Interface Circuits for MEMS Microphones

  • Piero Malcovati
  • Marco Grassi
  • Andrea Baschirotto
Chapter

Abstract

This paper presents an overview of interface circuits for capacitive MEMS microphones. The interface circuits and the building blocks are analyzed in detail, highlighting the most important design issues and trade-offs. Moreover, two design examples are reported, including circuit details and experimental results. The first example is based on a conventional constant-charge approach, while the second introduces the force-feedback concept. Both examples are implemented in a 0.35-μm CMOS technology and achieve a signal-to-noise and distortion ratio larger than 60 dB with a power consumption of about 1 mW from a 3.3-V power supply.

Keywords

Attenuation Settling Polysilicon Aliasing Teme 

References

  1. 1.
    Hsu YC, Chen JY, Wang CH, Liao LP, Chou WC, Wu CY, Mukherjee T (2008) Issues in path toward integrated acoustic sensor system on chip. In: Proceedings of IEEE Sensors. IEEE, Piscataway, pp 585–588Google Scholar
  2. 2.
    Malcovati P, Maloberti F (2005) Interface circuitry and microsystems. In: Korvink J, Paul O (eds) MEMS: a practical guide to design, analysis and applications. Springer, Dordrecht, pp 901–942Google Scholar
  3. 3.
    Bajdechi O, Huijsing JH (2002) A 1.8-V ΔΣ modulator interface for an electret microphone with on-chip reference. IEEE J Solid-State Circuits 37:279–285CrossRefGoogle Scholar
  4. 4.
    Chiang CT, Huang YC (2009) A 14-bit oversampled delta-sigma modulator for silicon condenser microphones. In: Proceedings of IEEE IMTC. IEEE, Piscataway, pp 1055–1058Google Scholar
  5. 5.
    Pernici S, Stevenazzi F, Nicollini G (2004) Fully integrated voiceband codec in a standard digital CMOS technology. IEEE J Solid-State Circuits 39:1331–1334CrossRefGoogle Scholar
  6. 6.
    van der Zwan EJ, Dijkmans EC (1996) A 0.2-mW CMOS ΣΔ modulator for speech coding with 80 dB dynamic range. IEEE J Solid-State Circuits 31:1873–1880CrossRefGoogle Scholar
  7. 7.
    Zare-Hoseini H, Kale I, Richard CSM (2010) A low-power continuous-time ΔΣ modulator for electret microphone applications. In: Proceedings of IEEE ASSCC. IEEE, Piscataway, pp 1–4Google Scholar
  8. 8.
    Jawed SA (2009) CMOS readout interfaces for MEMS capacitive microphones. Ph.D. dissertation, University of TrentoGoogle Scholar
  9. 9.
    Jawed SA, Cattin D, Gottardi M, Massari N, Baschirotto A, Simoni A (2008) A 828-μW 1.8-V 80-dB dynamic-range readout interface for a MEMS capacitive microphone. In: Proceedings of ESSCIRC. IEEE, Piscataway, pp 442–445Google Scholar
  10. 10.
    Jawed SA, Cattin D, Massari N, Gottardi M, Baschirotto A (2008) A MEMS microphone interface with force-balancing and charge-control. In: Proceedings of IEEE PRIME. IEEE, Piscataway, pp 97–100Google Scholar
  11. 11.
    Jawed SA, Nielsen JH, Gottardi M, Baschirotto A, Bruun E (2009) A multifunction low-power preamplifier for MEMS capacitive microphones. In: Proceedings of ESSCIRC. IEEE, Piscataway, pp 292–295Google Scholar
  12. 12.
    Picolli L, Grassi M, Rosson L, Malcovati P, Fornasari A (2009) A 1.0-mW, 71-dB SNDR, − 1. 8-dBFS input swing, fourth-order sigma-delta interface circuit for MEMS microphones. In: Proceedings of ESSCIRC. IEEE, Piscataway, pp 324–327Google Scholar
  13. 13.
    Picolli L, Grassi M, Fornasari A, Malcovati P (2011) A 1.0-mW, 71-dB SNDR, fourth-order ΣΔ iinterface circuit for MEMS microphones. Analog Integr Circuits Signal Process 66:223–233CrossRefGoogle Scholar
  14. 14.
    Le HB, Lee SG, Ryu ST (2010) A regulator-free 84-dB DR audio-band ADC for compact digital microphones. In: Proceedings of IEEE ASSCC. IEEE, Piscataway, pp 1–4Google Scholar
  15. 15.
    Citakovic J, Hovesten PF, Rocca G, van Halteren A, Rombach P, Stenberg LJ, Andreani P, Bruun E (2009) A compact CMOS MEMS microphone with 66-dB SNR. In: IEEE ISSCC digest of technical papers. IEEE, Piscataway, pp 350–351Google Scholar
  16. 16.
    Je SS, Kim JH, Kozicki MN, Chae JS (2009) A directional capacitive MEMS microphone using nano-electrodeposits. In: Proceedings of IEEE MEMS. IEEE, Piscataway, pp 96–99Google Scholar
  17. 17.
    Weigold JW, Brosnihan TJ, Bergeron J, Zhang X (2006) A MEMS condenser microphone for consumer applications. In: Proceedings of IEEE MEMS. IEEE, Piscataway, pp 86–89Google Scholar
  18. 18.
    Deligoz I, Naqvi SR, Copani T, Kiaei S, Bakkaloglu B, Je SS, Chae JS (2011) A MEMS-based power-scalable hearing aid analog front-end. IEEE Trans Biomed Circuits Syst 5(3):201–213CrossRefGoogle Scholar
  19. 19.
    Scheeper PR, van der Donk AGH, Olthuis W, Bergveld P (1994) A review of silicon microphones. Sens Actuators A 44(1):1–11CrossRefGoogle Scholar
  20. 20.
    Bergqvist J, Gobet J (1994) Capacitive microphone with a surface micromachined backplate using electroplating technology. J Microelectromech Syst 3(2):69–75CrossRefGoogle Scholar
  21. 21.
    Kasai T, Sato S, Conti S, Padovani I, David F, Uchida Y, Takahashi T, Nishio H (2011) Novel concept for a MEMS microphone with dual channels for an ultrawide dynamic range. In: Proceedings of IEEE MEMS. IEEE, Piscataway, pp 605–608Google Scholar
  22. 22.
    Leinenbach C, van Teeffelen K, Laermer F, Seidel H (2010) A new capacitive type MEMS microphone. In: Proceedings of IEEE MEMS. IEEE, Piscataway, pp 659–662Google Scholar
  23. 23.
    Martin DT, Liu J, Kadirvel K, Fox RM, Sheplak M, Nishida T (2007) A micromachined dual-backplate capacitive microphone for aeroacoustic measurements. J Microelectromech Syst 16(6):1289–1302CrossRefGoogle Scholar
  24. 24.
    Zou QB, Li ZJ, Liu LT (1996) Design and fabrication of silicon condenser microphone using corrugated diaphragm technique. J Microelectromech Syst 5(3):197–204CrossRefGoogle Scholar
  25. 25.
    Lu C, Lemkin M, Boser BE (1995) A monolithic surface micromachined accelerometer with digital output. IEEE J Solid-State Circuits 30(12):1367–1373CrossRefGoogle Scholar
  26. 26.
    Wu JF, Carley LR (2006) Electromechanical ΔΣ modulation with high-Q micromechanical accelerometers and pulse density modulated force feedback. IEEE Trans Circuits Syst I 53(2):274–287CrossRefGoogle Scholar
  27. 27.
    van der Donk AGH, Sprenkels AJ, Olthuis W, Bergveld P (1991) Preliminary results of a silicon condenser microphone with internal feedback. In: IEEE transducers digest of technical papers. IEEE, Piscataway, pp 262–265Google Scholar
  28. 28.
    Temes GC, Schreier R, Norsworthy SR (1996) Delta-sigma data converters. Wiley-IEEE Press, New YorkGoogle Scholar
  29. 29.
    Maloberti F (2007) Data converters. Springer, DordrechtGoogle Scholar
  30. 30.
    Malcovati P, Brigati S, Francesconi F, Maloberti F, Cusinato P, Baschirotto A (2003) Behavioral modeling of switched-capacitor sigma-delta modulators. IEEE Trans Circuits Syst I 50:352–364CrossRefGoogle Scholar
  31. 31.
    Dickson JF (1976) On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique. IEEE J Solid-State Circuits 11(3):374–378CrossRefGoogle Scholar
  32. 32.
    Boser BE, Wooley BA (1988) The design of sigma-delta modulation analog-to-digital converters. IEEE J Solid-State Circuits 23:1298–1308CrossRefGoogle Scholar
  33. 33.
    Matsuya Y, Yamada Y (1994) 1-V power supply, low-power consumption A/D conversion technique with swing-suppression noise shaping. IEEE J Solid-State Circuits 29:1524–1530CrossRefGoogle Scholar
  34. 34.
    Ahn GC, Chang DY, Brown ME, Ozaki N, Youra H, Yamamura K, Hamashita K, Takasuka K, Temes GC, Moon UK (2005) A 0.6-V 82-dB delta-sigma audio ADC using switched-RC integrators. IEEE J Solid-State Circuits 40:2398–2407CrossRefGoogle Scholar
  35. 35.
    Silva J, Moon UK, Steensgaard J, Temes GC (2001) Wideband low-distortion delta-sigma ADC topology. Electron Lett 37:737–738CrossRefGoogle Scholar
  36. 36.
    Nam KY, Lee SM, Su DK, Wooley BA (2005) A low-voltage low-power sigma-delta modulator for broadband analog-to-digital conversion. IEEE J Solid-State Circuits 40:1855–1864CrossRefGoogle Scholar
  37. 37.
    Kwon S, Maloberti F (2006) A 14 mW multi-bit ΣΔ modulator with 82 dB SNR and 86 dB DR for ADSL2+. In: IEEE ISSCC digest of technical papers. IEEE, Piscataway, pp 68–69Google Scholar
  38. 38.
    Harrison RR (2002) A low-power, low-noise CMOS amplifier for neural recording applications. In: Proceedings of IEEE ISCAS, vol 5. IEEE, Piscataway, pp 197–200Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Piero Malcovati
    • 1
  • Marco Grassi
    • 2
  • Andrea Baschirotto
    • 3
  1. 1.Department of Industrial and Information Engineering, Department of Electrical EngineeringUniversity of PaviaPaviaItaly
  2. 2.Department of Electrical EngineeringUniversity of PaviaPaviaItaly
  3. 3.Department of PhysicsUniversity of Milano BicoccaMilanoItaly

Personalised recommendations