Existence results for pullback attractors

  • Alexandre N. Carvalho
  • José A. Langa
  • James C. Robinson
Part of the Applied Mathematical Sciences book series (AMS, volume 182)


In this chapter we develop the existence theory for pullback attractors in a way that recovers well known results for the global attractors of autonomous systems as a particular case (see, for example, Babin and Vishik 1992; Chepyzhov and Vishik 2002;Cholewa and Dlotko 2000; Chueshov 1999; Hale 1988; Ladyzhenskaya 1991; Robinson 2001; Temam 1988).


Global Attractor Convex Banach Space Asymptotic Compactness Random Dynamical System Autonomous Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Babin AV, Vishik MI (1992) Attractors of evolution equations. North Holland, AmsterdamMATHGoogle Scholar
  2. Caraballo T, Langa JA, Valero J (2003) The dimension of attractors of nonautonomous partial differential equations. ANZIAM J 45:207–222MathSciNetMATHCrossRefGoogle Scholar
  3. Caraballo T, Marín-Rubio P, Valero J (2005) Autonomous and non-autonomous attractors for differential equations with delays. J Differential Equations 208:9–41MathSciNetMATHCrossRefGoogle Scholar
  4. Caraballo T, Lukaszewicz G, Real J (2006a) Pullback attractors for asymptotically compact non-autonomous dynamical systems. Nonlinear Anal 64:484–498MathSciNetMATHCrossRefGoogle Scholar
  5. Caraballo T, Carvalho AN, Langa JA, Rivero F (2010a) Existence of pullback attractors for pullback asymptotically compact processes. Nonlinear Anal 72:1967–1976MathSciNetMATHCrossRefGoogle Scholar
  6. Carvalho AN, Sonner E (2012) Pullback exponential attractors for evolution processes in Banach spaces: theoretical results, submitedGoogle Scholar
  7. Chafee N, Infante EF (1974) A bifurcation problem for a nonlinear partial differential equation of parabolic type. Appl Anal 4:17–37MathSciNetMATHCrossRefGoogle Scholar
  8. Chepyzhov VV, Vishik MI (1994) Attractors of nonautonomous dynamical systems and their dimension. J Math Pures Appl 73:279–333MathSciNetMATHGoogle Scholar
  9. Chepyzhov VV, Vishik MI (2002) Attractors for equations of mathematical physics. Colloquium Publications 49, American Mathematical Society, Providence, RIGoogle Scholar
  10. Cholewa J, Dlotko T (2000) Global attractors in abstract parabolic problems. LMS lecture notes series 278. Cambridge University Press, CambridgeGoogle Scholar
  11. Chueshov ID (1999) Introduction to the theory of infinite-dimensional dissipative systems. University lectures in contemporary mathematics. ACTA, Kharkiv, UkraineMATHGoogle Scholar
  12. Crauel H (2001) Random point attractors versus random set attractors. J Lond Math Soc 63: 413–427Google Scholar
  13. Crauel H, Flandoli F (1994) Attractors for random dynamical systems. Probab Theory Related Fields 100:365–393MathSciNetMATHCrossRefGoogle Scholar
  14. Crauel H, Debussche A, Flandoli F (1997) Random attractors. J Dynam Differential Equations 9:397–341MathSciNetCrossRefGoogle Scholar
  15. Czaja R, Efendiev M (2011) Pullback exponential attractors for nonautonomous equations. I: Semilinear parabolic problems. 381:748–765MathSciNetMATHGoogle Scholar
  16. Di Plinio F, Duan GS, Temam R (2011) Time-dependent attractor for the Oscillon equation. Discrete Contin Dyn Syst A 29:141–167MATHGoogle Scholar
  17. Efendiev M, Miranville A, Zelik S (2005) Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems. Proc Roy Soc Edinburgh Sect A 135:703–730MathSciNetMATHCrossRefGoogle Scholar
