Skip to main content

Interface Circuits for MEMS Microphones

  • Chapter
  • First Online:
Nyquist AD Converters, Sensor Interfaces, and Robustness

Abstract

This paper presents an overview of interface circuits for capacitive MEMS microphones. The interface circuits and the building blocks are analyzed in detail, highlighting the most important design issues and trade-offs. Moreover, two design examples are reported, including circuit details and experimental results. The first example is based on a conventional constant-charge approach, while the second introduces the force-feedback concept. Both examples are implemented in a 0.35-μm CMOS technology and achieve a signal-to-noise and distortion ratio larger than 60 dB with a power consumption of about 1 mW from a 3.3-V power supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hsu YC, Chen JY, Wang CH, Liao LP, Chou WC, Wu CY, Mukherjee T (2008) Issues in path toward integrated acoustic sensor system on chip. In: Proceedings of IEEE Sensors. IEEE, Piscataway, pp 585–588

    Google Scholar 

  2. Malcovati P, Maloberti F (2005) Interface circuitry and microsystems. In: Korvink J, Paul O (eds) MEMS: a practical guide to design, analysis and applications. Springer, Dordrecht, pp 901–942

    Google Scholar 

  3. Bajdechi O, Huijsing JH (2002) A 1.8-V ΔΣ modulator interface for an electret microphone with on-chip reference. IEEE J Solid-State Circuits 37:279–285

    Article  Google Scholar 

  4. Chiang CT, Huang YC (2009) A 14-bit oversampled delta-sigma modulator for silicon condenser microphones. In: Proceedings of IEEE IMTC. IEEE, Piscataway, pp 1055–1058

    Google Scholar 

  5. Pernici S, Stevenazzi F, Nicollini G (2004) Fully integrated voiceband codec in a standard digital CMOS technology. IEEE J Solid-State Circuits 39:1331–1334

    Article  Google Scholar 

  6. van der Zwan EJ, Dijkmans EC (1996) A 0.2-mW CMOS ΣΔ modulator for speech coding with 80 dB dynamic range. IEEE J Solid-State Circuits 31:1873–1880

    Article  Google Scholar 

  7. Zare-Hoseini H, Kale I, Richard CSM (2010) A low-power continuous-time ΔΣ modulator for electret microphone applications. In: Proceedings of IEEE ASSCC. IEEE, Piscataway, pp 1–4

    Google Scholar 

  8. Jawed SA (2009) CMOS readout interfaces for MEMS capacitive microphones. Ph.D. dissertation, University of Trento

    Google Scholar 

  9. Jawed SA, Cattin D, Gottardi M, Massari N, Baschirotto A, Simoni A (2008) A 828-μW 1.8-V 80-dB dynamic-range readout interface for a MEMS capacitive microphone. In: Proceedings of ESSCIRC. IEEE, Piscataway, pp 442–445

    Google Scholar 

  10. Jawed SA, Cattin D, Massari N, Gottardi M, Baschirotto A (2008) A MEMS microphone interface with force-balancing and charge-control. In: Proceedings of IEEE PRIME. IEEE, Piscataway, pp 97–100

    Google Scholar 

  11. Jawed SA, Nielsen JH, Gottardi M, Baschirotto A, Bruun E (2009) A multifunction low-power preamplifier for MEMS capacitive microphones. In: Proceedings of ESSCIRC. IEEE, Piscataway, pp 292–295

    Google Scholar 

  12. Picolli L, Grassi M, Rosson L, Malcovati P, Fornasari A (2009) A 1.0-mW, 71-dB SNDR, − 1. 8-dBFS input swing, fourth-order sigma-delta interface circuit for MEMS microphones. In: Proceedings of ESSCIRC. IEEE, Piscataway, pp 324–327

    Google Scholar 

  13. Picolli L, Grassi M, Fornasari A, Malcovati P (2011) A 1.0-mW, 71-dB SNDR, fourth-order ΣΔ iinterface circuit for MEMS microphones. Analog Integr Circuits Signal Process 66:223–233

    Article  Google Scholar 

  14. Le HB, Lee SG, Ryu ST (2010) A regulator-free 84-dB DR audio-band ADC for compact digital microphones. In: Proceedings of IEEE ASSCC. IEEE, Piscataway, pp 1–4

    Google Scholar 

  15. Citakovic J, Hovesten PF, Rocca G, van Halteren A, Rombach P, Stenberg LJ, Andreani P, Bruun E (2009) A compact CMOS MEMS microphone with 66-dB SNR. In: IEEE ISSCC digest of technical papers. IEEE, Piscataway, pp 350–351

    Google Scholar 

  16. Je SS, Kim JH, Kozicki MN, Chae JS (2009) A directional capacitive MEMS microphone using nano-electrodeposits. In: Proceedings of IEEE MEMS. IEEE, Piscataway, pp 96–99

    Google Scholar 

  17. Weigold JW, Brosnihan TJ, Bergeron J, Zhang X (2006) A MEMS condenser microphone for consumer applications. In: Proceedings of IEEE MEMS. IEEE, Piscataway, pp 86–89

    Google Scholar 

  18. Deligoz I, Naqvi SR, Copani T, Kiaei S, Bakkaloglu B, Je SS, Chae JS (2011) A MEMS-based power-scalable hearing aid analog front-end. IEEE Trans Biomed Circuits Syst 5(3):201–213

    Article  Google Scholar 

  19. Scheeper PR, van der Donk AGH, Olthuis W, Bergveld P (1994) A review of silicon microphones. Sens Actuators A 44(1):1–11

    Article  Google Scholar 

  20. Bergqvist J, Gobet J (1994) Capacitive microphone with a surface micromachined backplate using electroplating technology. J Microelectromech Syst 3(2):69–75

    Article  Google Scholar 

  21. Kasai T, Sato S, Conti S, Padovani I, David F, Uchida Y, Takahashi T, Nishio H (2011) Novel concept for a MEMS microphone with dual channels for an ultrawide dynamic range. In: Proceedings of IEEE MEMS. IEEE, Piscataway, pp 605–608

    Google Scholar 

  22. Leinenbach C, van Teeffelen K, Laermer F, Seidel H (2010) A new capacitive type MEMS microphone. In: Proceedings of IEEE MEMS. IEEE, Piscataway, pp 659–662

    Google Scholar 

  23. Martin DT, Liu J, Kadirvel K, Fox RM, Sheplak M, Nishida T (2007) A micromachined dual-backplate capacitive microphone for aeroacoustic measurements. J Microelectromech Syst 16(6):1289–1302

    Article  Google Scholar 

  24. Zou QB, Li ZJ, Liu LT (1996) Design and fabrication of silicon condenser microphone using corrugated diaphragm technique. J Microelectromech Syst 5(3):197–204

    Article  Google Scholar 

  25. Lu C, Lemkin M, Boser BE (1995) A monolithic surface micromachined accelerometer with digital output. IEEE J Solid-State Circuits 30(12):1367–1373

    Article  Google Scholar 

  26. Wu JF, Carley LR (2006) Electromechanical ΔΣ modulation with high-Q micromechanical accelerometers and pulse density modulated force feedback. IEEE Trans Circuits Syst I 53(2):274–287

    Article  Google Scholar 

  27. van der Donk AGH, Sprenkels AJ, Olthuis W, Bergveld P (1991) Preliminary results of a silicon condenser microphone with internal feedback. In: IEEE transducers digest of technical papers. IEEE, Piscataway, pp 262–265

    Google Scholar 

  28. Temes GC, Schreier R, Norsworthy SR (1996) Delta-sigma data converters. Wiley-IEEE Press, New York

    Google Scholar 

  29. Maloberti F (2007) Data converters. Springer, Dordrecht

    Google Scholar 

  30. Malcovati P, Brigati S, Francesconi F, Maloberti F, Cusinato P, Baschirotto A (2003) Behavioral modeling of switched-capacitor sigma-delta modulators. IEEE Trans Circuits Syst I 50:352–364

    Article  Google Scholar 

  31. Dickson JF (1976) On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique. IEEE J Solid-State Circuits 11(3):374–378

    Article  Google Scholar 

  32. Boser BE, Wooley BA (1988) The design of sigma-delta modulation analog-to-digital converters. IEEE J Solid-State Circuits 23:1298–1308

    Article  Google Scholar 

  33. Matsuya Y, Yamada Y (1994) 1-V power supply, low-power consumption A/D conversion technique with swing-suppression noise shaping. IEEE J Solid-State Circuits 29:1524–1530

    Article  Google Scholar 

  34. Ahn GC, Chang DY, Brown ME, Ozaki N, Youra H, Yamamura K, Hamashita K, Takasuka K, Temes GC, Moon UK (2005) A 0.6-V 82-dB delta-sigma audio ADC using switched-RC integrators. IEEE J Solid-State Circuits 40:2398–2407

    Article  Google Scholar 

  35. Silva J, Moon UK, Steensgaard J, Temes GC (2001) Wideband low-distortion delta-sigma ADC topology. Electron Lett 37:737–738

    Article  Google Scholar 

  36. Nam KY, Lee SM, Su DK, Wooley BA (2005) A low-voltage low-power sigma-delta modulator for broadband analog-to-digital conversion. IEEE J Solid-State Circuits 40:1855–1864

    Article  Google Scholar 

  37. Kwon S, Maloberti F (2006) A 14 mW multi-bit ΣΔ modulator with 82 dB SNR and 86 dB DR for ADSL2+. In: IEEE ISSCC digest of technical papers. IEEE, Piscataway, pp 68–69

    Google Scholar 

  38. Harrison RR (2002) A low-power, low-noise CMOS amplifier for neural recording applications. In: Proceedings of IEEE ISCAS, vol 5. IEEE, Piscataway, pp 197–200

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Malcovati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Malcovati, P., Grassi, M., Baschirotto, A. (2013). Interface Circuits for MEMS Microphones. In: van Roermund, A., Baschirotto, A., Steyaert, M. (eds) Nyquist AD Converters, Sensor Interfaces, and Robustness. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4587-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4587-6_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4586-9

  • Online ISBN: 978-1-4614-4587-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics