Skip to main content

Microtribology of Human Teeth

  • Chapter
  • First Online:
Dental Biotribology

Abstract

Due to its excellent mechanical and tribological behavior, enamel is one of those unique natural substances that still cannot be substituted effectively for with artificial restorative materials. As shown in Fig. 5.1, enamel uniquely consists of aligned “prism-shaped” rods (4–8 μm in diameter), which run approximately perpendicular from the dentin-enamel junction (DEJ) toward the tooth surface [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zheng J, Huang Y, Qian LM, Zhou ZR (2009) Nanomechanical properties and microtribological behaviours of human tooth enamel. Proc IMechE Part J J Eng Tribol 224:577–587

    Google Scholar 

  2. Lippert F, Parker DM, Jandt KD (2004) In vitro demineralization/remineralization cycles at human tooth enamel. J Colloid Interf Sci 280:442–448

    Article  Google Scholar 

  3. He LH, Swain MV (2008) Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J Mech Behav Biomed 1:18–29

    Article  Google Scholar 

  4. Habelitz S, Marshall SJ, Marshall GW Jr, Balooch M (2001) Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol 46:173–183

    Article  Google Scholar 

  5. Ge J, Cui FZ, Wang XM, Feng HL (2005) Property variations in the prism and the organic sheath within enamel by nanoindentation. Biomaterials 26:3333–3339

    Article  Google Scholar 

  6. He LH, Swain MV (2007) Enamel—a “metallic-like” deformable biocomposite. J Dent 35:431–437

    Article  MATH  Google Scholar 

  7. Braly A, Darnell LA, Mann AB, Teaford MF, Weihs TP (2007) The effect of prism orientation on the indentation testing of human molar enamel. Arch Oral Biol 52:856–860

    Article  Google Scholar 

  8. Fong H, Sarikaya M, White SN, Snead ML (2000) Nano-mechanical properties profiles across dentin–enamel junction of human incisor teeth. Mater Sci Eng 7:119–128

    Article  Google Scholar 

  9. Angker L, Swain MV, Kilpatrick N (2003) Micro-mechanical characterization of the properties of primary tooth dentine. J Dent 31:261–267

    Article  Google Scholar 

  10. Fischer-Cripps AC (2002) Nanoindentation. Springer, Berlin

    Google Scholar 

  11. Ebenstein DM, Pruitt LA (2006) Nanoindentation of biological materials. Nanotoday 1:26–33

    Article  Google Scholar 

  12. Bhushan B (ed) (1999) Handbook of micro/nanotribology, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  13. Bhushan B (ed) (2004) Handbook of nanotechnology. Springer, Heidelberg

    Google Scholar 

  14. Guidoni G, Swain M, Jäger IE (2008) From brittle to ductile like tribological response. J Dent 36:786–794

    Article  Google Scholar 

  15. Guidoni G, Swain M, Jäger IE (2009) Wear behaviour of enamel at the nano scale with a sharp and blunt indenter tip. Wear 266:60–68

    Article  Google Scholar 

  16. Guidoni G, Swain M, Jäger IE (2010) Nano-scale sliding contact deformation behaviour of enamel under wet and dry conditions. J Mater Sci Mater Med 21:1195–1203

    Article  Google Scholar 

  17. Zheng J, Xiao F, Qian LM, Zhou ZR (2009) Erosion behaviour of human tooth enamel in citric acid solution. Tribol Int 42:1558–1564

    Article  Google Scholar 

  18. Zheng SY, Zheng J, Gao SS, Yu BJ, Yu HY, Qian LM, Zhou ZR (2011) Investigation on the microtribological behaviour of human tooth enamel by nanoscratch. Wear 271:2290–2296

    Article  Google Scholar 

  19. Gao SS, Huang SB, Qian LM, Yu HY, Zhou ZR (2009) Wear behaviour of early carious enamel before and after remineralization. Wear 267:726–733

    Article  Google Scholar 

  20. Bhushan B (2001) Modern tribology handbook, vol 2. CRC Press, Boca Raton

    Google Scholar 

  21. Chanda N, Dwivedi UK, Acharya SK (2007) Anisotropic abrasive wear behaviour of bamboo (Dentrocalamus strictus). Wear 262:1031–1037

    Article  Google Scholar 

  22. Powers JM, Ludema KC, Craig RG (1973) Wear of fluorapatite single crystals: IV. Influence of sliding direction on frictional behaviour and surface failure. J Dent Res 52:1019–1025

    Article  Google Scholar 

  23. Habelitz S, Marshall SJ, Marshall GW Jr, Balooch M (2001) The functional width of the dentino-enamel junction determined by AFM-based nanoscratching. J Struct Biol 135:294–301

    Article  Google Scholar 

  24. Xie Z-H, Swain MV, Swadener G, Munroe P, Hoffman M (2009) Effect of microstructure upon elastic behaviour of human tooth enamel. J Biomech 42:1075–1080

    Article  Google Scholar 

  25. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  26. Xu HHK, Kelly JR, Jahanmir S, Thompson VP, Rekow ED (1997) Enamel subsurface damage due to tooth preparation with diamonds. J Dent Res 76:1698–1706

    Article  Google Scholar 

  27. Bajaj D, Arola D (2009) Role of prism decussation on fatigue crack growth and fracture of human enamel. Acta Biomater 5:3045–3056

    Article  Google Scholar 

  28. Cate JMT, Buijs MJ, Miller CC, Exterkate RAM (2008) Elevated fluoride products enhance remineralization of advanced enamel lesions. J Dent Res 87:943–947

    Article  Google Scholar 

  29. Langhorst SE, O’Donnell JNR, Skrtic D (2009) In vitro remineralization of enamel by polymeric amorphous calcium phosphate composite: quantitative microradiographic study. Dent Mater 25:884–891

    Article  Google Scholar 

  30. Wongkhantee S, Patanapiradej V, Maneenut C, Tantbirojn D (2006) Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. J Dent 34:214–220

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhou, ZR., Yu, HY., Zheng, J., Qian, LM., Yan, Y. (2013). Microtribology of Human Teeth. In: Dental Biotribology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4550-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4550-0_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4549-4

  • Online ISBN: 978-1-4614-4550-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics