The Psychometric Function: Continuation

  • Kenneth Knoblauch
  • Laurence T. Maloney
Chapter
Part of the Use R! book series (USE R, volume 32)

Abstract

In the previous chapter we showed how to use direct optimization methods and the generalized linear model (GLM) to fit psychometric functions to Yes–No data. In an extended example using GLM, we illustrated the procedure for selecting a model to fit multiple psychometric functions, across a series of experimental conditions and how to evaluate the goodness of fit of the model. In this chapter, we continue the exploration of fitting psychometric functions and demonstrate methods required when the observer’s task is to select one among many alternatives, a type of experiment referred to as m-alternative forced choice (mAFC). In addition, we illustrate methods for assigning standard errors and confidence limits to estimated parameters. Finally, we end with a short discussion of non- (or semi-)parametric methods for fitting psychometric functions.

Keywords

Prefix Suffix 

References

  1. 1.
    Abbey, C.K., Eckstein, M.P.: Classification image analysis: estimation and statistical inference for two-alternative forced-choice experiments. J. Vis. 2, 66–78 (2002)Google Scholar
  2. 2.
    Ahumada, A.J.: Perceptual classification images from vernier acuity masked by noise. Perception 25 ECVP Abstract Suppl. (1996)Google Scholar
  3. 3.
    Ahumada, A.J.: Classification image weights and internal noise level estimation. J. Vis. 2(1), 121–131 (2002)Google Scholar
  4. 4.
    Ahumada, A.J., Lovell, J.: Stimulus features in signal detection. J. Acoust. Soc. Am. 49, 1751–1756 (1971)Google Scholar
  5. 5.
    Ahumada, A.J., Marken, R., Sandusky, A.: Time and frequency analyses of auditory signal detection. J. Acoust. Soc. Am. 57(2), 385–390 (1975)Google Scholar
  6. 6.
    Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csàki, F. (eds.) Second International Symposium on Inference Theory, pp. 267–281. Akadémia Kiadó, Budapest (1973)Google Scholar
  7. 7.
    Baayen, R.H., Davidson, D.J., Bates, D.M.: Mixed-effects modeling with crossed random effects for subjects and items. J. Mem. Lang. 59, 390–412 (2008)Google Scholar
  8. 8.
    Bates, D.: Fitting linear mixed models. R News 5, 27–30 (2005). http://www.r-project.org/doc/Rnews/Rnews_2005-1.pdf
  9. 9.
    Bates, D., Maechler, M., Bolker, B.: lme4: Linear mixed-effects models using S4 classes (2011). R package version 0.999375-42. http://CRAN.R-project.org/package=lme4. Accessed date on 2nd August 2012
  10. 10.
    Bates, D., Maechler, M., Bolker, B.: lme4.0: Linear mixed-effects models using S4 classes (2012). R package version 0.9999-1/r1692. http://R-Forge.R-project.org/projects/lme4/. Accessed date on 2nd August 2012
  11. 11.
    Bates, D.M.: lme4: Mixed-Effects Modeling with R. Springer, New York (in preparation). http://lme4.r-forge.r-project.org/book/
  12. 12.
    Bengtsson, H., Riedy, J.: R.matlab: Read and write of MAT files together with R-to-Matlab connectivity (2011). R package version 1.5.1. http://CRAN.R-project.org/package=R.matlab. Accessed date on 2nd August 2012
  13. 13.
    Bernstein, S.N.: Sur l’ordre de la meilleure approximation des fonctions continues par les polynômes de degré donné. Mémoires de l’ Académie Royale de Belgique 4, 1–104 (1912)Google Scholar
  14. 14.
    Bishop, Y.M.M., Fienberg, S.E., Holland, P.W.: Discrete Multivariate Analysis: Theory and Practice. MIT, Cambridge (1975)MATHGoogle Scholar
  15. 15.
    Block, H.D., Marschak, J.: Random orderings and stochastic theories of responses. In: Olkin, I., Ghurye, S., Hoeffding, W., Madow, W., Mann, H. (eds.) Contributions to Probability and Statistics, pp. 38–45. Stanford University Press, Stanford (1960)Google Scholar
  16. 16.
    Boeck, P.D., Wilson, M. (eds.): Explanatory Item Response Models: A Generalized Linear and Nonlinear Approach. Springer, New York (2004)MATHGoogle Scholar
  17. 17.
    Boring, E.G.: Sensation and Perception in the History of Experimental Psychology. Irvington Publishers, Inc., New York (1942)Google Scholar
  18. 18.
    Bouet, R., Knoblauch, K.: Perceptual classification of chromatic modulation. Vis. Neurosci. 21, 283–289 (2004)Google Scholar
  19. 19.
    Bracewell, R.N.: The Fourier Transform and its Applications, 3rd edn. McGraw-Hill, New York (2000)Google Scholar
  20. 20.
    Bratley, P., Fox, B.L., Schrage, L.E.: A Guide to Simulation. Springer, New York (1983)MATHGoogle Scholar
  21. 21.
    Brindley, G.S.: Two more visual theorems. Q. J. Exp. Psychol. 12, 110–112 (1960)Google Scholar
  22. 22.
    Britten, K.H., Shadlen, M.N., Newsome, W.T., Movshon, J.A.: The analysis of visual motion: A comparison of neuronal and psychophysical performance. J. Neurosci. 12(12), 4745–4765 (1992)Google Scholar
  23. 23.
    Broström, G., Holmberg, H.: glmmML: Generalized linear models with clustering (2011). R package version 0.82-1. http://CRAN.R-project.org/package=glmmML. Accessed date on 2nd August 2012
  24. 24.
    Burnham, K.P., Anderson, D.R.: Model Selection and Inference: A Practical Information-Theoretic Approach. Springer, New York (1998)MATHGoogle Scholar
  25. 25.
    Canty, A., Ripley, B.D.: boot: Bootstrap R (S-Plus) Functions (2012). R package version 1.3-5Google Scholar
  26. 26.
    Carney, T., Tyler, C.W., Watson, A.B., Makous, W., Beutte, B., Chen, C.C., Norcia, A.M., Klein, S.A.: Modelfest: Year one results and plans for future years. In: Rogowitz, B.E., Pappas, T.N. (eds.) Proceedings of SPIE: Human vision and electronic imaging V, vol. 3959, pp. 140–151. SPIE, Bellingham (2000)Google Scholar
  27. 27.
    Carroll, L.: Through the Looking Glass and Ahat Alice Found There. Macmillan, Bassingstoke (1871)Google Scholar
  28. 28.
    Chambers, J.M., Hastie, T.J. (eds.): Statistical Models in S. Chapman and Hall/CRC, Boca Raton (1992)MATHGoogle Scholar
  29. 29.
    Charrier, C., Maloney, L.T., Cherifi, H., Knoblauch, K.: Maximum likelihood difference scaling of image quality in compression-degraded images. J. Opt. Soc. Am. A 24, 3418–3426 (2007)Google Scholar
  30. 30.
    Chauvin, A., Worsley, K., Schyns, P., Arguin, M., Gosselin, F.: Accurate statistical tests for smooth classification images. J. Vis. 5, 659–667 (2005)Google Scholar
  31. 31.
    Christensen, R.H.B.: ordinal—regression models for ordinal data (2010). R package version 2011.09-14. http://www.cran.r-project.org/package=ordinal/. Accessed date on 2nd August 2012
  32. 32.
    Christensen, R.H.B., Brockhoff, P.B.: sensR—an R-package for sensory discrimination (2011). R package version 1.2-13. http://www.cran.r-project.org/package=sensR/. Accessed date on 2nd August 2012
  33. 33.
    Christensen, R.H.B., Hansen, M.K.: binomTools: Performing diagnostics on binomial regression models (2011). R package version 1.0-1. http://CRAN.R-project.org/package=binomTools. Accessed date on 2nd August 2012
  34. 34.
    Chung, K.L., Aitsahlia, F.: Elementary Probability Theory, 4th edn. Springer, New York (2006)Google Scholar
  35. 35.
    Clark, H.H.: The language-as-fixed-effect fallacy: A critique of language statistics in psychological research. J. Verbal Learn. Verbal Behav. 12, 355–359 (1973)Google Scholar
  36. 36.
    Cleveland, W.S., Diaconis, P., McGill, R.: Variables on scatterplots look more highly correlated when the scales are increased. Science 216, 1138–1141 (1982)Google Scholar
  37. 37.
    Cleveland, W.S., McGill, R.: Graphical perception: Theory, experimentation and application to the development of graphical methods. J. Am. Stat. Assoc. 79, 531–554 (1984)MathSciNetGoogle Scholar
  38. 38.
    Cleveland, W.S., McGill, R.: The many faces of a scatterplot. J. Am. Stat. Assoc. 79, 807–822 (1984)MathSciNetGoogle Scholar
  39. 39.
    Conway, J., Eddelbuettel, D., Nishiyama, T., Prayaga, S.K., Tiffin, N.: RPostgreSQL: R interface to the PostgreSQL database system (2010). R package version 0.1-7. http://www.postgresql.org. Accessed date on 2nd August 2012
  40. 40.
    Cook, R.D., Weisberg, S.: Residuals and Influence in Regression. Chapman and Hall, London (1982)MATHGoogle Scholar
  41. 41.
    Cornsweet, T.: Visual Perception. Academic, New York (1970)Google Scholar
  42. 42.
    Crozier, W.J.: On the visibility of radiation at the human fovea. J. Gen. Physiol. 34, 87–136 (1950)Google Scholar
  43. 43.
    Crozier, W.J., Wolf, E.: Theory and measurement of visual mechanisms. IV. On flicker with subdivided fields. J. Gen. Physiol. 27, 401–432 (1944)Google Scholar
  44. 44.
    Dakin, S.C., Bex, P.J.: Natural image statistics mediate brightness filling in. Proc. Biol. Sci. 1531, 2341–2348 (2003)Google Scholar
  45. 45.
    Dartnall, H.J.A., Bowmaker, J.K., Mollon, J.D.: Microspectrophotometry of human photoreceptors. In: Mollon, J.D., Sharpe, L.T. (eds.) Colour Vision: Physiology and Psychophysics, pp. 69–80. Academic, London (1983)Google Scholar
  46. 46.
    Davison, A.C., Hinkley, D.V.: Bootstrap Methods and their Applications. Cambridge University Press, Cambridge (1997). http://statwww.epfl.ch/davison/BMA/
  47. 47.
    Debreu, G.: Topological methods in cardinal utility theory. In: Arrow, K.J., Karlin, S., Suppes, P. (eds.) Mathematical Methods in the Social Sciences, pp. 16–26. Stanford University Press, Stanford (1960)Google Scholar
  48. 48.
    DeCarlo, L.T.: Signal detection theory and generalized linear models. Psychol. Meth. 3, 186–205 (1998)Google Scholar
  49. 49.
    DeCarlo, L.T.: On the statistical and theoretical basis of signal detection theory and extensions: Unequal variance, random coefficient and mixture models. J. Math. Psychol. 54, 304–313 (2010)MathSciNetMATHGoogle Scholar
  50. 50.
    Delord, S., Devinck, F., Knoblauch, K.: Surface and edge in visual detection: Is filling-in necessary? J. Vis. 4, 68a (2004). http://journalofvision.org/4/8/68/
  51. 51.
    Devinck, F.: Les traitements visuels chez l’homme : stratégies de classification de la forme. Ph.D. thesis, Université Lyon 2 (2003)Google Scholar
  52. 52.
    Devroye, L.: Non-uniform Random Variate Generation. Springer, New York (1986)MATHGoogle Scholar
  53. 53.
    Dobson, A.J.: An Introduction to Generalized Linear Models. Chapman and Hall, London (1990)MATHGoogle Scholar
  54. 54.
    Edwards, A.W.F.: Likelihood, expanded edn. Johns Hopkins University Press, Baltimore (1992)Google Scholar
  55. 55.
    Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman Hall, New York (1993)MATHGoogle Scholar
  56. 56.
    Emrith, K., Chantler, M.J., Green, P.R., Maloney, L.T., Clarke, A.D.F.: Measuring perceived differences in surface texture due to changes in higher order statistics. J. Opt. Soc. Am. A 27(5), 1232–1244 (2010)Google Scholar
  57. 57.
    Falmagne, J.C.: Elements of Psychophysical Theory. Oxford University Press, Oxford (1985)Google Scholar
  58. 58.
    Faraway, J.J.: Extending Linear Models with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models. Chapman and Hall/CRC, Boca Raton (2006)MATHGoogle Scholar
  59. 59.
    Fechner, G.T.: Elemente der Psychophysik. Druck und Verlag von Breitkopfs, Leipzig (1860)Google Scholar
  60. 60.
    Finney, D.J.: Probit Analysis, 3rd edn. Cambridge University Press, Cambridge (1971)MATHGoogle Scholar
  61. 61.
    Firth, D.: Bias reduction of maximum likelihood estimates. Biometrika 80, 27–38 (1993)MathSciNetMATHGoogle Scholar
  62. 62.
    Fisher, R.A.: The design of experiments. In: Bennett, J.H. (ed.) Statistical Methods, Experimental Design and Scientific Inference, 9th edn. Macmillan, New York (1971)Google Scholar
  63. 63.
    Fleming, R.W., Jäkel, F., Maloney, L.T.: Visual perception of thick transparent materials. Psychol. Sci. 22, 812–820 (2011)Google Scholar
  64. 64.
    Foster, D.H., Bischof, W.F.: Bootstrap estimates of the statistical accuracy of thresholds obtained from psychometric functions. Spatial Vis. 11(1), 135–139 (1997)Google Scholar
  65. 65.
    Foster, D.H., Żychaluk, K.: Nonparametric estimates of biological transducer functions. IEEE Signal Process. Mag. 24, 49–58 (2007)Google Scholar
  66. 66.
    Fründ, I., Haenel, N.V., Wichmann, F.A.: Inference for psychometric functions in the presence of nonstationary behavior. J. Vis. 11(6), 1–19 (2011)Google Scholar
  67. 67.
    Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., Bornkamp, B., Hothorn, T.: mvtnorm: Multivariate normal and t distributions (2011). R package version 0.9-9991. http://CRAN.R-project.org/package=mvtnorm. Accessed date on 2nd August 2012
  68. 68.
    Gescheider., G.A.: Psychophysical scaling. Annu. Rev. Psychol. 39, 169–200 (1988)Google Scholar
  69. 69.
    Glass, L.: Moiré effect from random dots. Nature 223, 578–580 (1969)Google Scholar
  70. 70.
    GmbH, M.S.: XLConnect: Excel Connector for R (2011). R package version 0.1-5. http://CRAN.R-project.org/package=XLConnect. Accessed date on 2nd August 2012
  71. 71.
    Gold, J.M., Murray, R.F., Bennett, P.J., Sekular, A.B.: Deriving behavioural receptive fields for visually completed contours. Curr. Biol. 10, 663–666 (2000)Google Scholar
  72. 72.
    Green, D.M., Swets, J.A.: Signal Detection Theory and Psychophysics. Robert E. Krieger Publishing Company, Huntington (1966/1974)Google Scholar
  73. 73.
    Guilford, J.P.: Psychometric Methods, 2nd edn. McGraw-Hill, New York (1954)Google Scholar
  74. 74.
    Hadfield, J.D.: Mcmc methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Software 33(2), 1–22 (2010). http://www.jstatsoft.org/v33/i02/ Google Scholar
  75. 75.
    Hansen, T., Gegenfurtner, K.R.: Classification images for chromatic signal detection. J. Opt. Soc. Am. A 22, 2081–2089 (2005)Google Scholar
  76. 76.
    Harrell, F.E.: rms: Regression modeling strategies (2011). R package version 3.3-1. http://CRAN.R-project.org/package=rms. Accessed date on 2nd August 2012
  77. 77.
    Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman and Hall, London (1990)MATHGoogle Scholar
  78. 78.
    Hauck, W.W. Jr, Donner, A.: Wald’s test as applied to hypotheses in logit analysis. J. Am. Stat. Assoc. 72, 851–853 (1977)MathSciNetMATHGoogle Scholar
  79. 79.
    Hecht, S., Shlaer, S., Pirenne, M.H.: Energy, quanta and vision. J. Gen. Physiol. 25, 819–840 (1942)Google Scholar
  80. 80.
    Ho, Y.X., Landy, M.S., Maloney, L.T.: Conjoint measurement of gloss and surface texture. Psychol. Sci. 19, 196–204 (2008)Google Scholar
  81. 81.
    James, D.A.: DBI: R Database Interface (2009). R package version 0.2.5. http://CRAN.R-project.org/package=DBI. Accessed date on 2nd August 2012
  82. 82.
    James, D.A.: RSQLite: SQLite interface for R (2011). R package version 0.10.0. http://CRAN.R-project.org/package=RSQLite. Accessed date on 2nd August 2012
  83. 83.
    James, D.A., DebRoy, S.: RMySQL: R interface to the MySQL database (2011). R package version 0.8-0. http://biostat.mc.vanderbilt.edu/RMySQL. Accessed date on 2nd August 2012
  84. 84.
    James, D.A., Luciani, J.: ROracle: Oracle database interface for R (2007). R package version 0.5-9. http://www.omegahat.org. Accessed date on 2nd August 2012
  85. 85.
    Johnson, N.L., Kemp, A.W., Kotz, S.: Univariate Discrete Distributions. Wiley, New York (2005)MATHGoogle Scholar
  86. 86.
    Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 1. Wiley, New York (1994)MATHGoogle Scholar
  87. 87.
    Johnson, N.L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 2. Wiley, New York (1995)MATHGoogle Scholar
  88. 88.
    Keppel, G.: Design & Analysis: A Researcher’s Handbook, 2nd edn. Prentice-Hall, Englewood Cliffs (1982)Google Scholar
  89. 89.
    Kienzle, W., Franz, M.O., Scholkopf, B., Wichmann, F.A.: Center-surround patterns emerge as optimal predictors for human saccade targets. J. Vis. 9, 1–15 (2009)Google Scholar
  90. 90.
    Kienzle, W., Wichmann, F.A., Schölkopf, B., Franz, M.O.: A nonparametric approach to bottom-up visual saliency. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference, pp. 689–696. MIT, Cambridge (2007)Google Scholar
  91. 91.
    Kingdom, F.A.A., Prins, N.: Psychophysics: A Practical Introduction. Academic, New York (2009)Google Scholar
  92. 92.
    Kleiber, C., Zeileis, A.: Applied Econometrics with R. Springer, New York (2008). http://CRAN.R-project.org/package=AER
  93. 93.
    Klein, S.A.: Measuring, estimating, and understanding the psychometric function: A commentary. Percept. Psychophys. 63, 1421–1455 (2001)Google Scholar
  94. 94.
    Knoblauch, K.: psyphy: Functions for analyzing psychophysical data in R (2012). R package version 0.1-7. http://cran.r-project.org/web/packages/psyphy
  95. 95.
    Knoblauch, K., Maloney, L.T.: Estimating classification images with generalized linear and additive models. J. Vis. 8, 1–19 (2008)Google Scholar
  96. 96.
    Knoblauch, K., Maloney, L.T.: MLDS: Maximum likelihood difference scaling in R. J. Stat. Software 25, 1–26 (2008). http://www.jstatsoft.org/v25/i02
  97. 97.
    Knoblauch, K., Maloney, L.T.: MLCM: Maximum likelihood conjoint measurement (2011). R package version 0.0-8. http://CRAN.R-project.org/package=MLCM. Accessed date on 2nd August 2012
  98. 98.
    Knoblauch, K., Maloney, L.T.: MPDiR: Data sets and scripts for Modeling Psychophysical Data in R (2012). R package version 0.1-11. http://cran.r-project.org/web/packages/MPDiR
  99. 99.
    Knoblauch, K., Vital-Durand, F., Barbur, J.: Variation of chromatic sensitivity across the life span. Vis. Res. 41, 23–36 (2001)Google Scholar
  100. 100.
    Knuth, D.E.: The Art of Computer Programming: Seminumerical Programming, 3rd edn. Addison-Wesley, New York (1997)Google Scholar
  101. 101.
    Komárek, A., Lesaffre, E.: Generalized linear mixed model with a penalized gaussian mixture as a random-effects distribution. Comput. Stat. Data Anal. 52(7), 3441–3458 (2008)MATHGoogle Scholar
  102. 102.
    Kontsevich, L.L., Tyler, C.W.: What makes Mona Lisa smile? Vis. Res. 44, 1493–1498 (2004)Google Scholar
  103. 103.
    Kosmidis, I.: brglm: Bias reduction in binary-response GLMs (2007). R package version 0.5-6. http://www.ucl.ac.uk/~ucakiko/software.html. Accessed date on 2nd August 2012
  104. 104.
    Krantz, D.H., Luce, R.D., Suppes, P., Tversky, A.: Foundations of Measurement (Vol. 1): Additive and Polynomial Representations. Academic, New York (1971)Google Scholar
  105. 105.
    Kuss, M., Jäkel, F., Wichmann, F.A.: Bayesian inference for psychometric functions. J. Vis. 5, 478–492 (2005). http://journalofvision.org/5/5/8/ Google Scholar
  106. 106.
    Lang, D.T.: Rcompression: In-memory decompression for GNU zip and bzip2 formats. R package version 0.93-2. http://www.omegahat.org/Rcompression. Accessed date on 2nd August 2012
  107. 107.
    Lazar, N.A.: The Statistical Analysis of Functional MRI Data. Springer, New York (2008)MATHGoogle Scholar
  108. 108.
    Legge, G.E., Gu, Y.C., Luebker, A.: Efficiency of graphical perception. Percept. Psychophys. 46, 365–374 (1989)Google Scholar
  109. 109.
    Lehmann, E.L., Casella, G.: Theory of Point Estimation, 2nd edn. Springer, New York (1998)MATHGoogle Scholar
  110. 110.
    Lemon, J: Plotrix: A package in the red light district of R. R-News 6(4), 8–12 (2010)Google Scholar
  111. 111.
    Levi, D.M., Klein, S.A.: Classification images for detection and position discrimination in the fovea and parafovea. J. Vis. 2(1), 46–65 (2002)Google Scholar
  112. 112.
    Li, Y., Baron, J.: Behavioral Research Data Analysis in R, 1st edn. Springer, New York (2011)Google Scholar
  113. 113.
    Lindsey, D., Brown, A.: Color naming and the phototoxic effects of sunlight on the eye. Psychol. Sci. 13, 506–512 (2002)Google Scholar
  114. 114.
    Lindsey, D.T., Brown, A.M., Reijnen, E., Rich, A.N., Kuzmova, Y.I., Wolfe, J.M.: Color channels, not color appearance or color categories, guide visual search for desaturated color targets. Psychol. Sci. 21, 1208–1214 (2010)Google Scholar
  115. 115.
    Link, S.W.: The Wave Theory of Difference and Similarity. Lawrence Erlbaum Associates, Hillsdale (1992)Google Scholar
  116. 116.
    Luce, R.D., Green, D.M.: Parallel psychometric functions from a set of independent detectors. Psychol. Rev. 82, 483–486 (1975)Google Scholar
  117. 117.
    Luce, R.D., Tukey, J.W.: Simultaneous conjoint measurement: A new scale type of fundamental measurement. J. Math. Psychol. 32, 466–473 (1964)Google Scholar
  118. 118.
    Macke, J.H., Wichmann, F.A.: Estimating predictive stimulus features from psychophysical data: The decision image technique applied to human faces. J. Vis. 10 (2010)Google Scholar
  119. 119.
    MacLeod, D.: Visual sensitivity. Annu. Rev. Psychol. 29, 613–645 (1978)Google Scholar
  120. 120.
    Macmillan, N.A., Creelman, C.D.: Detection Theory: A User’s Guide, 2nd edn. Lawrence Erlbaum Associates, New York (2005)Google Scholar
  121. 121.
    Maloney, L.T.: Confidence intervals for the parameters of psychometric functions. Percept. Psychophys. 47(2), 127–134 (1990)Google Scholar
  122. 122.
    Maloney, L.T., Dal Martello, M.F.: Kin recognition and the perceived facial similarity of children. J. Vis. 6, 1047–1056 (2006). http://journalofvision.org/6/10/4/ Google Scholar
  123. 123.
    Maloney, L.T., Yang, J.N.: Maximum Likelihood difference scaling. J. Vis. 3(8), 573–585 (2003). http://www.journalofvision.org/3/8/5 Google Scholar
  124. 124.
    Mamassian, P., Goutcher, R.: Temporal dynamics in bistable perception. J. Vis. 5, 361–375 (2005)Google Scholar
  125. 125.
    Mangini, M.C., Biederman, I.: Making the ineffable explicit: Estimating the information employed for face classifications. Cognit. Sci. 28, 209–226 (2004)Google Scholar
  126. 126.
    Marin-Franch, I., Żychaluk, K., Foster, D.H.: modelfree: Model-free estimation of a psychometric function (2010). R package version 1.0. http://CRAN.R-project.org/package=modelfree. Accessed date on 2nd August 2012
  127. 127.
    McCullagh, P., Nelder, J.A.: Generalized Linear Models. Chapman and Hall, London (1989)MATHGoogle Scholar
  128. 128.
    Mineault, P.J., Barthelme, S., Pack, C.C.: Improved classification images with sparse priors in a smooth basis. J. Vis. 9, 1–24 (2009)Google Scholar
  129. 129.
    Mood, A., Graybill, F.A., Boes., D.C.: Introduction to the Theory of Statistics, 3rd edn. McGraw-Hill, New York (1974)Google Scholar
  130. 130.
    Murray, R.F.: Classification images: A review. J. Vis. 11, 1–25 (2011)Google Scholar
  131. 131.
    Murray, R.F., Bennett, P.J., Sekuler, A.B.: Optimal methods for calculating classification images: Weighted sums. J. Vis. 2(1), 79–104 (2002)Google Scholar
  132. 132.
    Murrel, P.: Introduction to Data Technologies. Chapman and Hall/CRC, Boca Raton (2009)Google Scholar
  133. 133.
    Nandy, A.S., Tjan, B.S.: The nature of letter crowding as revealed by first- and second-order classification images. J. Vis. 7(2), 5.1–26 (2007)Google Scholar
  134. 134.
    Neri, P.: Estimation of nonlinear psychophysical kernels. J. Vis. 4, 82–91 (2004). http://journalofvision.org/4/2/2/ Google Scholar
  135. 135.
    Neri, P.: How inherently noisy is human sensory processing? Psychonomic Bull. Rev. 17, 802–808 (2010)Google Scholar
  136. 136.
    Neri, P., Heeger, D.J.: Spatiotemporal mechanisms for detecting and identifying image features in human vision. Nat. Neurosci. 5, 812–816 (2002)Google Scholar
  137. 137.
    Neri, P., Parker, A.J., Blakemore, C.: Probing the human stereoscopic system with reverse correlation. Nature 401, 695–698 (1999)Google Scholar
  138. 138.
    Newsome, W.T., Britten, K.H., Movshon, J.A.: Neuronal correlates of a perceptual decision. Nature 341(6237), 52–54 (1989)Google Scholar
  139. 139.
    Obein, G., Knoblauch, K., Viénot, F.: Difference scaling of gloss: Nonlinearity, binocularity, and constancy. J. Vis. 4(9), 711–720 (2004)Google Scholar
  140. 140.
    Peirce, J.W.: The potential importance of saturating and supersaturating contrast response functions in visual cortex. J. Vis. 7, 13 (2007)Google Scholar
  141. 141.
    Pinheiro, J., Bates, D.: Mixed-Effects Models in S and S-PLUS. Springer, New York (2000)MATHGoogle Scholar
  142. 142.
    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., the R Development Core Team: nlme: Linear and nonlinear mixed effects models (2012). R package version 3.1-104Google Scholar
  143. 143.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, 3rd ed.: The Art of Scientific Computing. Cambridge University Press, Cambridge (2007)Google Scholar
  144. 144.
    Quick, R.: A vector-magnitude model of contrast detection. Kybernetik 16, 65–67 (1974)Google Scholar
  145. 145.
    R-core members, et al.: Foreign: Read data stored by Minitab, S, SAS, SPSS, Stata, Systat, dBase, …(2011). R package version 0.8-46. http://CRAN.R-project.org/package=foreign. Accessed date on 2nd August 2012
  146. 146.
    R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2011). ISBN 3-900051-07-0. http://www.R-project.org/. Accessed date on 2nd August 2012
  147. 147.
    Rensink, R.A., Baldridge, G.: The perception of correlation in scatterplots. Comput. Graph. Forum 29, 1203–1210 (2010)Google Scholar
  148. 148.
    Rhodes, G., Maloney, L.T., Turner, J., Ewing, L.: Adaptive face coding and discrimination around the average face. Vis. Res. 47, 974–989 (2007)Google Scholar
  149. 149.
    Ripley, B.: RODBC: ODBC Database Access (2011). R package version 1.3-3. http://CRAN.R-project.org/package=RODBC. Accessed date on 2nd August 2012
  150. 150.
    Ripley, B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge (1996)MATHGoogle Scholar
  151. 151.
    Roberts, F.S.: Measurement Theory. Cambridge University Press, Cambridge (1985)Google Scholar
  152. 152.
    Ross, M.G., Cohen, A.L.: Using graphical models to infer multiple visual classification features. J. Vis. 9(3), 23.1–24 (2009)Google Scholar
  153. 153.
    Ross, S.M.: A First Course in Probability Theory, 8th edn. Prentice-Hall, Englewood Cliffs (2009)Google Scholar
  154. 154.