  18. Hale JK (1988) Asymptotic behavior of dissipative systems. Mathematical surveys and monographs, American Mathematival Society, Providence, RIMATHGoogle Scholar
  19. Kloeden PE, Langa JA (2007) Flattening, squeezing and the existence of random attractors. Proc R Soc Lond Ser A 463:163–181MathSciNetMATHCrossRefGoogle Scholar
  20. Kloeden PE, Siegmund S (2005) Bifurcation and continuous transition of attractors in autonomous and nonautonomous systems. Int J Bifur Chaos 15:743–762MathSciNetMATHCrossRefGoogle Scholar
  21. Koksch N, Siegmund S (2002) Pullback attracting inertial manifolds for nonautonomous dynamical systems. J Dynam Differential Equations 14:889–941MathSciNetMATHCrossRefGoogle Scholar
  22. Ladyzhenskaya OA (1991) Attractors for semigroups and evolution equations. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  23. Langa JA, Robinson JC, Suárez A (2002) Stability, instability, and bifurcation phenomena in non-autonomous differential equations. Nonlinearity 15:887–903MathSciNetMATHCrossRefGoogle Scholar
  24. Langa JA, Miranville A, Real J (2010a) Pullback exponential attractors. Discrete Contin Dyn Syst 26:1329–1357MathSciNetMATHCrossRefGoogle Scholar
  25. Liu Z (2007) The random case of Conley’s theorem. III: Random semiflow case and Morse decomposition. Nonlinearity 20:2773–2791MATHGoogle Scholar
  26. Lukaszewicz, G (2010) On pullback attractors in H 0 1 for nonautonomous reaction-diffusion equations. Int J Bifurc Chaos 20:2637–2644MathSciNetMATHCrossRefGoogle Scholar
  27. Ma QF, Wang SH, Zhong CK (2002) Necessary and sufficient conditions for the existence of global attractors for semigroups and applications. Indiana Univ Math J 51:1541–1559MathSciNetMATHCrossRefGoogle Scholar
  28. Rasmussen M (2007b) Morse decompositions of nonautonomous dynamical systems. Trans Amer Math Soc 359:5091–5115MathSciNetMATHCrossRefGoogle Scholar
  29. Raugel G (2002) Global attractors in partial differential equations. In: Fiedler B (ed) Handbook of dynamical systems, vol 2. North Holland, Amsterdam, pp. 885–892CrossRefGoogle Scholar
  30. Robinson JC (2001) Infinite-dimensional dynamical systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Temam R (1988) Infinite-dimensional dynamical systems in mechanics and physics. Springer, Berlin Heidelberg New YorkMATHCrossRefGoogle Scholar
  32. Vishik MI (1992) Asymptotic behaviour of solutions of evolutionary equations. Cambridge University Press, CambridgeMATHGoogle Scholar
  33. Wang B (2009) Pullback attractors for non-autonomous reaction-diffusion equations on n. Front Math China 4:563–583MathSciNetMATHCrossRefGoogle Scholar
  34. Wang Y (2008) Pullback attractors for nonautonomous wave equations with critical exponent. Nonlinear Anal 68:365–376MathSciNetMATHCrossRefGoogle Scholar
  35. Wang Y, Zhong C, Zhou S (2006) Pullback attractors of nonautonomous dynamical systems. Discrete Contin Dyn Syst 16:587–614MathSciNetMATHCrossRefGoogle Scholar
  36. Wang ZX, Fan XL, Zhu ZY (1998) Inertial manifolds for nonautonomous infinite-dimensional dynamical systems. Appl Math Mech 19:695–704MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2013

Authors and Affiliations

  • Alexandre N. Carvalho
    • 1
  • José A. Langa
    • 2
  • James C. Robinson
    • 3
  1. 1.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil
  2. 2.Departamento de Ecuaciones Diferenciales y Análisis NuméricoFacultad de MatemáticasSevilleSpain
  3. 3.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations