Advertisement

Leaping Ahead pp 215-223 | Cite as

Seasonality and Behavioral Energy Strategies in Microcebus berthae and M. murinus

  • Melanie DammhahnEmail author
  • Peter M. Kappeler
Chapter
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)

Abstract

To survive and reproduce successfully in highly seasonal regions, ­animals must balance their energy budgets during lean seasons. We conducted a comparative study of two sympatric mouse lemur species to identify species-specific energy saving strategies for coping with seasonality and evaluated their consequences for female fitness. Since August 2002 we captured, marked and recaptured individuals of coexisting populations of Microcebus berthae and M. murinus in Kirindy Forest and recorded activity by direct observations of radio-collared females. The species differed in their seasonal activity patterns: female M. berthae maintained high activity levels throughout the year, whereas female M. murinus largely ceased activity during the cold dry season. In M. berthae, low survival restricted female reproductive potential. Consequently, females maximized the condition in which they entered the reproductive season. In contrast, M. murinus females maximized survival but entered the reproductive season in poor condition. Thus, mouse lemur species subjected to the same environmental conditions show different species-specific behavioral energy strategies to cope with pronounced seasonality.

Resume

Pour survivre et se reproduire avec succès and des régions très saisonnières, les animaux devraient équilibrer leur budget énergétique pendant la saison difficile. Nous avons conduit une étude comparative portant sur deux espèces sympatriques de microcèbes afin d’identifier deux stratégies spécifiques d’économie d’énergie utilisées pour faire face à la saisonnalité, et évaluer leurs conséquences sur le fitness des femelles. Depuis août 2002, nous avons capturé, marqué et re-capturé des individus dans deux populations syntopiques de Microcebus berthae and M. murinus, dans la forêt de Kirindy, et observé directement des femelles suivies par radio-pistage. Les deux espèces ont des rythmes d’activité saisonnière différents : les femelles M. berthae maintiennent un niveau d’activité élevé tout le long de l’année, alors que les femelles M. murinus cessent pratiquement toute activité pendant la fraiche saison sèche. In M. berthae, la faible survie réduit la durée de la carrière reproductive des femelles. En conséquence, les femelles maximisent leur condition physique pendant la période du début de la saison de reproduction. Par contre, les femelles M. murinus maximisent leur survie, mais commencent la reproduction en moins bonnes conditions. Donc, ces deux espèces de microcèbes, qui font face aux mêmes conditions environnementales, utilisent des stratégies énergétiques saisonnières différentes.

Notes

Acknowledgments

We acknowledge the authorization and support of this study by Profs O. Ramilijaona and D. Rakotondravony (Université d’Antananarivo), the Commission Tripartite and the CAFF of the Direction des Eaux et Forêts, the CNFEREF Morondava. We thank Rodin Rasoloarison, Léonard Razafimanantsoa, Tiana Andrianjanahary, Jean-Claude de Beroboka, Bruno Tsiverimana and the Equipe Kirindy for assistance in the field. Financial support was generously provided by DFG (Ka 1082/10-1and2), the Margot Marsh Biodiversity Foundation, DPZ Göttingen and Christian-Vogel-Fond (GfP).

References

  1. Brown JH, Sibly RM (2006) Life-history evolution under a production constraint. Proc Natl Acad Sci USA 103:17595–17599PubMedCrossRefGoogle Scholar
  2. Dammhahn M, Kappeler PM (2005) Social system of Microcebus berthae, the world’s smallest primate. Int J Primatol 26:407–435CrossRefGoogle Scholar
  3. Dammhahn M, Kappeler PM (2008a) Small-scale coexistence of two mouse lemur species (Microcebus berthae and M. murinus) within a homogeneous competitive environment. Oecologia 157:473–483PubMedCrossRefGoogle Scholar
  4. Dammhahn M, Kappeler PM (2008b) Comparative feeding ecology of sympatric Microcebus berthae and M. murinus. Int J Primatol 29:1567–1589CrossRefGoogle Scholar
  5. Dammhahn M, Kappeler PM (2010) Scramble or contest competition over food in solitarily foraging mouse lemurs (Microcebus spp.): new insights from stable isotopes. Am J Phys Anthropol 141:181–189PubMedGoogle Scholar
  6. Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Hibernation in a tropical primate. Nature 429:825–826PubMedCrossRefGoogle Scholar
  7. Eberle M, Kappeler PM (2002) Mouse lemurs in space and time: a test of the socioecological model. Behav Ecol Sociobiol 51:131–139CrossRefGoogle Scholar
  8. Eberle M, Kappeler PM (2006) Family insurance: kin selection and cooperative breeding in a solitary primate (Microcebus murinus). Behav Ecol Sociobiol 60:582–588CrossRefGoogle Scholar
  9. Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274PubMedCrossRefGoogle Scholar
  10. Génin F, Schilling A, Perret M (2005) Social inhibition of seasonal fattening in wild and captive gray mouse lemurs. Physiol Behav 86:185–194PubMedCrossRefGoogle Scholar
  11. Hemingway CA, Bynum N (2005) The influence of seasonality on primate diet and ranging. In: Brockman DK, van Schaik CP (eds) Seasonality in primates. Cambridge University Press, Cambridge, pp 57–104CrossRefGoogle Scholar
  12. Lahann P, Schmid J, Ganzhorn JU (2006) Geographic variation in populations of Microcebus murinus in Madagascar: resource seasonality or Bergmann’s rule? Int J Primatol 27:983–999CrossRefGoogle Scholar
  13. Lovegrove BG (2005) Seasonal thermoregulation responses in mammals. J Comp Physiol B 175:231–247PubMedCrossRefGoogle Scholar
  14. Müller EF, Nieschalk U, Meier B (1985) Thermoregulation in the slender loris (Loris tardigradus). Folia Primatol 44:216–226PubMedCrossRefGoogle Scholar
  15. Mzilikazi N, Masters J, Lovegrove BG (2006) Lack of torpor in free-ranging southern lesser galagos Galago moholi: ecological and physiological considerations. Folia Primatol 77:465–476PubMedCrossRefGoogle Scholar
  16. Radespiel U (2006) Ecological diversity and seasonal adaptations of mouse lemurs (Microcebus spp.). In: Gould L, Sauther ML (eds) Lemurs: ecology and adaptation. Springer, New York, pp 211–233Google Scholar
  17. Rasoazanabary E (2006) Male and female activity patterns in Microcebus murinus during the dry season at Kirindy forest, western Madagascar. Int J Primatol 27:437–463CrossRefGoogle Scholar
  18. Schmid J (1999) Sex-specific differences in activity patterns and fattening in the gray mouse lemur (Microcebus murinus) in Madagascar. J Mammal 80:749–757CrossRefGoogle Scholar
  19. Schmid J, Kappeler PM (1998) Fluctuating sexual dimorphism and differential hibernation by sex in a primate, the gray mouse lemur (Microcebus murinus). Behav Ecol Sociobiol 43:125–132CrossRefGoogle Scholar
  20. Schmid J, Kappeler PM (2005) Physiological adaptations to seasonality in nocturnal primates. In: Brockman DK, van Schaik CP (eds) Seasonality in primates. Cambridge University Press, Cambridge, pp 129–155CrossRefGoogle Scholar
  21. Schmid J, Ruf T, Heldmaier G (2000) Metabolism and temperature regulation during daily torpor in the smallest primate, the pygmy mouse lemur (Microcebus myoxinus) in Madagascar. J Comp Physiol B 170:59–68PubMedCrossRefGoogle Scholar
  22. Schmid J, Speakman JR (2000) Daily energy expenditure of the gray mouse lemur (Microcebus murinus): a small primate that uses torpor. J Comp Physiol B 170:633–641PubMedCrossRefGoogle Scholar
  23. Schülke O, Ostner J (2007) Physiological ecology of cheirogaleid primates: variation in hibernation and torpor. Acta Ethol 10:13–21CrossRefGoogle Scholar
  24. Schwab D (2000) A preliminary study of spatial distribution and mating system of the pygmy mouse lemur (Microcebus cf myoxinus). Am J Primatol 51:41–60PubMedCrossRefGoogle Scholar
  25. Sorg JP, Rohner U (1996) Climate and tree phenology of the dry deciduous forest of the Kirindy Forest. In: Ganzhorn JU, Sorg JP (eds) Ecology and economy of a tropical dry forest in Madagascar. Erich Goltze GmbH and Co., Göttingen, pp 57–80Google Scholar
  26. Speakman JR (2008) The physiological costs of reproduction in small mammals. Philos Trans R Soc Lond B Boil Sci 363:375–398CrossRefGoogle Scholar
  27. Van Schaik CP (1989) The ecology of social relationships amongst female primates. In: Standen V, Foley RA (eds) Comparative socioecology. Blackwell, Oxford, pp 195–218Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Abteilung Verhaltensökologie & SoziobiologieDeutsches PrimatenzentrumGöttingenGermany
  2. 2.Abteilung Soziobiologie/AnthropologieUniversität GöttingenGöttingenGermany

Personalised recommendations