Skip to main content

Mechanical Self-Assembly on Curved Substrates

  • Chapter
  • First Online:
Mechanical Self-Assembly
  • 1904 Accesses

Abstract

Self-assembled buckling patterns of thin films on compliant substrates have been subjected to extensive studies and shown great promise in micro-fabrication. However, most previous studies were limited to planar substrates, and the study of buckling of films on curved substrates has not received sufficient attention. With the constraining effect from various types of substrate curvature, numerous new types of buckling morphologies may emerge which not only enable true three-dimensional (3D) fabrication of microstructures and microdevices but also have important implications for the morphogenesis of quite a few natural and biological systems. We review the scientific aspects of elastic buckling of thin films on several representative curved substrates, emphasizing the critical effect of substrate curvature, its interaction with other material/system parameters, and ways to control the buckles based on mechanical and physical principles and bridge them with prospect applications in biology, biomedical engineering, and small-scale fabrication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lacour S, Wagner S, Huang Z, Suo Z (2003) Stretchable gold conductors on elastomeric substrates. Appl Phys Lett 82:2404

    Article  Google Scholar 

  2. Watanabe M, Shirai H, Hirai T (2002) Wrinkled polypyrrole electrode for electroactive polymer actuators. J Appl Phys 92:4631

    Article  Google Scholar 

  3. Kim D-H, Ahn J-H, Choi WM, Kim H-S, Kim T-H, Song J, Huang YY, Liu Z, Lu C, Rogers JA (2008) Stretchable and foldable silicon integrated circuits. Science 320:507

    Article  Google Scholar 

  4. Harrison C, Stafford CM, Zhang W, Karim A (2004) Sinusoidal phase grating created by a tunably buckled surface. Appl Phys Lett 85:4016

    Article  Google Scholar 

  5. Stafford CM, Harrison C, Beers KL, Karim A, Amis EJ, Vanlandingham MR, Kim HC, Volksen W, Miller RD, Simonyi EE (2004) A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nature Mater 3:545

    Article  Google Scholar 

  6. Fleming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF (1999) Effect of synthetic micro- and nanostructured surfaces on cell behavior. Biomaterials 20:573

    Article  Google Scholar 

  7. Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM (1998) Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393:146

    Article  Google Scholar 

  8. Bowden N, Huck WTS, Paul KE, Whitesides GM (1999) The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. Appl Phys Lett 75:2557

    Article  Google Scholar 

  9. Chan EP, Crosby AJ (2006) Fabricating Microlens Arrays by Surface Wrinkling. Adv Mater 18:3238

    Article  Google Scholar 

  10. Moon M-W, Lee SH, Sun J-Y, Oh KH, Vaziri A, Hutchinson JW (2007) Controlled formation of nanoscale wrinkling patterns on polymers using focused ion beam. Scr Mater 57:747

    Article  Google Scholar 

  11. Yoo PJ, Suh KY, Park SY, Lee HH (2002) Physical self-assembly of microstructures by anisotropic buckling. Adv Mater 14:1383

    Article  Google Scholar 

  12. Jiang HQ, Khang D-Y, Song ZJ, Sun YG, Huang YG, Rogers JA (2007) Finite deformation mechanics in buckled thin films on compliant supports. Proc Natl Acad Sci USA 104:15607

    Google Scholar 

  13. Pocivavsek L, Dellsy R, Kern A, Johnson S, Lin B, Lee KYC, Cerda E (2008) Stress and fold localization in thin elastic membranes. Science 320:912

    Article  Google Scholar 

  14. Chen X, Hutchinson JW (2004) Herringbone buckling patterns of compressed thin films on compliant substrates. J Appl Mech 71:597

    Article  MATH  Google Scholar 

  15. Chen X, Hutchinson JW (2004) A family of herringbone patterns in thin films. Scr Mater 50:797

    Article  Google Scholar 

  16. Audoly B, Boudaoud A (2008) Buckling of a stiff film bound to a compliant substrate—Part II: A global scenario for the formation of herringbone pattern. J Mech Phys Solids 56:2422

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang R (2005) Kinetic wrinkling of an elastic film on a viscoelastic substrate. J Mech Phys Solids 53:63

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang ZY, Hong W, Suo Z (2005) Nonlinear analyses of wrinkles in films on soft elastic substrates. J Mech Phys Solids 53:2101

    Article  MathSciNet  MATH  Google Scholar 

  19. Genzer J, Groenewold J (2006) Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter 2:310

    Article  Google Scholar 

  20. Green PB, Steele CS, Rennich SC (1996) Phyllotactic patterns: a biophysical mechanicsm for their origin. Ann Bot 77:512

    Article  Google Scholar 

  21. Green PB (1999) Expression of pattern in plants: combining molecular and calculus-based biophysical paradigms. Am J Bot 86:1059

    Article  Google Scholar 

  22. Dumais J, Steele CR (2000) New evidence for the role of mechanical forces in the shoot apical meristem. J Plant Growth Regul 19:7

    Article  Google Scholar 

  23. Shipman PD, Newell AC (2004) Phyllotactic patterns on plants. Phys Rev Lett 92:168102

    Article  Google Scholar 

  24. Sharon E, Marder M, Swinney HL (2004) Leaves, flowers and garbage bags: Making waves. Am Sci 92:254

    Google Scholar 

  25. Sharon E, Roman B, Swinney HL (2007) Geometrically driven wrinkling observed in free plastic sheets and leaves. Phys Rev E 75:046211

    Article  Google Scholar 

  26. Liang H, Mahadevan L (2009) The shape of a long leaf. Proc Natl Acad Sci USA 106:22049

    Article  MathSciNet  MATH  Google Scholar 

  27. Nath U, Crawford BCW, Carpenter R, Coen E (2003) Genetic control of surface curvature. Science 299:1404

    Article  Google Scholar 

  28. Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeier C (1997) Induction of leaf primordia by the cell wall protein expansin. Science 276:1415

    Article  Google Scholar 

  29. Yin J, Cao Z, Li C, Sheinman I, Chen X (2008) Stress-driven buckling patterns in spheroidal core/shell structures. Proc Natl Acad Sci USA 105:19132

    Article  Google Scholar 

  30. Kuhl E, Maas R, Himpel G, Menzel A (2007) Computational modeling of arterial wall growth. Biomechan Model Mechanobiol 6:321

    Article  Google Scholar 

  31. Hallett MB, von Ruhland CJ, Dewitt S (2008) Chemotaxis and the cell surface-area problem. Nature Rev Mol Cell Biol 9:662

    Article  Google Scholar 

  32. Wang B, Liu P, Jiang W, Pan H, Xu X, Tang R (2008) Yeast cells with an artificial mineral shell: Protection and modification of living cells by biomimetic mineralization. Angew Chem Int Ed 47:3560

    Article  Google Scholar 

  33. Rahmy TR, Ayoub MA (2002) In vitro action of cobra venom on goat spermatozoa ultrastructure by transmission and scanning electron microscopy. J Venomous Animals Toxins 8:127

    Google Scholar 

  34. Yin J, Chen X, Sheinman I (2009) Anisotropic buckling patterns in spheroidal film/substrate systems and their implications in some natural and biological systems. J Mech Phys Solids 57:1470

    Article  MATH  Google Scholar 

  35. Yin J, Bar-Kochba E, Chen X (2009) Mechanical self-assembly fabrication of gears. Soft Matter 5:3469

    Article  Google Scholar 

  36. Yin J, Chen X (2010) Buckling of anisotropic films on cylindrical substrates: insights for self-assembly fabrication of 3D helical gears. J Phys D: Appl Phys 43:115402

    Article  Google Scholar 

  37. Jiang X, Bruzewicz DA, Wong AP, Piel M, Whitesides GM (2005) Directing cell migration with asymmetric micropatterns. Proc Natl Acad Sci USA 102:975

    Article  Google Scholar 

  38. Paul KE, Prentiss M, Whitesides GM (2003) Patterning spherical surfaces at the two-hundred-nanometer scale using soft lithography. Adv Funct Mater 13:259

    Article  Google Scholar 

  39. Jin H, Abelson JR, Erhardt MK, Nuzzo RG (2004) Soft lithographic fabrication of an image sensor array on a curved substrate. J Vac Sci Technol B 22:2548

    Article  Google Scholar 

  40. Ruchhoeft P, Colburn M, Choi B, Nounu H, Johnson S, Bailey T, Damle S, Stewart M, Ekerdt J, Sreenivasan SV, Wolfe JC, Willson CG (1999) Patterning curved surfaces: template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography. J Vac Sci Technol B 17:2965

    Article  Google Scholar 

  41. Allen HG (1969) Analysis and design of structural sandwich panels. Pergamon, New York

    Google Scholar 

  42. Huang Z, Hong W, Suo Z (2004) Evolution of wrinkles in hard films on soft substrates. Phys Rev E 70:030601

    Article  Google Scholar 

  43. Wang L, Pai C, Boyce MC, Rutledge GC (2009) Wrinkled surface topographies of electrospun polymer fibers. Appl Phys Lett 94:151916

    Article  Google Scholar 

  44. Chen X, Yin J (2010) Buckling patterns of thin films on curved compliant substrates with applications to morphogenesis and three-dimensional micro-fabrication. Soft Matter 6:5667

    Article  Google Scholar 

  45. Gao X, Jiang L (2004) Water-repellent legs of water striders. Nature 432:36

    Article  Google Scholar 

  46. Im SH, Huang R (2008) Wrinkle patterns of anisotropic crystal films on viscoelastic substrates. J Mech Phys Solids 56:3315

    Article  MATH  Google Scholar 

  47. Chen S, Hou H, Hu P, Wendorff JH, Greiner A, Agarwal S (2009) Polymeric nanosprings by bicomponent electrospinning. Macromol Mater Eng 294:265

    Article  Google Scholar 

  48. Gao PX, Ding Y, Mai W, Hughes WL, Lao C, Wang ZL (2005) Conversion of zinc oxide nanobelts into superlattice-structured nanohelices. Science 309:1700

    Article  Google Scholar 

  49. Han H (2007) A biomechanical model of artery buckling. J Biomech 40:3672

    Article  Google Scholar 

  50. Barbera GL, Marca GL, Martino A, Verde RL, Valentino F, Lipari D, Peri G, Cappello F, Valentino B (2006) Kinking, coiling, and tortuosity of extracranial internal carotid artery: is it the effect of a metaplasia? Surg Radiol Anat 28:573

    Article  Google Scholar 

  51. Xu B, Chen X (2010) The role of stress on the formation and selection of human hair curly pattern. J Mech Behav Biomed Mater (in press)

    Google Scholar 

  52. Cao G, Chen X, Li C, Ji A, Cao Z (2008) Self-assembled triangular and labyrinth buckling patterns of thin films on spherical substrates. Phys Rev Lett 100:036102

    Article  Google Scholar 

  53. Shin G, Jung I, Malyarchuk V, Song J, Wang S, Ko HC, Huang Y, Ha JS, Rogers JA (2010) Micromechanics and advanced designs for curved photodetector arrays in hemispherical electronic-eye cameras. Small 6:851

    Article  Google Scholar 

  54. Dressaire E, Bee R, Bell DC, Lips A, Stone HA (2008) Interfacial polygonal nanopatterning of stable microbubbles. Science 320:1998

    Article  Google Scholar 

  55. Borden M (2009) Nanostructural features on stable microbubbles. Soft Matter 5:716

    Article  Google Scholar 

  56. Schwarz H, Koch AL (1995) Phase and electron microscopic observations of osmotically induced wrinkling and the role of endocytotic vesicles in the plasmolysis of the Gram-negative cell wall. Microbiology 141:3161

    Article  Google Scholar 

  57. Bessis M (1973) Living blood cells and their ultrastructure. Springer, Berlin

    Google Scholar 

  58. Tohya K, Kimura M (1998) Ultrastructural evidence of distinctive behavior of L-selectin and LFA-1 alpha (L) beta (2) integrin on lymphocytes adhering to the endothelial surface of high endothelial venules in peripheral lymph nodes. Histochem Cell Biol 110:407

    Article  Google Scholar 

  59. Burwen SJ, Satir BH (1977) Plasma membrane folds on the mast cell surface and their relationship to sectretory activity. J Cell Biol 74:690

    Article  Google Scholar 

  60. Dewitt S, Hallett M (2007) Leukocyte membrane “expansion”: a central mechanism for leukocyte extravasation. J Leukoc Biol 81:1160

    Article  Google Scholar 

  61. Hallett MB, Dewitt S (2007) Ironing out the wrinkles of neutrophil phagocytosis. Trends Cell Biol 17:209

    Article  Google Scholar 

  62. Finan JD, Guilak F (2010) The effects of osmotic stress on the structure and function of the cell nucleus. J Cell Biochem 109:460

    Google Scholar 

  63. Bayer S, Altman J (2005) The human brain during the second trimester. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  64. Levitt JG, Blanton RE, Smalley S, Thompson PM, Guthrie D, McCracken JT, Sadoun T, Heinichen L, Toga AW (2003) Cortical sulcal maps in autism. Cereb Cortex 13:728

    Article  Google Scholar 

  65. Essen DCV, Dierker D, Snyder AZ, Raichle ME, Reiss AL, Korenber J (2006) Symmetry of cortical folding abnormalities in Williams syndrome revealed by surface based analyses. J Neurosci 26:5470

    Article  Google Scholar 

  66. Levin D, Barnes PD (1999) Cortical maturation in normall and abnormal fetuses as assessed with prenatal MR imaging. Radiology 210:751

    Google Scholar 

  67. Zhang Y, Zhou Y, Yu C, Lin L, Li C, Jiang T (2010) Reduced cortical folding in mental retardation. Am J Neuroradiol 31:1063

    Article  MATH  Google Scholar 

  68. Richman DP, Stewart RM, Hutchinson JW, Caviness VSJ (1975) Mechanical model of brain convolutional development. Science 189:18

    Article  Google Scholar 

  69. Essen DCV (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313

    Article  Google Scholar 

  70. Armstrong CL, Hawkes R (2000) Pattern formation in the cerebellar cortex. Biochem Cell Biol 78:551

    Article  Google Scholar 

  71. Geng G, Johston LA, Yan E, Britto JM, Smith DW, Walker DW, Egan GF (2009) Biomechanisms for modelling cerebral cortical folding. Med Image Anal 13:920

    Article  Google Scholar 

  72. Lefevre J, Mangin J (2010) A Reaction–diffusion model of human brain development. PLoS Comput Biol 6:e1000749

    Article  MathSciNet  Google Scholar 

  73. Kriegstein A, Noctor S, Martinez-Cerdeno V (2006) Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci 7:883

    Article  Google Scholar 

  74. Vaccarino FM, Fagel DM, Ganat Y, Maragnoli ME, Ment LR, Ohkubo Y, Schwartz ML, Sibereis J, Smith KM (2007) Astroglial cells in development, regeneration, and repair. Neuroscientist 13:173

    Article  Google Scholar 

  75. Toro R, Perron M, Pike B, Richer L, Veillette S, Pausova Z, Paus T (2008) Brain size and folding of the human cerebral cortex. Cereb Cortex 18:2352

    Article  Google Scholar 

  76. Wilder-Smith EPV, Chow A (2003) Water-immersion wrinkling is due to vasoconstriction. Muscle Nerve 27:307

    Article  Google Scholar 

  77. Wilder-Smith EPV (2004) Water immersion wrinkling, physiology and use as an indicator of sympathetic function. Clin Auton Res 14:125

    Article  Google Scholar 

  78. Hsieh C, Huang K, LiLiang P, Jeng S, Tsai H (2006) Paradoxical response to water immersion in replanted fingers. Clin Auton Res 16:223

    Article  Google Scholar 

  79. Yin J, Gerling G, Chen X (2010) Mechanical modeling of wrinkled fingertip immersed in water. Acta Biomater 6:1487

    Article  Google Scholar 

  80. Colin J, Coupeau C, Grilhé J (2007) Plastic folding of buckling structures. Phys Rev Lett 99:046101

    Article  Google Scholar 

  81. Yin J, Chen X (2010) Elastic buckling of gradient thin films on compliant substrates. Philosophical Magazine Lett 90:423

    Article  Google Scholar 

  82. Hutchinson JW (2001) Delamination of compressed films on curved substrates. J Mech Phys Solids 49:1847

    Article  MATH  Google Scholar 

  83. Priestley JH (1928) The meristematic tissues of the plant. Ann Bot 3:1

    Google Scholar 

  84. Considine J, Brown K (1981) Physical aspects of fruit growth. Plant Physiol 68:371

    Article  Google Scholar 

  85. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850

    Article  Google Scholar 

  86. Dumais J (2007) Can mechanics control pattern formation in plants? Curr Opin Plant Biol 10:58

    Article  Google Scholar 

  87. Considine J, Knox RB (1979) Development and histochemistry of the cells, cell walls and cuticle of the dermal system of the fruit of the grape. Vitis vinifera Protoplasma 99:347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chen, X., Yin, J. (2013). Mechanical Self-Assembly on Curved Substrates. In: Chen, X. (eds) Mechanical Self-Assembly. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4562-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4562-3_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4561-6

  • Online ISBN: 978-1-4614-4562-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics