Skip to main content

Delaminated Film Buckling Microchannels

  • Chapter
  • First Online:
Mechanical Self-Assembly

Abstract

This chapter describes the method of manufacturing microfluidic microchannels formed by delaminated buckled thin films. Thin films under compression tend to delaminate and buckle. Microchannel geometry can be controlled by tailoring film residual stress and placing patterned adhesion-weakening layers utilizing photolithographic techniques. Results based on the photoresist as the adhesion weakening layer and compressed tungsten thin films are described along with the corresponding thin film mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nguyen NT, Werely ST (2002) Fundamentals and applications of microfluidics,Artech House,Norwood, MA,1–19:285–286

    Google Scholar 

  2. Spence A, Retterer S, Isaacson M (2002) Microfabricated model silicon probes with microfluidic, channels for drug delivery. NNUN Abstracts 2002/Biology & Chemistry, p 13

    Google Scholar 

  3. Li Y, Gulari MN, Wise KD (2003) High-yield buried microchannel formation for drug delivery at the cellular level, In: Northrup MA, Jensen KF, Harrison DJ (eds) Proceedings of mTAS 2003 seventh international conference on micro total analysis systems, vol 2, October 5–9, Squaw Valley, CA, pp 931–934

    Google Scholar 

  4. Volinsky AA (2003) Experiments with in-situ thin film phone cord delamination propagation. Mat Res Soc Symp Proc 749:W10.7

    Article  Google Scholar 

  5. Volinsky AA, Meyer DC, Leisegang T, Paufler P (2003) Fracture patterns in thin films and multilayers. Mat Res Soc Symp Proc 795:U3.8

    Article  Google Scholar 

  6. Volinsky AA, Waters P, Kiely JD, Johns EC (2005) Sub-critical telephone cord delamination propagation and adhesion measurements. Mat Res Soc Symp Proc 854E:U9.5

    Google Scholar 

  7. Volinsky AA, Waters P, Wright G (2004) Micro-fluidics applications of telephone cord delamination blisters. Mat Res Soc Symp Proc 855E:W3.16

    Article  Google Scholar 

  8. Galambos P (1998) Two-phase dispersion in micro-channels. Ph.D. Thesis, Mechanical Engineering, University of Washington, Seattle

    Google Scholar 

  9. Macounova K, Cabrera CR, Holl MR, Yager P (2000) Generation of natural pH gradients in microfluidic channels for use in isoelectric focusing. Anal Chem 72:3745–3751

    Article  Google Scholar 

  10. Ohring M (1992) The materials science of thin films. Academic, London

    Google Scholar 

  11. Stoney GG (1909) The tension of metallic films deposited by electrolysis. Proc Roy Soc Lond A82:72

    Google Scholar 

  12. Volinsky AA, Moody NR, Gerberich WW (2002) Interfacial toughness measurements for thin films on substrates. Acta Mater 50(3):441

    Article  Google Scholar 

  13. Volinsky AA, Moody NR, Kottke ML, Gerberich WW (2002) Fiducial mark and nanocrack zone formation during thin film delamination. Philos Mag A 82:3383–3391

    Google Scholar 

  14. Volinsky AA, Moody NR, Gerberich WW (2003) Fiducial mark and CTOA estimates of thin film adhesion. Int J Fract 119(4):431–439

    Article  Google Scholar 

  15. Matuda N, Baba S, Kinbara A (1981) Internal stress, Young’s modulus and adhesion energy of carbon films on glass substrates. Thin Solid Films 81:301

    Article  Google Scholar 

  16. Gille G, Rau B (1984) Buckling instability and adhesion of carbon layers. Thin Solid Films 120:109

    Article  Google Scholar 

  17. Seth J, Raghunath R, Babu SV (1992) Influence of the deposition gas mixture on the structure and failure modes of diamondlike carbon films. J Vac Sci Technol A 10(2):284–289

    Article  Google Scholar 

  18. Moon M-W, Jensen HM, Hutchinson JW, Oh KH, Evans AG (2002) The characterization of telephone cord buckling of compressed thin films on substrates. J Mech Phys Solids 50(11):2355

    Article  Google Scholar 

  19. Thouless MD (1990) Crack spacing in brittle films on elastic substrates. J Am Ceram Soc 73:2144

    Article  Google Scholar 

  20. Bai T, Pollard DD, Gao H (2000) Explanation for fracture spacing in layered materials. Nature 403:753

    Article  Google Scholar 

  21. Huang R, Prevost JH, Huang ZY, Suo Z (2003) Channel-cracking of thin films with the extended finite element method. Eng Fract Mech 70(2513)

    Google Scholar 

  22. Hutchinson JW, Suo Z (1992) Mixed-mode cracking in layered materials. Adv Appl Mech 29:63–191

    Article  MATH  Google Scholar 

  23. Prinz VY (2000) Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Physica E 6(1–4):828–831

    Article  Google Scholar 

  24. Prinz VY (2004) Precise semiconductor nanotubes and nanoshells fabricated on (110) and (111) Si and GaAs. Physica E 23:260–268

    Article  Google Scholar 

  25. World Wide Web: http://www.eng.usf.edu/~volinsky

  26. Burolla VP (1980) Deterioration of the silver/glass interface in second surface solar mirrors. Sol Energy Mater 3/1–2:117–126

    Article  Google Scholar 

  27. Moon MW, Lee KR, Oh KH, Hutchinson JW (2004) Buckle delamination on patterned substrates. Acta Mater 52/10:3151–3159

    Article  Google Scholar 

  28. Volinsky AA, Vella JB, Gerberich WW (2002) Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation. Thin Solid Films 429(1–2):201–210

    Google Scholar 

  29. Franssila S (2004) Introduction to micro fabrication. Wiley, West Sussex, England

    Google Scholar 

  30. Kriese MD, Gerberich WW, Moddy NR (1999) Quantitative adhesion measures of multilayer films: Part II. Indentation of W/Cu, W/W, Cr/W. J Mater Res 14(7):3019

    Article  Google Scholar 

  31. Waters P, Volinsky AA (2006) Stress and moisture effects on thin film buckling delamination. Exp Mech 47(1):163–170

    Article  Google Scholar 

  32. Weigl BH, Hedine K (2002) Lab-on-a-chip-based separation and detection technology for life science applications. Am Biotechnol Lab 20(1):28–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex A. Volinsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Volinsky, A.A., Waters, P. (2013). Delaminated Film Buckling Microchannels. In: Chen, X. (eds) Mechanical Self-Assembly. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4562-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4562-3_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4561-6

  • Online ISBN: 978-1-4614-4562-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics