar 

  23. Nazri G-A, Pistoia G (2004) Lithium batteries: science and technology. Kluwer, Boston, 708 pages

    Google Scholar 

  24. Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, Schleich DM (2001) Aluminum negative electrode in lithium ion batteries. J Power Sources 97–98:185–187

    Google Scholar 

  25. Rao BML, Francis RW, Christopher HA (1977) Lithium-aluminum electrode. J Electrochem Soc 124(10):1490–1492

    CAS  Google Scholar 

  26. Li J, Lewis RB, Dahn JR (2007) Sodium carboxymethyl cellulose. Electrochem Solid State Lett 10(2):A17–A20

    CAS  Google Scholar 

  27. Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039

    CAS  Google Scholar 

  28. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35

    CAS  Google Scholar 

  29. Yang J, Winter M, Besenhard JO (1996) Small particle size multiphase Li-alloy anodes for lithium-ion batteries. Solid State Ion 90(1–4):281–287

    CAS  Google Scholar 

  30. Derrien G, Hassoun J, Panero S, Scrosati B (2007) Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries. Adv Mater 19(17):2336–2340

    CAS  Google Scholar 

  31. Nara H, Fukuhara Y, Takai A, Komatsu M, Mukaibo H, Yamauchi Y, Momma T, Kuroda K, Osaka T (2008) Cycle and rate properties of mesoporous tin anode for lithium ion secondary batteries. Chem Lett 37(2):142–143

    CAS  Google Scholar 

  32. Balbuena PB, Wang Y (2004) Lithium-ion batteries: solid-electrolyte interphase. Imperial College Press, London

    Google Scholar 

  33. Li H, Huang X, Chen L, Wu Z, Liang Y (1999) A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem Solid State Lett 2(11):547–549

    CAS  Google Scholar 

  34. Beattie SD, Larcher D, Morcrette M, Simon B, Tarascon JM (2008) Si electrodes for Li-ion batteries – a new way to look at an old problem. J Electrochem Soc 155(2):A158–A163

    CAS  Google Scholar 

  35. Buqa H, Holzapfel M, Krumeich F, Veit C, Novák P (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources 161(1):617–622

    CAS  Google Scholar 

  36. Kovalenko I, Zdyrko B, Magasinski A, Hertzberg B, Milicev Z, Burtovyy R, Luzinov I, Yushin G (2011) A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334(6052):75–79

    CAS  Google Scholar 

  37. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    CAS  Google Scholar 

  38. Cabana J, Monconduit L, Larcher D, Palacín MR (2010) Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv Mater 22:E170–E192

    CAS  Google Scholar 

  39. Iijima T, Toyoguchi Y, Nishimura J, Ogawa H (1980) Button-type lithium battery using copper oxide as a cathode. J Power Sources 5(1):99–109

    CAS  Google Scholar 

  40. Novák P (1985) CuO cathode in lithium cells–II. Reduction mechanism of CuO. Electrochim Acta 30(12):1687–1692

    Google Scholar 

  41. Li T, Ai XP, Yang HX (2011) Reversible electrochemical conversion reaction of Li2O/CuO nanocomposites and their application as high-capacity cathode materials for Li-ion batteries. J Phys Chem C 115(13):6167–6174

    CAS  Google Scholar 

  42. Thackeray MM, Coetzer J (1981) A preliminary investigation of the electrochemical performance of α-Fe2O3 and Fe3O4 cathodes in high-temperature cells. Mater Res Bull 16(5):591–597

    CAS  Google Scholar 

  43. Brousse T, Crosnier O, Santos-Peña J, Sandu I, Fragnaud P, Schleich DM (2002) Recent progress in the development of tin-based negative electrodes for Li-ion batteries. In: Kumagai N, Komaba S (eds) Materials chemistry in lithium batteries. Research Signpost, Kerala

    Google Scholar 

  44. Li H, Huang X, Chen L (1999) Anodes based on oxide materials for lithium rechargeable batteries. Solid State Ion 123(1–4):189–197

    CAS  Google Scholar 

  45. Li H, Balaya P, Maier J (2004) Li-storage via heterogeneous reaction in selected binary metal fluorides and oxides. J Electrochem Soc 151(11):A1878–A1885

    CAS  Google Scholar 

  46. Jamnik J, Maier J (2003) Nanocrystallinity effects in lithium battery materials: aspects of nano-ionics. Part IV. Phys Chem Chem Phys 5(23):5215–5220

    CAS  Google Scholar 

  47. Thackeray MM (1997) Manganese oxides for lithium batteries. Prog Solid State Chem 25(1–2):1–71

    Google Scholar 

  48. Binotto G, Larcher D, Prakash AS, Herrera Urbina R, Hegde MS, Tarascon JM (2007) Synthesis, characterization, and Li-electrochemical performance of highly porous Co3O4 659 powders. Chem Mater 19(12):3032–3040

    Google Scholar 

  49. Larcher D, Sudant G, Leriche J-B, Chabre Y, Tarascon J-M (2002) The electrochemical reduction of Co3O4 in a lithium cell. J Electrochem Soc 149(3):A234–A241

    CAS  Google Scholar 

  50. Fang X, Lu X, Guo X, Mao Y, Hu Y-S, Wang J, Wang Z, Wu F, Liu H, Chen L (2010) Electrode reactions of manganese oxides for secondary lithium batteries. Electrochem Commun 12(11):1520–1523

    CAS  Google Scholar 

  51. Debart A, Dupont L, Poizot P, Leriche J-B, Tarascon JM (2001) A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium. J Electrochem Soc 148(11):A1266–A1274

    CAS  Google Scholar 

  52. Débart A, Dupont L, Patrice R, Tarascon JM (2006) Reactivity of transition metal (Co, Ni, Cu) sulphides versus lithium: the intriguing case of the copper sulphide. Solid State Sci 8(6):640–651

    Google Scholar 

  53. Crosnier O, Nazar LF (2004) Facile reversible displacement reaction of Cu3P with lithium at low potential. Electrochem Solid State Lett 7(7):A187–A189

    CAS  Google Scholar 

  54. Boyanov S, Gillot F, Monconduit L (2008) The electrochemical reactivity of the NiP3 skutterudite-type phase with lithium. Ionics 14(2):125–130

    CAS  Google Scholar 

  55. Larcher D, Masquelier C, Bonnin D, Chabre Y, Masson V, Leriche J-B, Tarascon J-M (2003) Effect of particle size on lithium intercalation into α-Fe2O3. J Electrochem Soc 150(1):A133–A139

    CAS  Google Scholar 

  56. Boyanov S, Bernardi J, Gillot F, Dupont L, Womes M, Tarascon JM, Monconduit L, Doublet ML (2006) FeP: another attractive anode for the Li-ion battery enlisting a reversible two-step insertion/conversion process. Chem Mater 18(15):3531–3538

    CAS  Google Scholar 

  57. Zhang W-M, Wu X-L, Hu J-S, Guo Y-G, Wan L-J (2008) Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv Funct Mater 18(24):3941–3946

    CAS  Google Scholar 

  58. Dupont L, Laruelle S, Grugeon S, Dickinson C, Zhou W, Tarascon JM (2008) Mesoporous Cr2O3 as negative electrode in lithium batteries: TEM study of the texture effect on the polymeric layer formation. J Power Sources 175(1):502–509

    CAS  Google Scholar 

  59. Li H, Richter G, Maier J (2003) Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv Mater 15(9):736–739

    CAS  Google Scholar 

  60. Hu J, Li H, Huang X (2005) Cr2O3-based anode materials for Li-ion batteries. Electrochem Solid State Lett 8(1):A66–A69

    CAS  Google Scholar 

  61. Sun B, Chen Z, Kim H-S, Ahn H, Wang G (2010) MnO/C core-shell nanorods as high capacity anode materials for lithium-ion batteries. J Power Sources 196(6):3346–3349

    Google Scholar 

  62. Liu J, Li Y, Fan H, Zhu Z, Jiang J, Ding R, Hu Y, Huang X (2010) Iron oxide-based nanotube arrays derived from sacrificial template-accelerated hydrolysis: large-area design and reversible lithium storage. Chem Mater 22(1):212–217

    CAS  Google Scholar 

  63. Wang G, Liu T, Xie X, Ren Z, Bai J, Wang H (2011) Structure and electrochemical performance of Fe3O4/graphene nanocomposite as anode material for lithium-ion batteries. Mater Chem Phys 128(3):336–340

    CAS  Google Scholar 

  64. Varghese B, Reddy MV, Yanwu Z, Lit CS, Hoong TC, Subba Rao GV, Chowdari BVR, Wee ATS, Lim CT, Sow C-H (2008) Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem Mater 20(10):3360–3367

    CAS  Google Scholar 

  65. Park JC, Kim J, Kwon H, Song H (2009) Gram-scale synthesis of Cu2O nanocubes and subsequent oxidation to CuO hollow nanostructures for lithium-ion battery anode materials. Adv Mater 21(7):803–807

    CAS  Google Scholar 

  66. Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY (2004) Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J Phys Chem B 108(18):5547–5551

    CAS  Google Scholar 

  67. Xiang J, Tu J, Huang X, Yang Y (2008) A comparison of anodically grown CuO nanotube film and Cu2O film as anodes for lithium ion batteries. J Solid State Electrochem 12(7):941–945

    CAS  Google Scholar 

  68. Xiang JY, Tu JP, Yuan YF, Huang XH, Zhou Y, Zhang L (2009) Improved electrochemical performances of core-shell Cu2O/Cu composite prepared by a simple one-step method. Electrochem Commun 11(2):262–265

    CAS  Google Scholar 

  69. Liu J, Li Y, Ding R, Jiang J, Hu Y, Ji X, Chi Q, Zhu Z, Huang X (2009) Carbon/ZnO nanorod array electrode with significantly improved lithium storage capability. J Phys Chem C 113(13):5336–5339

    CAS  Google Scholar 

  70. Lee J-H, Hon M-H, Chung Y-W, Leu I-C (2010) The effect of TiO2 coating on the electrochemical performance of ZnO nanorod as the anode material for lithium-ion battery. Appl Phys A Mater Sci Process 102(3):545–550

    Google Scholar 

  71. Hu J, Li H, Huang X, Chen L (2006) Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries. Solid State Ion 177(26–32):2791–2799

    CAS  Google Scholar 

  72. Balaya P, Li H, Kienle L, Maier J (2003) Fully reversible homogeneous and heterogeneous Li storage in RuO2 with high capacity. Adv Funct Mater 13:621–625

    CAS  Google Scholar 

  73. Courtel FM, Duncan H, Abu-Lebdeh Y, Davidson IJ (2011) High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A = Co, Ni, and Zn). J Mater Chem 21(27):10206–10218

    CAS  Google Scholar 

  74. Yuan Z, Huang F, Feng C, Sun J, Zhou Y (2003) Synthesis and electrochemical performance of nanosized Co3O4. Mater Chem Phys 79(1):1–4

    CAS  Google Scholar 

  75. Oh SW, Bang HJ, Bae YC, Sun Y-K (2007) Effect of calcination temperature on morphology, crystallinity and electrochemical properties of nano-crystalline metal oxides (Co3O4, CuO, and NiO) prepared via ultrasonic spray pyrolysis. J Power Sources 173(1):502–509

    CAS  Google Scholar 

  76. Maier J (2007) Mass storage in space charge regions of nano-sized systems (nano-ionics. Part V). Faraday Discuss 134:51–56

    CAS  Google Scholar 

  77. Balaya P, Bhattacharyya AJ, Jamnik J, Zhukovskii YF, Kotomin EA, Maier J (2006) Nano-ionics in the context of lithium batteries. J Power Sources 159(1):171–178

    CAS  Google Scholar 

  78. Dupont L, Grugeon S, Laruelle S, Tarascon JM (2007) Structure, texture and reactivity versus lithium of chromium-based oxides films as revealed by TEM investigations. J Power Sources 164(2):839–848

    CAS  Google Scholar 

  79. Anisimov VI, Korotin MA, Kurmaev EZ (1990) Band-structure description of Mott insulators (NiO, MnO, FeO, CoO). J Phys Condens Matter 2(17):3973–3987

    CAS  Google Scholar 

  80. Jiang L-Y, Xin S, Wu X-L, Li H, Guo Y-G, Wan L-J (2010) Non-sacrificial template synthesis of Cr2O3-C hierarchical core/shell nanospheres and their application as anode materials in lithium-ion batteries. J Mater Chem 20(35):7565–7569

    CAS  Google Scholar 

  81. Grugeon S, Laruelle S, Dupont L, Chevallier F, Taberna PL, Simon P, Gireaud L, Lascaud S, Vidal E, Yrieix B, Tarascon M (2005) Combining electrochemistry and metallurgy for new electrode designs in Li-ion batteries. Chem Mater 17(20):5041–5047

    CAS  Google Scholar 

  82. Liu X, Yasuda H, Yamachi M (2005) Solid solution of nickel oxide and manganese oxide as negative active material for lithium secondary cells. J Power Sources 146(1–2):510–515

    CAS  Google Scholar 

  83. Cai Y, Liu S, Yin X, Hao Q, Zhang M, Wang T (2010) Facile preparation of porous one-dimensional Mn2O3 nanostructures and their application as anode materials for lithium-ion batteries. Physica E 43(1):70–75

    CAS  Google Scholar 

  84. Gao J, Lowe MA, Abruna HD (2011) Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chem Mater 23(13):3223–3227

    CAS  Google Scholar 

  85. Wang H, Cui L-F, Yang Y, Sanchez Casalongue H, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132(40):13978–13980

    CAS  Google Scholar 

  86. Yu XQ, He Y, Sun JP, Tang K, Li H, Chen LQ, Huang XJ (2009) Nanocrystalline MnO thin film anode for lithium ion batteries with low overpotential. Electrochem Commun 11(4):791–794

    CAS  Google Scholar 

  87. Zhong K, Xia X, Zhang B, Li H, Wang Z, Chen L (2010) MnO powder as anode active materials for lithium ion batteries. J Power Sources 195(10):3300–3308

    CAS  Google Scholar 

  88. Zhong K, Zhang B, Luo S, Wen W, Li H, Huang X, Chen L (2010) Investigation on porous MnO microsphere anode for lithium ion batteries. J Power Sources 196(16):6802–6808

    Google Scholar 

  89. Liu J, Pan Q (2010) MnO/C nanocomposites as high capacity anode materials for Li-ion batteries. Electrochem Solid State Lett 13(10):A139–A142

    CAS  Google Scholar 

  90. Ren Y, Armstrong AR, Jiao F, Bruce PG (2010) Influence of size on the rate of mesoporous electrodes for lithium batteries. J Am Chem Soc 132(3):996–1004

    CAS  Google Scholar 

  91. Zhong K, Xia X, Zhang B, Li H, Wang Z, Chen L (2010) MnO powder as anode active materials for lithium ion batteries. J Power Sources 195(10):3300–3308

    CAS  Google Scholar 

  92. Thackeray MM, David WIF, Goodenough JB (1982) Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0 < x < 2). Mater Res Bull 17(6):785–793

    CAS  Google Scholar 

  93. Ban C, Wu Z, Gillaspie DT, Chen L, Yan Y, Blackburn JL, Dillon AC (2010) Nanostructured Fe3O4/SWNT electrode: binder-free and high-rate Li-ion anode. Adv Mater 22(20):E145–E149

    CAS  Google Scholar 

  94. Song Y, Qin S, Zhang Y, Gao W, Liu J (2010) Large-scale porous hematite nanorod arrays: direct growth on titanium foil and reversible lithium storage. J Phys Chem C 114(49):21158–21164

    CAS  Google Scholar 

  95. Tartaj P, Amarilla JM (2011) Iron oxide porous nanorods with different textural properties and surface composition: preparation, characterization and electrochemical lithium storage capabilities. J Power Sources 196(4):2164–2170

    CAS  Google Scholar 

  96. Chun L, Wu X, Lou X, Zhang Y (2010) Hematite nanoflakes as anode electrode materials for rechargeable lithium-ion batteries. Electrochim Acta 55(9):3089–3092

    CAS  Google Scholar 

  97. Muraliganth T, Vadivel Murugan A, Manthiram A (2009) Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries. Chem Commun 47:7360–7362

    Google Scholar 

  98. Zhou G, Wang D-W, Li F, Zhang L, Li N, Wu Z-S, Wen L, Lu GQ, Cheng H-M (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22(18):5306–5313

    CAS  Google Scholar 

  99. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    CAS  Google Scholar 

  100. Badway F, Plitz I, Grugeon S, Laruelle S, Dolle M, Gozdz AS, Tarascon JM (2002) Metal oxides as negative electrode materials in Li-ion cells. Electrochem Solid State Lett 5(6):A115–A118

    CAS  Google Scholar 

  101. Li Y, Tan B, Wu Y (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8(1):265–270

    CAS  Google Scholar 

  102. Du N, Zhang H, Chen BD, Wu JB, Ma XY, Liu ZH, Zhang YQ, Yang DR, Huang XH, Tu JP (2007) Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: a highly efficient material for Li-battery applications. Adv Mater 19(24):4505–4509

    CAS  Google Scholar 

  103. Lou XW, Deng D, Lee JY, Archer LA (2008) Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J Mater Chem 18(37):4397–4401

    CAS  Google Scholar 

  104. Wang X, Wu X-L, Guo Y-G, Zhong Y, Cao X, Ma Y, Yao J (2010) Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv Funct Mater 20(10):1680–1686

    CAS  Google Scholar 

  105. Jiang J, Liu J, Ding R, Ji X, Hu Y, Li X, Hu A, Wu F, Zhu Z, Huang X (2009) Direct synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes. J Phys Chem C 114(2):929–932

    Google Scholar 

  106. Wang J, Du G, Zeng R, Niu B, Chen Z, Guo Z, Dou S (2010) Porous Co3O4 nanoplatelets by self-supported formation as electrode material for lithium-ion batteries. Electrochim Acta 55(16):4805–4811

    CAS  Google Scholar 

  107. Wu Z-S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H-M (2010) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6):3187–3194

    CAS  Google Scholar 

  108. Wang Y, Qin Q-Z (2002) A nanocrystalline NiO thin-film electrode prepared by pulsed laser ablation for Li-ion batteries. J Electrochem Soc 149(7):A873–A878

    CAS  Google Scholar 

  109. Hosono E, Fujihara S, Honma I, Zhou H (2006) The high power and high energy densities Li ion storage device by nanocrystalline and mesoporous Ni/NiO covered structure. Electrochem Commun 8(2):284–288

    CAS  Google Scholar 

  110. Needham SA, Wang GX, Liu HK (2006) Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J Power Sources 159(1):254–257

    CAS  Google Scholar 

  111. Wang H, Pan Q, Wang X, Yin G, Zhao J (2009) Improving electrochemical performance of NiO films by electrodeposition on foam nickel substrates. J Appl Electrochem 39(9):1597–1602

    CAS  Google Scholar 

  112. Liu L, Li Y, Yuan S, Ge M, Ren M, Sun C, Zhou Z (2009) Nanosheet-based NiO microspheres: controlled solvothermal synthesis and lithium storage performances. J Phys Chem C 114(1):251–255

    Google Scholar 

  113. Nuli Y-N, Zhao S-L, Qin Q-Z (2003) Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries. J Power Sources 114(1):113–120

    CAS  Google Scholar 

  114. Pan Q, Liu J (2009) Facile fabrication of porous NiO films for lithium-ion batteries with high reversibility and rate capability. J Solid State Electrochem 13(10):1591–1597

    CAS  Google Scholar 

  115. Cheng M-Y, Hwang B-J (2010) Mesoporous carbon-encapsulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery. J Power Sources 195(15):4977–4983

    CAS  Google Scholar 

  116. Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon J-M (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148(4):A285–A292

    CAS  Google Scholar 

  117. Chen LB, Lu N, Xu CM, Yu HC, Wang TH (2009) Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries. Electrochim Acta 54(17):4198–4201

    CAS  Google Scholar 

  118. Ke F-S, Huang L, Wei G-Z, Xue L-J, Li J-T, Zhang B, Chen S-R, Fan X-Y, Sun S-G (2009) One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochim Acta 54(24):5825–5829

    CAS  Google Scholar 

  119. Wang H, Pan Q, Cheng Y, Zhao J, Yin G (2009) Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochim Acta 54(10):2851–2855

    CAS  Google Scholar 

  120. Dey AN (1971) Electrochemical alloying of lithium in organic electrolytes. J Electrochem Soc 118(10):1547–1549

    CAS  Google Scholar 

  121. Xiao L, Yang Y, Yin J, Li Q, Zhang L (2009) Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. J Power Sources 194(2):1089–1093

    CAS  Google Scholar 

  122. Wang J, King P, Huggins RA (1986) Investigations of binary lithium-zinc, lithium-cadmium and lithium-lead alloys as negative electrodes in organic solvent-based electrolyte. Solid State Ion 20(3):185–189

    CAS  Google Scholar 

  123. Zhang CQ, Tu JP, Yuan YF, Huang XH, Chen XT, Mao F (2007) Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries. J Electrochem Soc 154(2):A65–A69

    CAS  Google Scholar 

  124. Lavela P, Tirado JL, Vidal-Abarca C (2007) Sol-gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells. Electrochim Acta 52(28):7986–7995

    CAS  Google Scholar 

  125. Lavela P, Ortiz GF, Tirado JL, Zhecheva E, Stoyanova R, Ivanova S (2007) High-performance transition metal mixed oxides in conversion electrodes: a combined spectroscopic and electrochemical study. J Phys Chem C 111(38):14238–14246

    CAS  Google Scholar 

  126. Sharma Y, Sharma N, Subba Rao GV, Chowdari BVR (2007) Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv Funct Mater 17(15):2855–2861

    CAS  Google Scholar 

  127. Pasero D, Reeves N, West AR (2005) Co-doped Mn3O4: a possible anode material for lithium batteries. J Power Sources 141(1):156–158

    CAS  Google Scholar 

  128. Xiao L, Yang Y, Yin J, Li Q, Zhang L (2009) Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage. J Power Sources 194(2):1089–1093

    CAS  Google Scholar 

  129. Yang Y, Zhao Y, Xiao L, Zhang L (2008) Nanocrystalline ZnMn2O4 as a novel lithium-storage material. Electrochem Commun 10(8):1117–1120

    CAS  Google Scholar 

  130. Deng Y, Tang S, Zhang Q, Shi Z, Zhang L, Zhan S, Chen G (2011) Controllable synthesis of spinel nano-ZnMn2O4 via a single source precursor route and its high capacity retention as anode material for lithium ion batteries. J Mater Chem 21(32):11987–11995

    CAS  Google Scholar 

  131. Lavela P, Tirado JL (2007) CoFe2O4 and NiFe2O4 synthesized by sol-gel procedures for their use as anode materials for Li ion batteries. J Power Sources 172(1):379–387

    CAS  Google Scholar 

  132. Chu Y-Q, Fu Z-W, Qin Q-Z (2004) Cobalt ferrite thin films as anode material for lithium ion batteries. Electrochim Acta 49(27):4915–4921

    CAS  Google Scholar 

  133. Alcántara R, Jaraba M, Lavela P, Tirado JL, Jumas JC, Olivier-Fourcade J (2003) Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe2O4. Electrochem Commun 5(1):16–21

    Google Scholar 

  134. Bomio M, Lavela P, Tirado JL (2007) Fe Mössbauer spectroscopy and electron microscopy study of metal extraction from CuFe2O4 electrodes in lithium cells. Chemphyschem 8:1999–2007

    CAS  Google Scholar 

  135. Sharma Y, Sharma N, Rao GVS, Chowdari BVR (2008) Li-storage and cyclability of urea combustion derived ZnFe2O4 as anode for Li-ion batteries. Electrochim Acta 53(5):2380–2385

    CAS  Google Scholar 

  136. Sharma Y, Sharma N, Subba Rao GV, Chowdari BVR (2008) Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ion 179(15–16):587–597

    CAS  Google Scholar 

  137. NuLi Y, Zhang P, Guo Z, Liu H, Yang J (2008) NiCo2O4/C nanocomposite as a highly reversible anode material for lithium-ion batteries. Electrochem Solid State Lett 11(5):A64–A67

    CAS  Google Scholar 

  138. Sharma Y, Sharma N, Rao GVS, Chowdari BVR (2007) Lithium recycling behaviour of nano-phase-CuCo2O4 as anode for lithium-ion batteries. J Power Sources 173(1):495–501

    CAS  Google Scholar 

  139. Qiu Y, Yang S, Deng H, Jin L, Li W (2010) A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. J Mater Chem 20(21):4439–4444

    CAS  Google Scholar 

  140. Du N, Xu Y, Zhang H, Yu J, Zhai C, Yang D (2011) Porous ZnCo2O4 nanowires synthesis via sacrificial templates: high-performance anode materials of Li-ion batteries. Inorg Chem 50(8):3320–3324

    CAS  Google Scholar 

  141. Plitz I, Badway F, Al-Sharab J, DuPasquier A, Cosandey F, Amatucci GG (2005) Structure and electrochemistry of carbon-metal fluoride nanocomposites fabricated by solid-state redox conversion reaction. J Electrochem Soc 152(2):A307–A315

    CAS  Google Scholar 

  142. Gabano JP, Dechenaux V, Gerbier G, Jammet J (1972) D-size lithium cupric sulfide cells. J Electrochem Soc 119(4):459–461

    CAS  Google Scholar 

  143. Whittingham MS (1978) Chemistry of intercalation compounds: metal guests in chalcogenide hosts. Prog Solid State Chem 12(1):41–99

    CAS  Google Scholar 

  144. Henriksen GL, Jansen AN (2002) Lithium batteries. In: Linden D, Reddy TB (eds) Handbook of batteries. McGraw-Hill, New York

    Google Scholar 

  145. Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22(3):691–714

    CAS  Google Scholar 

  146. Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500–506

    CAS  Google Scholar 

  147. Han S-C, Kim K-W, Ahn H-J, Ahn J-H, Lee J-Y (2003) Charge-discharge mechanism of mechanically alloyed NiS used as a cathode in rechargeable lithium batteries. J Alloys Compd 361(1–2):247–251

    CAS  Google Scholar 

  148. Fu Z-W, Wang Y, Yue X-L, Zhao S-L, Qin Q-Z (2004) Electrochemical reactions of lithium with transition metal nitride electrodes. J Phys Chem B 108(7):2236–2244

    CAS  Google Scholar 

  149. Huggins RA (2002) Alternative materials for negative electrodes in lithium systems. Solid State Ion 152–153:61–68

    Google Scholar 

  150. Das B, Reddy MV, Malar P, Osipowicz T, Subba Rao GV, Chowdari BVR (2009) Nanoflake CoN as a high capacity anode for Li-ion batteries. Solid State Ion 180(17–19):1061–1068

    CAS  Google Scholar 

  151. Gillot F, Monconduit L, Doublet ML (2005) Electrochemical behaviors of binary and ternary manganese phosphides. Chem Mater 17(23):5817–5823

    CAS  Google Scholar 

  152. Gillot F, Boyanov S, Dupont L, Doublet ML, Morcrette M, Monconduit L, Tarascon JM (2005) Electrochemical reactivity and design of NiP2 negative electrodes for secondary Li-ion batteries. Chem Mater 17(25):6327–6337

    CAS  Google Scholar 

  153. Silva DCC, Crosnier O, Ouvrard G, Greedan J, Safa-Sefat A, Nazar LF (2003) Reversible lithium uptake by FeP2. Electrochem Solid State Lett 6(8):A162–A165

    CAS  Google Scholar 

  154. Zhang Z, Yang J, Nuli Y, Wang B, Xu J (2005) CoPx synthesis and lithiation by ball-milling for anode materials of lithium ion cells. Solid State Ion 176(7–8):693–697

    CAS  Google Scholar 

  155. Pralong V, Souza DCS, Leung KT, Nazar LF (2002) Reversible lithium uptake by CoP3 at low potential: role of the anion. Electrochem Commun 4(6):516–520

    CAS  Google Scholar 

  156. Sun Q, Fu Z-W (2007) An anode material of CrN for lithium-ion batteries. Electrochem Solid State Lett 10(8):A189–A193

    CAS  Google Scholar 

  157. Zhang N, Yi R, Wang Z, Shi R, Wang H, Qiu G, Liu X (2008) Hydrothermal synthesis and electrochemical properties of alpha-manganese sulfide submicrocrystals as an attractive electrode material for lithium-ion batteries. Mater Chem Phys 111(1):13–16

    CAS  Google Scholar 

  158. Montoro LA, Rosolen JM (2003) Gelatin/DMSO: a new approach to enhancing the performance of a pyrite electrode in a lithium battery. Solid State Ion 159(3–4):233–240

    CAS  Google Scholar 

  159. Yan JM, Huang HZ, Zhang J, Liu ZJ, Yang Y (2005) A study of novel anode material CoS2 for lithium ion battery. J Power Sources 146(1–2):264–269

    CAS  Google Scholar 

  160. Takeuchi T, Sakaebe H, Kageyama H, Sakai T, Tatsumi K (2008) Preparation of NiS2 using spark-plasma-sintering process and its electrochemical properties. J Electrochem Soc 155(9):A679–A684

    CAS  Google Scholar 

  161. Wang Y, Fu Z-W, Yue X-L, Qin Q-Z (2004) Electrochemical reactivity mechanism of Ni3N with lithium. J Electrochem Soc 151(4):E162–E167

    CAS  Google Scholar 

  162. Pereira N, Dupont L, Tarascon JM, Klein LC, Amatucci GG (2003) Electrochemistry of Cu3N with lithium. J Electrochem Soc 150(9):A1273–A1280

    CAS  Google Scholar 

  163. Wang K, Yang J, Xie J, Wang B, Wen Z (2003) Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ballmilling. Electrochem Commun 5(6):480–483

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Abu-Lebdeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Courtel, F.M., Duncan, H., Abu-Lebdeh, Y. (2012). Beyond Intercalation: Nanoscale-Enabled Conversion Anode Materials for Lithium-Ion Batteries. In: Abu-Lebdeh, Y., Davidson, I. (eds) Nanotechnology for Lithium-Ion Batteries. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-4605-7_5

Download citation

Publish with us

Policies and ethics