Epidemiology of STI and HIV: An Overview of Concentration and Geographical and Temporal Dispersion

  • Peter J. WhiteEmail author


There is marked variation in the burden of disease due to STI and HIV that is experienced by different communities, and this burden changes over time. There is enormous variation in the burden of HIV both between countries [1] and within countries, with some groups (e.g., MSM, IDU) affected much more heavily than others. Even within risk groups there can be considerable variation. For this reason, it is argued that “Planning an intervention to prevent [HIV] infections … should be guided by local epidemiological and socioeconomic conditions … [including] risk behaviour, attitudes to risk, prevalence of cofactor STIs, stage of the HIV epidemic, existing health services.” [2].


Sexual Partner Core Group Sexual Partnership Infectious Period Concurrent Partner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    UNAIDS. AIDS epidemic update. 2009. ISBN 978 92 9173 832 8.Google Scholar
  2. 2.
    Grassly NC, Garnett GP, Schwartländer B, Gregson S, Anderson RM. The effectiveness of HIV prevention and the epidemiological context. Bull World Health Organ. 2001;79:1121–32.PubMedGoogle Scholar
  3. 3.
    Christakis NA, Fowler JH. Connected: the surprising power of our social networks and how they shape our lives. Little, Brown and Company; 2009. ISBN-10: 0316036145; ISBN-13: 978-0316036146.Google Scholar
  4. 4.
    Nudge: improving decisions about health, wealth, and happiness. Yale University Press; 2008. ISBN-10: 0300122233; ISBN-13: 978-0300122237.Google Scholar
  5. 5.
    Hoover K, Bohm M, Keppel K. Measuring disparities in the incidence of sexually transmitted diseases. Sex Transm Dis. 2008;35(12):S40–4. doi: 10.1097/OLQ.0b013e3181886750.PubMedGoogle Scholar
  6. 6.
    Kerani RP, Handcock MS, Handsfield HH, et al. Comparative geographic concentrations of 4 sexually transmitted infections. Am J Public Health. 2005;95:324–30.PubMedCrossRefGoogle Scholar
  7. 7.
    Semaan S, Sternberg M, Zaidi A, Aral SO. Social capital and rates of gonorrhea and syphilis in the United States: spatial regression analyses of state-level associations. Soc Sci Med. 2007;64:2324–41.PubMedCrossRefGoogle Scholar
  8. 8.
    Chesson HW, Sternberg M, Leichliter JS, Aral SO. The distribution of chlamydia, gonorrhoea and syphilis cases across states and counties in the USA, 2007. Sex Transm Infect. 2010;86 Suppl 3:iii52–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Lansky A, Brooks JT, DiNenno E, Heffelfinger J, Hall HI, Mermin J. Epidemiology of HIV in the United States. J Acquir Immune Defic Syndr. 2010;55:S64–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Jennings J, Carriero FC, Celentano D, Ellen JM. Geographic identification of high gonorrhea transmission areas in Baltimore, Maryland. Am J Epidemiol. 2005;161:73–80.PubMedCrossRefGoogle Scholar
  11. 11.
    Tillerson K. Explaining racial disparities in HIV/AIDS incidence among women in the U.S.: a systematic review. Stat Med. 2008;27:4132–43. doi: 10.1002/sim.3224.PubMedCrossRefGoogle Scholar
  12. 12.
    Klevens RM, Diaz T, Fleming PL, Mays MA, Frey R. Trends in AIDS among hispanics in the United States, 1991–1996. Am J Public Health. 1999;89(7):1104–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Monteiro EF, Lacey CJN, Merrick D. The interrelation of demographic and geospatial risk factors between four common sexually transmitted diseases. Sex Transm Infect. 2005;81:41–6. doi: 10.1136/sti.2004.009431.PubMedCrossRefGoogle Scholar
  14. 14.
    Macdonald N, Elam G, Hickson F, Imrie J, McGarrigle CA, Fenton KA, Baster K, Ward H, Gilbart VL, Power RM, Evans BG. Factors associated with HIV seroconversion in gay men in England at the start of the 21st century. Sex Transm Inf. 2008;84:8–13.CrossRefGoogle Scholar
  15. 15.
    Aral SO, Fenton KA, Holmes KK. Sexually transmitted diseases in the USA: temporal trends. Sex Transm Infect. 2007;83:257–66.PubMedCrossRefGoogle Scholar
  16. 16.
    Ward H. Prevention strategies for sexually transmitted infections: importance of sexual network structure and epidemic phase. Sex Transm Infect. 2007;83 Suppl 1:i43–9.PubMedCrossRefGoogle Scholar
  17. 17.
    Simms I, Fenton KA, Ashton M, et al. The re-emergence of syphilis in the United Kingdom: the new epidemic phases. Sex Transm Dis. 2005;32:220–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Stall RD, Hays RB, Waldo CR, Ekstrand M, McFarland W. The Gay ‘90s: a review of research in the 1990s on sexual behavior and HIV risk among men who have sex with men. AIDS. 2000;14 Suppl 3:S101–14.PubMedGoogle Scholar
  19. 19.
    Chesson HW, Dee TS, Aral SO. AIDS mortality may have contributed to the decline in syphilis rates in the United States in the 1990s. Sex Transm Dis. 2003;30(5):419–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Centers for Disease Control. Pneumocystis pneumonia – Los Angeles. MMWR Morb Mortal Wkly Rep. 1981;30:250–2.Google Scholar
  21. 21.
    Centers for Disease Control. Kaposi’s sarcoma and Pneumocystis pneumonia among homosexual men – New York City and California. MMWR Morb Mortal Wkly Rep. 1981;30:305–8.Google Scholar
  22. 22.
    Korber B, Muldoon M, Theiler J, Gao F, Gupta R, Lapedes A, Hahn BH, Wolinsky S. Timing the ancestor of the HIV-1 pandemic strains. Science. 2000;288:1789–96. doi: 10.1126/science.288.5472.1789.PubMedCrossRefGoogle Scholar
  23. 23.
    Gilbert MT, Rambaut A, Wlasiuk G, Spira TJ, Pitchenik AE, Worobey M. The emergence of HIV⁄AIDS in the Americas and beyond. Proc Natl Acad Sci USA. 2007;104:18566–70.PubMedCrossRefGoogle Scholar
  24. 24.
    Hughes G, Porter K, Gill ON. Indirect methods for estimating prevalent HIV infections: adults in England and Wales at the end of 1993. Epidemiol Infect. 1998;121:165–72.PubMedCrossRefGoogle Scholar
  25. 25.
    Dougan S, Evans BG, Macdonald N, Goldberg DJ, Gill ON, Fenton KA, Elford J. HIV in gay and bisexual men in the United Kingdom: 25 years of public health surveillance. Epidemiol Infect. 2008;136:145–56.PubMedCrossRefGoogle Scholar
  26. 26.
    Hall HI, Song R, Rhodes P, Prejean J, An Q, Lee LM, Karon J, Brookmeyer R, Kaplan EH, McKenna MT, Janssen RS, HIV Incidence Surveillance Group. Estimation of HIV incidence in the United States. JAMA. 2008;300(5):520–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Atun RA, McKee M, Coker R, Gurol-Urganci I. Health systems’ responses to 25 years of HIV in Europe: inequities persist and challenges remain. Health Policy. 2008;86:181–94.PubMedCrossRefGoogle Scholar
  28. 28.
    White PJ, Ward H, Garnett GP. Is HIV out of control in the UK? An example of analysing patterns of HIV spread using incidence-to-prevalence ratios. AIDS. 2006;20:1898–901.PubMedCrossRefGoogle Scholar
  29. 29.
    Prost A, Elford J, Imrie J, Petticrew M, Hart GJ. Social, behavioural, and intervention research among people of sub-Saharan African origin living with HIV in the UK and Europe: literature review and recommendations for intervention. AIDS Behav. 2008;12:170–94.PubMedCrossRefGoogle Scholar
  30. 30.
    Aggarwal I, Smith M, Tatt ID, Murad S, Osner N, Geretti AM, Easterbrook PJ. Evidence for onward transmission of HIV-1 non-B subtype strains in the United Kingdom. J Acquir Immune Defic Syndr. 2006;41(2):201–9. doi: 10.1097/01.qai.0000179430.34660.11.PubMedCrossRefGoogle Scholar
  31. 31.
    Stancliff S. Syringe access and HIV incidence in the United States. JAMA. 2008;300(20):2370.PubMedCrossRefGoogle Scholar
  32. 32.
    Rothenberg RB. The geography of gonorrhea: empirical demonstration of core group transmission. Am J Epidemiol. 1983;117:688–94.PubMedGoogle Scholar
  33. 33.
    Rothenberg RB, Sterk C, Toomey KE, et al. Using social network and ethnographic tools to evaluate syphilis transmission. Sex Transm Dis. 1998;25:154–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Potterat JJ, Rothenberg RB, Woodhouse DE, Muth JB, Pratts CI, Fogle JS. Gonorrhea as a social disease. Sex Transm Dis. 1985;12:25–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Elliott LJ, Blanchard JF, Beaudoin CM, Green CG, Nowicki DL, Matusko P, Moses S. Geographical variations in the epidemiology of bacterial sexually transmitted infections in Manitoba, Canada. Sex Transm Infect. 2002;78:i139–44.PubMedCrossRefGoogle Scholar
  36. 36.
    Law DG, Serre ML, Christakos G, Leone PA, Miller WC. Spatial analysis and mapping of sexually transmitted diseases to optimise intervention and prevention strategies. Sex Transm Infect. 2004;80:294–9. doi: 10.1136/sti.2003.006700.PubMedCrossRefGoogle Scholar
  37. 37.
    Fichtenberg CM, Ellen JM. Moving from core groups to risk spaces. Sex Transm Dis. 2003;30(11):825–6. doi: 10.1097/01.OLQ.0000097141.29899.7F.PubMedCrossRefGoogle Scholar
  38. 38.
    Potterat JJ. Sexual network configuration of sexually transmitted diseases hyperendemicity as harbinger of epidemicity. Sex Transm Dis. 2009;36(1):49–50.PubMedCrossRefGoogle Scholar
  39. 39.
    Law DG, Bernstein K, Serre ML, Schumacher C, Leone PA, Zenilman JM, Miller W, Rompalo AM. Modeling a syphilis outbreak through space and time using the Bayesian maximum entropy approach. Ann Epidemiol. 2006;16(11):797–804.CrossRefGoogle Scholar
  40. 40.
    Wasserheit JN, Aral SO. The dynamic topology of sexually transmitted disease epidemics: implications for prevention strategies. J Infect Dis. 1996;174 Suppl 2:S201–13.PubMedCrossRefGoogle Scholar
  41. 41.
    Aral SO. Determinants of STD epidemics: implications for phase appropriate intervention strategies. Sex Transm Infect. 2002;78:i3–13.PubMedCrossRefGoogle Scholar
  42. 42.
    Grassly NC, Fraser C, Garnett GP. Host immunity and synchronized epidemics of syphilis across the United States. Nature. 2005;433:417–21. doi: 10.1038/nature03072.PubMedCrossRefGoogle Scholar
  43. 43.
    White PJ, Ward H, Cassell JA, Mercer CH, Garnett GP. Vicious and virtuous circles in the dynamics of infectious disease and the provision of health care: gonorrhea in Britain as an example. J Infect Dis. 2005;192:824–36.PubMedCrossRefGoogle Scholar
  44. 44.
    Schumacher CM, Ellen J, Rompalo AM. Changes in demographics and risk behaviors of persons with early syphilis depending on epidemic phase. Sex Transm Dis. 2008;35:190–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Infectious diseases of humans: dynamics and ­control. Oxford University Press, New York; 1991. 768pp. ISBN-10: 0198545991; ISBN-13: 978-0198545996.Google Scholar
  46. 46.
    Grassly NC, Fraser C. Mathematical models of infectious disease transmission. Nat Rev Microbiol. 2008;6:477–87.PubMedGoogle Scholar
  47. 47.
    Garnett GP. An introduction to mathematical models in sexually transmitted disease epidemiology. Sex Transm Infect. 2002;78:7–12.PubMedCrossRefGoogle Scholar
  48. 48.
    Mishra S, Fisman DN, Boily M-C. The ABC of terms used in mathematical models of infectious diseases. J Epidemiol Community Health. 2011;65:87–94. doi: 10.1136/jech.2009.097113.PubMedCrossRefGoogle Scholar
  49. 49.
    White PJ, Enright MC. Mathematical models in infectious disease epidemiology. In: Cohen J, Powderly WG, Opal SM, editors. Infectious diseases, 3rd ed. Elsevier; 2010. p. 70–75. ISBN-10: 0323045790; ISBN-13: 978-0323045797.Google Scholar
  50. 50.
    Cooke KL, Yorke JA. Some equations modelling growth processes and gonorrhea epidemics. Math Biosci. 1973;16:75–101.CrossRefGoogle Scholar
  51. 51.
    Lajmanovich A, Yorke JA. A deterministic model for gonorrhea in a nonhomogeneous population. Math Biosci. 1976;28(3–4):221–36. doi: 10.1016/0025-5564(76)90125-5.CrossRefGoogle Scholar
  52. 52.
    Yorke JA, Hethcote HW, Nold A. Dynamics and control of the transmission of gonorrhea. Sex Transm Dis. 1978;5(2):51–6.PubMedCrossRefGoogle Scholar
  53. 53.
    Hethcote HW, Yorke JA, Nold A. Gonorrhea modeling: a comparison of control methods. Math Biosci. 1982;58(1):93–109. doi: 10.1016/0025-5564(82)90053-0.CrossRefGoogle Scholar
  54. 54.
    Hethcote HW, Yorke JA. Gonorrhea transmission dynamics and control, lecture notes in biomathematics, vol. 56. Berlin: Springer; 1984. 105pp. ISBN 0-387-13870-6.Google Scholar
  55. 55.
    Hallett TB, White PJ, Garnett GP. The appropriate evaluation of HIV prevention interventions: from experiment to full scale implementation. Sex Transm Infect. 2007;83(Suppl I):i55–60.PubMedCrossRefGoogle Scholar
  56. 56.
    Brunham RC, Plummer FA. A general model of sexually transmitted disease epidemiology and its implications for control. Med Clin North Am. 1990;74:1339–52.PubMedGoogle Scholar
  57. 57.
    Gamett GP, Anderson RM. Factors controlling the spread of HIV in heterosexual communities in developing countries: patterns of mixing between different age and sexual activity classes. Philos Trans R Soc Lond B. 1993;342:137–59.Google Scholar
  58. 58.
    Anderson RM, Gupta S, Ng W. The significance of sexual partner contact networks for the transmission dynamics of HIV. J Acquir Immune Defic Syndr. 1990;3:417–29.PubMedGoogle Scholar
  59. 59.
    Aral SO, Hughes JP, Stoner B, Whittington W, Handsfield HH, Anderson RM, Holmes KK. Sexual mixing patterns in the spread of gonococcal and chlamydial infections. Am J Public Health. 1999;89(6):825–33.PubMedCrossRefGoogle Scholar
  60. 60.
    Aral SO. Patterns of sex partner recruitment and types of mixing as determinants of STD transmission. Venereology. 1995;8:240–2.Google Scholar
  61. 61.
    Gupta S, Anderson RM, May RM. Networks of ­sexual contacts: implications for the pattern of spread of HIV. AIDS. 1989;3:807–17.PubMedCrossRefGoogle Scholar
  62. 62.
    Blower SM, McLean AR. Mixing ecology and ­epidemiology. Proc R Soc Lond B Biol Sci. 1991;245(1314):187–92.CrossRefGoogle Scholar
  63. 63.
    Brunham RC. Core group theory: a central concept in STD epidemiology. Venereology. 1997;10:34–9.Google Scholar
  64. 64.
    Golden MR, Whittington WLH, Handsfield HH, Hughes JP, Stamm WE, Hogben M, Clark A, Malinski C, Helmers JRL, Thomas KK, Holmes KK. Effect of expedited treatment of sex partners on recurrent or persistent gonorrhea or chlamydial infection. N Engl J Med. 2005;352:676–85.PubMedCrossRefGoogle Scholar
  65. 65.
    Garnett GP. The geographical and temporal evolution of sexually transmitted disease epidemics. Sex Transm Infect. 2002;78(Suppl):i14–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Morris M, Goodreau S, Moody J. Chapter 7: sexual networks, concurrency, and STD/HIV. In: Holmes KK, Sparling PF, Stamm WE, Piot P, Wasserheit JN, Corey L, Cohen MS, editors. Sexually transmitted diseases. 4th ed. McGraw-Hill Medical; 2008. p. 109–126. ISBN-10: 0071417486; ISBN-13: 978-0071417488.Google Scholar
  67. 67.
    Gregson S, Nyamukapa CA, Garnett GP, Mason PR, Zhuwau T, Caraël M, Chandiwana SK, Anderson RM. Sexual mixing patterns and sex-differentials in teenage exposure to HIV infection in rural Zimbabwe. Lancet. 2002;359(9321):1896–903.PubMedCrossRefGoogle Scholar
  68. 68.
    Johnson KM, Alarcon J, Watts DM, Rodriguez C, Velasquez C, Sanchez J, Lockhart D, Stoner BP, Holmes KK. Sexual networks of pregnant women with and without HIV infection. AIDS. 2003;17:605–12.PubMedCrossRefGoogle Scholar
  69. 69.
    Morris M, Podhisita C, Wawer MJ, Hancock MS. Bridge populations in the spread of HIV/AIDS in Thailand. AIDS. 1996;10(11):1265–71.PubMedCrossRefGoogle Scholar
  70. 70.
    Adimora AA, Schoenbach VJ, Martinson FE, et al. Heterosexually transmitted HIV infection among African Americans in North Carolina. J Acquir Immune Defic Syndr. 2006;41:616–23.PubMedCrossRefGoogle Scholar
  71. 71.
    Hightow LB, Leone PA, Macdonald PD, McCoy SI, Sampson LA, Kaplan AH. Men who have sex with men and women: a unique risk group for HIV transmission on North Carolina College campuses. Sex Transm Dis. 2006;33(10):585–93.PubMedCrossRefGoogle Scholar
  72. 72.
    Klovdahl AS. Social networks and the spread of infectious diseases. Soc Sci Med. 1985;21(11):1203–16.PubMedCrossRefGoogle Scholar
  73. 73.
    Doherty IA, Padian NS, Marlow C, Aral SO. Determinants and consequences of sexual networks as they affect the spread of sexually transmitted infections. J Infect Dis. 2005;191 Suppl 1:S42–54.PubMedCrossRefGoogle Scholar
  74. 74.
    Morris M, editor. Network epidemiology: a handbook for survey design and data collection (international studies in demography). Oxford University Press, New York; 2004. 252pp. ISBN-10: 0199269017; ISBN-13: 978-0199269013.Google Scholar
  75. 75.
    Kretzschmar M. Sexual network structure and sexually transmitted disease prevention – a modeling perspective. Sex Transm Dis. 2000;27(10):627–35.PubMedCrossRefGoogle Scholar
  76. 76.
    Morris M, Kurth AE, Hamilton DT, Moody J, Wakefield S, Handcock M, for The Network Modeling Group. Concurrent partnerships and HIV prevalence disparities by race: linking science and public health practice. Am J Public Health. 2009;99(6):1023–31.PubMedCrossRefGoogle Scholar
  77. 77.
    Watts DJ. The “new” science of networks. Annu Rev Sociol. 2004;30:243–70.CrossRefGoogle Scholar
  78. 78.
    Luke DA, Harris JK. Network analysis in public health: history, methods, and applications. Annu Rev Public Health. 2007;28:69–93.PubMedCrossRefGoogle Scholar
  79. 79.
    Smith KP, Christakis NA. Social networks and health. Annu Rev Sociol. 2008;34:405–29.CrossRefGoogle Scholar
  80. 80.
    Morris M, Kretzschmar M. Concurrent partnerships and transmission dynamics in networks. Soc Net. 1995;17:299–318.CrossRefGoogle Scholar
  81. 81.
    Morris M, Kretzschmar M. Concurrent partnerships and the spread of HIV. AIDS. 1997;11:641–8.PubMedCrossRefGoogle Scholar
  82. 82.
    Ghani AC, Swinton J, Garnett GP. The role of sexual partnership networks in the epidemiology of gonorrhea. Sex Transm Dis. 1997;24(1):45–56.PubMedCrossRefGoogle Scholar
  83. 83.
    Ghani AC, Donnelly CA, Garnett GP. Sampling biases and missing data in explorations of sexual partner networks for the spread of sexually transmitted diseases. Stat Med. 1998;17(18):2079–97.PubMedCrossRefGoogle Scholar
  84. 84.
    Ghani AC, Garnett GP. Measuring sexual partner networks for transmission of sexually transmitted diseases. J R Stat Soc A Stat Soc. 1998;161:227–38.CrossRefGoogle Scholar
  85. 85.
    Ghani AC, Garnett GP. Risks of acquiring and ­transmitting sexually transmitted diseases in sexual partner networks. Sex Transm Dis. 2000;27(10):579–87.PubMedCrossRefGoogle Scholar
  86. 86.
    Ghani AC, Aral SO. Patterns of sex worker-client contacts and their implications for the persistence of sexually transmitted infections. J Infect Dis. 2005;191:S34–41.PubMedCrossRefGoogle Scholar
  87. 87.
    Chen MI, Ghani AC. Populations and partnerships: insights from metapopulation and pair models into the epidemiology of gonorrhoea and other sexually transmitted infections. Sex Transm Infect. 2010;86(6):433–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Chen MI, Ghani AC, Edmunds WJ. A metapopulation modelling framework for gonorrhoea and other sexually transmitted infections in heterosexual populations. J R Soc Interface. 2009;6:775–91.PubMedCrossRefGoogle Scholar
  89. 89.
    Keeling MJ, Rand DA, Morris AJ. Correlation models for childhood epidemics. Proc Roy Soc ser B. 1997;264:1149–56.CrossRefGoogle Scholar
  90. 90.
    Keeling MJ. The effects of local spatial structure on epidemiological invasions. Proc Roy Soc ser B. 1999;266:859–67.CrossRefGoogle Scholar
  91. 91.
    Bauch CJ, Rand DA. A moment closure model for sexually transmitted disease transmission through a concurrent partnership network. Proc Roy Soc ser B. 2000;267:2019–27.CrossRefGoogle Scholar
  92. 92.
    Eames KTD, Keeling MJ. Modeling dynamic and network heterogeneities in the spread of sexually transmitted disease. Proc Natl Acad Sci USA. 2002;99:13330–5.PubMedCrossRefGoogle Scholar
  93. 93.
    Eames KTD, Keeling MJ. Monogamous networks and the spread of sexually transmitted diseases. Math Biosci. 2004;189:115–30.PubMedCrossRefGoogle Scholar
  94. 94.
    Ferguson NM, Garnett GP. More realistic models of sexually transmitted disease transmission dynamics: sexual partnership networks, pair models, and moment closure. Sex Transm Dis. 2000;27:600–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Chen MI, Ghani AC, Edmunds J. Mind the gap: the role of time between sex with two consecutive partners on the transmission dynamics of gonorrhea. Sex Transm Dis. 2008;35:435–44.PubMedCrossRefGoogle Scholar
  96. 96.
    Kraut-Becher JR, Aral SO. Gap length: an important factor in sexually transmitted disease transmission. Sex Transm Dis. 2003;30(3):221–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Day S, Ward H, Ghani AC, Bell G, Goan U, Parker M, Claydon E, Ison C, Kinghorn G, Weber J. Sexual histories, partnerships and networks associated with the transmission of gonorrhoea. Int J STD AIDS. 1998;9:666–71.PubMedCrossRefGoogle Scholar
  98. 98.
    De P, Singh AE, Wong T, Yacoub W, Jolly AM. Sexual network analysis of a gonorrhoea outbreak. Sex Transm Infect. 2004;80:280–5. doi: 10.1136/sti.2003.007187.PubMedCrossRefGoogle Scholar
  99. 99.
    Wylie JL, Jolly AM. Patterns of chlamydia and gonorrhea infection in sexual networks in Manitoba, Canada. Sex Transm Dis. 2001;28(1):14–24.PubMedCrossRefGoogle Scholar
  100. 100.
    Day S, Ward H, Ison C, Bell G, Weber J. Sexual networks: the integration of social and genetic data. Soc Sci Med. 1998;47(12):1981–92.PubMedCrossRefGoogle Scholar
  101. 101.
    Ward H, Ison CA, Day SE, Martin I, Ghani AC, Garnett GP, Bell G, Kinghorn G, Weber JN. A prospective social and molecular investigation of gonococcal transmission. Lancet. 2000;356:1812–7.PubMedCrossRefGoogle Scholar
  102. 102.
    Choudhury B, Risley CL, Ghani AC, et al. Identification of individuals with gonorrhoea within sexual networks: a population-based study. Lancet. 2006;368:139–46.PubMedCrossRefGoogle Scholar
  103. 103.
    Risley CL, Ward H, Choudhury B, et al. Geographical and demographic clustering of gonorrhoea in London. Sex Transm Infect. 2007;83:481–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Krieger N, Waterman PD, Chen JT, et al. Monitoring socioeconomic inequalities in sexually transmitted infections, tuberculosis, and violence: geocoding and choice of area-based socioeconomic measures—the public health disparities geocoding project (US). Public Health Rep. 2003;118:240–60.PubMedGoogle Scholar
  105. 105.
    Zenilman JM, Ellish N, Fresia A, et al. The geography of sexual partnerships in Baltimore: applications of core theory dynamics using a geographic information system. Sex Transm Dis. 1999;26:75–81.PubMedCrossRefGoogle Scholar
  106. 106.
    Kolader M-E, Dukers NHTM, van der Bij AK, Dierdorp M, Fennema JSA, Coutinho RA, Bruisten SM. Molecular epidemiology of Neisseria gonorrhoeae in Amsterdam, The Netherlands, shows distinct heterosexual and homosexual networks. J Clin Microbiol. 2006;44(8):2689–97. doi: 10.1128/JCM.02311-05.PubMedCrossRefGoogle Scholar
  107. 107.
    Cabral T, Jolly AM, Wylie JL. Chlamydia trachomatis omp1 genotypic diversity and concordance with sexual network data. J Infect Dis. 2003;187(2):279–86. doi: 10.1086/346048.PubMedCrossRefGoogle Scholar
  108. 108.
    Wylie JL, Cabral T, Jolly AM. Identification of networks of sexually transmitted infection: a molecular, geographic, and social network analysis. J Infect Dis. 2005;191:899–906.PubMedCrossRefGoogle Scholar
  109. 109.
    Lewis F, Hughes GJ, Rambaut A, Pozniak A, Leigh Brown AJ. Episodic sexual transmission of HIV revealed by molecular phylodynamics. PLoS Med. 2008;5:e50. doi: 10.1371/journal.pmed.0050050.PubMedCrossRefGoogle Scholar
  110. 110.
    Hué S, Pillay D, Clewley JP, Pybus OG. Genetic analysis reveals the complex structure of HIV-1 transmission within defined risk groups. Proc Natl Acad Sci. 2005;102(12):4425–9. doi: 10.1073/pnas.0407534102.PubMedCrossRefGoogle Scholar
  111. 111.
    Chadborn TR, Baster K, Delpech VC, Sabin CA, Sinka K, Rice BD, Evans BG. No time to wait: how many HIV-infected homosexual men are diagnosed late and consequently die? (England and Wales, 1993–2002). AIDS. 2005;19(5):513–20.PubMedCrossRefGoogle Scholar
  112. 112.
    Fenton KA. Changing epidemiology of HIV/AIDS in the United States: implications for enhancing and promoting HIV testing strategies. Clin Infect Dis. 2007;45:S213–20.PubMedCrossRefGoogle Scholar
  113. 113.
    Stoner BP, Whittington WL, Hughes JP, Aral SO, Holmes KK. Comparative epidemiology of heterosexual gonococcal and chlamydial networks – implications for transmission patterns. Sex Transm Dis. 2000;27(4):215–23.PubMedCrossRefGoogle Scholar
  114. 114.
    Klovdahl AS, Potterat JJ, Woodhouse DE, Muth JB, Muth SQ, Darrow WW. Social networks and infectious disease: the Colorado Springs study. Soc Sci Med. 1994;38:79–88.PubMedCrossRefGoogle Scholar
  115. 115.
    Rothenberg RB, Hoang TDM, Muth SQ, Crosby R. The Atlanta Urban Adolescent Network Study: a network view of STD prevalence. Sex Transm Dis. 2007;34(8):525–31.PubMedGoogle Scholar
  116. 116.
    De Rubeis E, Wylie JL, Cameron DW, Nair RC, Jolly AM. Combining social network analysis and cluster analysis to identify sexual network types. Int J STD AIDS. 2007;18:754–9.PubMedCrossRefGoogle Scholar
  117. 117.
    Potterat JJ, Muth SQ, Rothenberg RB, Zimmerman-Rogers H, Green DL, Taylor JE, Bonney MS, White HA. Sexual network structure as an indicator of epidemic phase. Sex Transm Infect. 2002;78:i152–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Rothenberg RB, Kimbrough L, Lewis-Hardy R, Heath B, Williams OC, Pradyna T, Johnson D, Schrader M. Social network methods for endemic foci of syphilis: a pilot project. Sex Transm Dis. 2000;27(1):12–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Friedman SR, Neaigus A, Jose B, Curtis R, Goldstein M, Ildefonso G, Rothenberg RB, Des Jarlais DC. Sociometric risk networks and risk for HIV infection. Am J Public Health. 1997;87:1289–96.PubMedCrossRefGoogle Scholar
  120. 120.
    Liljeros F, Edling CR, Amaral LAN, et al. The web of human sexual contacts. Nature. 2001;411(6840):907–8. doi: 10.1038/35082140.PubMedCrossRefGoogle Scholar
  121. 121.
    Jones JH, Handcock MS. Sexual contacts and epidemic thresholds. Nature. 2003;423(6940):605–6. doi: 10.1038/423605a.PubMedCrossRefGoogle Scholar
  122. 122.
    Hudson CP. Concurrent partnerships could cause AIDS epidemics. Int J STD AIDS. 1993;4:249–53.PubMedGoogle Scholar
  123. 123.
    Potterat JJ, Zimmerman-Rogers H, Muth S, et al. Chlamydia transmission: concurrency, reproduction number, and the epidemic trajectory. Am J Epidemiol. 1999;150:1331–9.PubMedCrossRefGoogle Scholar
  124. 124.
    Koumans E, Farley T, Gibson J, et al. Characteristics of persons with syphilis in areas of persisting syphilis in the United States: sustained transmission associated with concurrent partnerships. Sex Transm Dis. 2001;28:497–503.PubMedCrossRefGoogle Scholar
  125. 125.
    Jennings J, Glass B, Parham P, Adler N, Ellen JM. Sex partner concurrency, geographic context, and adolescent sexually transmitted infections. Sex Transm Dis. 2004;31(12):733–9. doi: 10.1097/01.olq.0000145850.12858.87.Google Scholar
  126. 126.
    Adimora AA, Schoenbach VJ, Doherty IA. Concurrent sexual partnerships among men in the United States. Am J Public Health. 2007;97:2230–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Eaton JW, Hallett TB, Garnett GP. Concurrent sexual partnerships and primary HIV infection: a critical interaction. AIDS Behav. 2010;15(4):687–92. doi: 10.1007/s10461-010-9787-8.CrossRefGoogle Scholar
  128. 128.
    Aral SO. Partner concurrency and the STD/HIV epidemic. Curr Infect Dis Rep. 2010;12:134–9. doi: 10.1007/s11908-010-0087-2.PubMedCrossRefGoogle Scholar
  129. 129.
    Kretzschmar M, White RG, Caraël M. Concurrency is more complex than it seems. AIDS. 2010;24:313–5.PubMedCrossRefGoogle Scholar
  130. 130.
    Aral SO, Blanchard JF. Phase specific approaches to the epidemiology and prevention of sexually transmitted diseases. Sex Transm Infect. 2002;78(Suppl):i1–2.PubMedCrossRefGoogle Scholar
  131. 131.
    UNAIDS Working Group on Measuring Concurrent Sexual Partnerships. HIV: consensus indicators are needed for concurrency. Lancet. 2009;375:621–2.Google Scholar
  132. 132.
    Fenton KA, Mercer CH, McManus S, et al. Ethnic variations in sexual behaviour in Great Britain and risk of sexually transmitted infections: a probability survey. Lancet. 2005;365:1246–55.PubMedCrossRefGoogle Scholar
  133. 133.
    Hogben M, Leichliter JS. Social determinants and sexually transmitted disease disparities. Sex Transm Dis. 2008;35(12):S13–8. doi: 10.1097/OLQ.0b013e31818d3cad.PubMedGoogle Scholar
  134. 134.
    Wasserheit JN. Epidemiologic synergy – interrelationships between human-immunodeficiency-virus infection and other sexually-transmitted diseases – (Reprinted from AIDS and Womens Reproductive Health, CH 5, 1992). Sex Transm Dis. 1992;19:61–77.PubMedGoogle Scholar
  135. 135.
    Fleming DT, Wasserheit JN. From epidemiological synergy to public health policy and practice: the contribution of other sexually transmitted diseases to sexual transmission of HIV infection. Sex Transm Inf. 1999;75:3–17.CrossRefGoogle Scholar
  136. 136.
    Corbett EL, Steketee RW, ter Kuile FO, et al. HIV-1/AIDS and the control of other infectious diseases in Africa. Lancet. 2002;359:2177–87. doi: 10.1016/S0140-6736(02)09095-5.PubMedCrossRefGoogle Scholar
  137. 137.
    Centola D. The spread of behavior in an online social network experiment. Science. 2010;329:1194–7. doi: 10.1126/science.1185231.PubMedCrossRefGoogle Scholar
  138. 138.
    Fox J, White PJ, Weber J, Garnett GP, Ward H, Fidler S. Quantifying sexual exposure to HIV within an HIV serodiscordant relationship: development of an algorithm. AIDS. 2011;25:1065–82.PubMedCrossRefGoogle Scholar
  139. 139.
    Centola D, Willer R, Macy M. The Emperor’s Dilemma: a computational model of self-enforcing norms. Am J Sociol. 2005;110(4):1009–40.CrossRefGoogle Scholar
  140. 140.
    Christakis NA, Fowler JH. The collective dynamics of smoking in a large social network. N Engl J Med. 2008;358:2249–58.PubMedCrossRefGoogle Scholar
  141. 141.
    Friedman SR, Bolyard M, Mateu-Gelabert P, Goltzman P, Pawlowicz MP, Singh DZ, Touze G, Diana Rossi D, Maslow C, Sandoval M, Flom PL. Some data-driven reflections on priorities in AIDS network research. AIDS Behav. 2007;11:641–51. doi: 10.1007/s10461-006-9166-7.PubMedCrossRefGoogle Scholar
  142. 142.
    Rogers EM. Diffusion of innovations. 3rd ed. New York: Free Press; 1983.Google Scholar
  143. 143.
    Smith AMA, Subramanian SV. Population contextual associations with heterosexual partner numbers: a multilevel analysis. Sex Transm Infect. 2006;82:250–4.PubMedCrossRefGoogle Scholar
  144. 144.
    Youm Y, Laumann EO. Social network effects on the transmission of sexually transmitted diseases. Sex Transm Dis. 2002;29:689–97.PubMedCrossRefGoogle Scholar
  145. 145.
    Rothenberg R. Maintenance of endemicity in urban environments: a hypothesis linking risk, network structure and geography. Sex Transm Infect. 2007;83:10–5. doi: 10.1136/sti.2006.017269.PubMedCrossRefGoogle Scholar
  146. 146.
    Aral SO, Adimora AA, Fenton KA. Understanding and responding to disparities in HIV and other sexually transmitted infections in African Americans. Lancet. 2008;372:337–40.PubMedCrossRefGoogle Scholar
  147. 147.
    Laumann EO, Youm Y. Racial/ethnic group differences in the prevalence of sexually transmitted diseases in the United States: a network explanation. Sex Transm Dis. 1999;26:250–61.PubMedCrossRefGoogle Scholar
  148. 148.
    Turner KME, Garnett GP, Ghani AC, Sterne JAC, Low N. Investigating ethnic inequalities in the incidence of sexually transmitted infections: mathematical modelling study. Sex Transm Infect. 2004;80:379–85. doi: 10.1136/sti.2003.007575.PubMedCrossRefGoogle Scholar
  149. 149.
    Adimora AA, Schoenbach VJ. Social context, sexual networks, and racial disparities in rates of sexually transmitted infections. J Infect Dis. 2005;191 Suppl 1:S115–22.PubMedCrossRefGoogle Scholar
  150. 150.
    Kraut-Becher J, Eisenberg M, Voytek C, Brown T, Metzger DS, Aral S. Examining racial disparities in HIV: lessons from sexually transmitted infections research. J Acquir Immune Defic Syndr. 2008;47 Suppl 1:S20–7.PubMedCrossRefGoogle Scholar
  151. 151.
    Ford CL, Whetten KD, Hall SA, Kaufman JS, Thrasher AD. Black sexuality, social construction, and research targeting ‘The Down Low’ (‘The DL’). Ann Epidemiol. 2007;17:209–16.PubMedCrossRefGoogle Scholar
  152. 152.
    Pouget ER, Kershaw TS, Niccolai LM, Ickovics JR, Blankenship KM. Associations of sex ratios and male incarceration rates with multiple opposite-sex partners: potential social determinants of HIV/STI transmission. Public Health Rep. 2010;125 Suppl 4:70–80.PubMedGoogle Scholar
  153. 153.
    Khan MR, Miller WC, Schoenbach VJ, Weir SS, Jay S, Kaufman JS, Wohl DA, Adimora AA. Timing and duration of incarceration and high-risk sexual partnerships among African Americans in North Carolina. Ann Epidemiol. 2008;18:403–10.PubMedCrossRefGoogle Scholar
  154. 154.
    Adimora AA, Schoenbach VJ. Contextual factors and the black-white disparity in heterosexual HIV transmission. Epidemiology. 2002;13(6):707–12.PubMedCrossRefGoogle Scholar
  155. 155.
    Goodreau SM, Golden MR. Biological and demographic causes of high HIV and sexually transmitted disease prevalence in men who have sex with men. Sex Transm Infect. 2007;83:458–62.PubMedCrossRefGoogle Scholar
  156. 156.
    Lopman B, Nyamukapa C, Mushati P, Mupambireyi Z, Mason P, Garnett GP, Gregson S. HIV incidence in 3 years of follow-up of a Zimbabwe cohort—1998–2000 to 2001–03: contributions of proximate and underlying determinants to transmission. Int J Epidemiol. 2008;37:88–105. doi: 10.1093/ije/dym255.PubMedCrossRefGoogle Scholar
  157. 157.
    Abu-Raddad LJ, Patnaik P, Kublin JG. Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa. Science. 2006;314:1603–6. doi: 10.1126/science.1132338.PubMedCrossRefGoogle Scholar
  158. 158.
    Mah TL, Halperin DT. Concurrent sexual partnerships and the HIV epidemics in Africa: evidence to move forward. AIDS Behav. 2010;14(1):11–6.PubMedCrossRefGoogle Scholar
  159. 159.
    UNAIDS/WHO/SACEMA Expert Group on Modelling the Impact and Cost of Male Circumcision for HIV Prevention. [Hankins C, Hargrove J, Williams B, Abu Raddad L, Auvert B, Bollinger L, Dorrington R, Ghani A, Gray R, Hallett T, Kahn JG, Lohse N, Nagelkerke N, Porco T, Schmid G, Stover J, Weiss H, Welte A, White P, White R.] Male circumcision for HIV prevention in high HIV prevalence settings: what can mathematical modelling contribute to informed decision making? PLoS Med. 2009; 6(9): e1000109. doi: 10.1371/journal.pmed.1000109.
  160. 160.
    Auvert B, Sobngwi-Tambekou J, Cutler E, Nieuwoudt M, Lissouba P, Puren A, Taljaard D, et al. Randomized, controlled intervention trial of male circumcision for reduction of HIV infection risk: the ANRS 1265 Trial. PLoS Med. 2005;2:e298.PubMedCrossRefGoogle Scholar
  161. 161.
    Bailey RC, Moses S, Parker CB, Agot K, Maclean I, Krieger JN, et al. Male circumcision for HIV prevention in young men in Kisumu, Kenya: a randomised controlled trial. Lancet. 2007;369:643–56.PubMedCrossRefGoogle Scholar
  162. 162.
    Gray RH, Kigozi G, Serwadda D, Makumbi F, Watya S, Nalugoda F, Kiwanuka N, et al. Male circumcision for HIV prevention in men in Rakai, Uganda a randomised trial. Lancet. 2007;369:657–66.PubMedCrossRefGoogle Scholar
  163. 163.
    Hallett TB, Alsallaq RA, Baeten JM, Weiss H, Celum C, Gray R, Abu-Raddad L. Will circumcision provide even more protection from HIV to women and men? New estimates of the population impact of circumcision interventions. Sex Transm Infect. 2011;87:88–93. doi: 10.1136/sti.2010.043372.PubMedCrossRefGoogle Scholar
  164. 164.
    Dodd PJ, White PJ, Garnett GP. Notions of synergy for combinations of interventions against infectious diseases in heterogeneously mixing populations. Math Biosci. 2010;227:94–104. doi: 10.1016/j.mbs.2010.06.004.PubMedCrossRefGoogle Scholar
  165. 165.
    Garnett GP, White PJ, Ward H. Fewer partners or more condoms? Modelling the effectiveness of STI prevention interventions. Sex Transm Infect. 2008;84(Suppl II):i4–11.Google Scholar
  166. 166.
    Hollingsworth TD, Anderson RM, Fraser C. HIV-1 transmission, by stage of infection. J Infect Dis. 2008;198:687–93.PubMedCrossRefGoogle Scholar
  167. 167.
    Abu-Raddad LJ, Longini IM. No HIV stage is dominant in driving the HIV epidemic in sub-Saharan Africa. AIDS. 2008;22:1055–61.PubMedCrossRefGoogle Scholar
  168. 168.
    Fox J, White PJ, Macdonald N, Weber J, McClure M, Fidler S, Ward H. Reductions in HIV transmission risk behaviour following diagnosis of primary HIV infection: a cohort of high-risk men who have sex with men. HIV Med. 2009;10:432–8. doi: 10.1111/j.1468-1293.2009.00708.x.PubMedCrossRefGoogle Scholar
  169. 169.
    HIV testing – new guidelines call for wider testing. London, UK. 2008. callforwidertesting/.Google Scholar
  170. 170.
    Health Protection Agency. Time to test for HIV: expanded healthcare and community HIV testing in England. Interim report. London, UK. 2010.Google Scholar
  171. 171.
    Remple VP, Patrick DM, Johnston C, Tyndall MW, Jolly AM. Clients of indoor commercial sex workers: heterogeneity in patronage patterns and implications for HIV and STI propagation through sexual networks. Sex Transm Dis. 2007;34(10):754–60. doi: 10.1097/01.olq.0000261327.78674.cb.PubMedGoogle Scholar
  172. 172.
    Wohlfeiler D, Potterat JJ. Using gay men’s sexual networks to reduce sexually transmitted disease (STD)/human immunodeficiency virus (HIV) transmission. Sex Transm Dis. 2005;32(10):S48–52. doi: 10.1097/01.olq.0000175394.81945.68.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Modelling & Economics UnitHealth Protection AgencyLondonUK
  2. 2.MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease EpidemiologyImperial College London, School of Public HealthLondonUK

Personalised recommendations