Leaping Ahead pp 227-235 | Cite as

The Ecology of Touch: Are Prosimians Special?

  • Magdalena N. Muchlinski
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)


The size of the infraorbital foramen (IOF), through which the infraorbital nerve (ION) passes, has been used to infer the number of vibrissae (whiskers) an animal has, which in turn has informed phylogenetic and ecological interpretations of extinct primates. The functional significance of IOF area, however, has not been tested. I present a comparison of relative IOF area among extant mammals. My results show that (1) relative IOF area is a good indicator of ION size and thus of touch sensitivity of the rostrum; (2) primates and other euarchontans have low IOF areas relative to most other mammals; (3) IOF area and vibrissal count correlate, but not strongly; and (4) among primates IOF area covaries with diet, such that frugivores have relatively larger IOFs than do folivores or insectivores. This dietary signal holds for prosimians and anthropoids, and prosimians do not have enlarged IOFs compared with anthropoids.


Infraorbital Nerve Ecological Interpretation Infraorbital Foramen Nonprimate Mammal Primate Fossil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


La taille du Foramen Infra-Orbital (FIO), au travers duquel passe le nerf infraorbital (NIO), est utilisée comme caractère indicateur du nombre de vibrisses (moustaches) qui peut aider à interpréter les espèces éteintes de Primates, en termes de phylogénie et d’écologie. Cependant, la signification fonctionnelle du FIO n’a jamais été testée. Je présente une comparaison de la taille relative du FIO chez les Mammifères actuels. L’analyse montre que (1) la surface relative du FIO est un bon indicateur de la taille du NIO, et donc de la sensibilité tactile du museau; (2) les Primates et les autres Euarchontes ont un relativement petit FIO comparés à la plupart des autres Mammifères; (3) la surface du FIO est faiblement mais significativement corrélée au nombre de vibrisses; (4) chez les Primates, la surface du FIO co-varie avec le régime alimentaire, les frugivores ayant de plus grands FIO que les folivores et les insectivores. Cet effet du régime s’applique aussi bien aux Prosimiens qu’aux Anthropoïdes, et les Prosimiens n’ont pas de plus grands FIO que les Anthropoïdes.



I thank L. J. Shapiro, E. C. Kirk, N. J. Dominy, R. W. Sussman, O. Y. Martin, R. D. Martin, S. R. Tecot, L. J. Alport, and R. Lewis, the National Science Foundation grant 0622422, the Field Museum of Natural History, the University of Texas at Austin, and PEO.


  1. Ahl AS (1987) Relationship of vibrissal length and habits in the Sciuridae. J Mammal 68:848–853CrossRefGoogle Scholar
  2. Anthony MRL, Kay RF (1993) Tooth form and diet in ateline and alouattine primates: reflections on the comparative method. Am J Sci 293A:356–382CrossRefGoogle Scholar
  3. Baron G, Stephan H, Frahm HD (1990) Comparison of brain structure volumes in Insectivora and primates IX. Trigeminal complex. J Hirnforsch 31:193–200PubMedGoogle Scholar
  4. Beard CK, Wang J (2004) The eosimiid primates (Anthropoidea) of the Heti Formation, Yuanqu Basin, Shanxi and Henan provinces, People’s Republic of China. J Hum Evol 46:401–432PubMedCrossRefGoogle Scholar
  5. Brecht M, Preilowski B, Merzenich MM (1997) Functional architecture of the mystacial vibrissae. Behav Brain Res 84:81–97PubMedCrossRefGoogle Scholar
  6. Crish SD, Rice FL, Park TJ, Comer CM (2003) Somatosensory organization and behavior in naked mole-rats I: vibrissae-like body hairs comprise a sensory array that mediates orientation to tactile stimuli. Brain Behav Evol 62:141–151PubMedCrossRefGoogle Scholar
  7. Cull G, Cioffi GA, Dong J, Homer L, Wang L (2003) Estimating normal optic nerve axon numbers in non-human primate eyes. J Glaucoma 12:301–306PubMedCrossRefGoogle Scholar
  8. Dominy NJ (2004) Fruits, fingers, and fermentation: the sensory cues available to foraging primates. Integr Comp Biol 44:295–303PubMedCrossRefGoogle Scholar
  9. Dominy NJ, Lucas PW, Osorio D, Yamashita N (2001) The sensory ecology of primate food perception. Evol Anthropol 10:171–186CrossRefGoogle Scholar
  10. Ebara S, Kumamoto K, Matsuura T, Mazurkiewicz JE, Rice FL (2002) Similarities and difference in the innervation of mystacial vibrissal follicle-sinus complexes in the rat and cat: a confocal microscopic study. J Comp Neurol 449:103–119PubMedCrossRefGoogle Scholar
  11. Gingerich PD (1981) Early Cenozoic Omomyidae and the evolutionary history of tarsiiform ­primates. J Hum Evol 10:345–348CrossRefGoogle Scholar
  12. Huber E (1930) Evolution of facial musculature and the cutaneous field of trigeminus. Part II. Q Rev Biol 5:389–437CrossRefGoogle Scholar
  13. Hylander WL (1975) Incisor size and diet in anthropoids with special reference to Cercopithecidae. Sci 189:1095–1098CrossRefGoogle Scholar
  14. Kandel ER, Schwartz JH, Jessell TM (2000) Principles of neural science, 4th edn. McGraw-Hill, New YorkGoogle Scholar
  15. Kay RF, Cartmill M (1977) Cranial morphology and adaptations of Palaechthon nacimienti and other Paromomyidae (Plesiadapoidea, ?Primates), with a description of a new genus and species. J Hum Evol 6:19–32CrossRefGoogle Scholar
  16. Klages M, Muyakshin S, Soltwedel T, Arntz WE (2002) Mechanoreception, a possible mechanism for food fall detection in deep-sea scavengers. Deep Sea Res I 49:143–155CrossRefGoogle Scholar
  17. le Clark WEG (1959) The antecedents of man. Harpers, New YorkGoogle Scholar
  18. Lucas PW (1994) Categorization of food items relevant to oral processing. In: Chivers DJ, Langer P (eds) The digestive system in mammals: food, form and function. Cambridge University Press, Cambridge, pp 197–219CrossRefGoogle Scholar
  19. Muchlinski MN (2008a) Ecological and morphological correlates of infraorbital foramen size and its implications for interpreting the fossil record. Unpublished PhD thesis, University of Texas at AustinGoogle Scholar
  20. Muchlinski MN (2008b) The relationship between the infraorbital foramen, infraorbital nerve, and maxillary mechanoreception: implications for interpreting the paleoecology of fossil mammals based on infraorbital foramen size. Anat Rec 291:1221–1226CrossRefGoogle Scholar
  21. Muchlinski MN (2010a) A comparative analysis of vibrissae count and infraorbital foramen area in primates and other mammals. J Hum Evol 58:447–473PubMedCrossRefGoogle Scholar
  22. Muchlinski MN (2010b) Ecological correlates of infraorbital foramen area in primates. Am J Phys Anthropol 141:131–141PubMedGoogle Scholar
  23. Ni X, Wang Y, Hu Y, Li C (2004) A euprimate skull from the early Eocene of China. Nature 427:65–68PubMedCrossRefGoogle Scholar
  24. Simons EL (1987) New faces of Aegyptopithecus from the Oligocene of Egypt. J Hum Evol 16:273–289CrossRefGoogle Scholar
  25. Ungar P (1998) Dental allometry, morphology, and wear as evidence for diet in fossil primates. Evol Anthropol 6:205–217CrossRefGoogle Scholar
  26. Van Roosmalen M (1985) Subcategorizing foods in primates. In: Chivers DJ, Wood BA (eds) Food acquisition and processing in primates. Plenum, New York, pp 167–176Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Anatomy and Neurobiology, College of Medicine, Chandler Medical Center MN210University of KentuckyLexingtonUSA

Personalised recommendations