    Rouder, J.N., Lu, J., Sun, D., Speckman, P., Morey, R., Naveh-Benjamin, M.: Signal detection models with random participant and item effects. Psychometrika 72, 621–642 (2007)MathSciNetMATHGoogle Scholar
  155. 155.
    Salsberg, D.: The Lady Tasting Tea: How Statistics Revolutionized Science in the Twentieth Century. W. H. Freeman, New York (2001)Google Scholar
  156. 156.
    Sarkar, D.: Lattice: Multivariate Data Visualization with R. Springer, New York (2008). http://lmdvr.r-forge.r-project.org
  157. 157.
    Schneider, B.: Individual loudness functions determined from direct comparisons of loudness intervals. Percept. Psychophys. 28, 493–503 (1980)Google Scholar
  158. 158.
    Schneider, B.: A technique for the nonmetric analysis of paired comparisons of psychological intervals. Psychometrika 45, 357–372 (1980)Google Scholar
  159. 159.
    Schneider, B., Parker, S., Stein, D.: The measurement of loudness using direct comparisons of sensory intervals. J. Math. Psychol. 11, 259–273 (1974)Google Scholar
  160. 160.
    Schwartz, M.: WriteXLS: Cross-platform Perl based R function to create Excel 2003 (XLS) files (2010). R package version 2.1.0. http://CRAN.R-project.org/package=WriteXLS. Accessed date on 2nd August 2012
  161. 161.
    Solomon, J.A.: Noise reveals visual mechanisms of detection and discrimination. J. Vis. 2(1), 105–120 (2002)Google Scholar
  162. 162.
    Spector, P.: Data Manipulation with R. Springer, New York (2008)MATHGoogle Scholar
  163. 163.
    van Steen, G.: dataframes2xls: dataframes2xls writes data frames to xls files (2011). R package version 0.4.5. http://cran.r-project.org/web/packages/dataframes2xls. Accessed date on 2nd August 2012
  164. 164.
    Stevens, S.S.: On the theory of scales of measurement. Science 103, 677–680 (1946)MATHGoogle Scholar
  165. 165.
    Stevens, S.S.: On the psychophysical law. Psychol. Rev. 64, 153–181 (1957)Google Scholar
  166. 166.
    Strasburger, H.: Converting between measures of slope of the psychometric function. Percept. Psychophys. 63, 1348–1355 (2001)Google Scholar
  167. 167.
    Sun, H., Lee, B., Baraas, R.: Systematic misestimation in a vernier task arising from contrast mismatch. Vis. Neurosci. 25, 365–370 (2008)Google Scholar
  168. 168.
    Suppes, P.: Finite equal-interval measurement structures. Theoria 38, 45–63 (1972)MathSciNetMATHGoogle Scholar
  169. 169.
    Tanner, W.P., Swets, J.A.: A decision-making theory of visual detection. Psychol. Rev. 61, 401–409 (1954)Google Scholar
  170. 170.
    Teller, D.Y.: The forced-choice preferential looking procedure: A psychophysical technique for use with human infants. Infant Behav. Dev. 2, 135–153 (1979)Google Scholar
  171. 171.
    Thibault, D., Brosseau-Lachaine, O., Faubert, J., Vital-Durand, F.: Maturation of the sensitivity for luminance and contrast modulated patterns during development of normal and pathological human children. Vis. Res. 47, 1561–1569 (2007)Google Scholar
  172. 172.
    Thomas, J.P., Knoblauch, K.: Frequency and phase contributions to the detection of temporal luminance modulation. J. Opt. Soc. Am. A 22(10), 2257–2261 (2005)Google Scholar
  173. 173.
    Thurstone, L.L.: A law of comparative judgement. Psychol. Rev. 34, 273–286 (1927)Google Scholar
  174. 174.
    Tolhurst, D.J., Movshon, J.A., Dean, A.F.: The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vis. Res. 23(8), 775–785 (1983)Google Scholar
  175. 175.
    Treutwein, B., Strasburger, H.: Fitting the psychometric function. Percept. Psychophys. 61(1), 87–106 (1999)Google Scholar
  176. 176.
    Urban, F.M.: The method of constant stimuli and its generalizations. Psychol. Rev. 17, 229–259 (1910)Google Scholar
  177. 177.
    Urbanek, S.: RJDBC: Provides access to databases through the JDBC interface (2011). R package version 0.2-0. http://www.rforge.net/RJDBC/. Accessed date on 2nd August 2012
  178. 178.
    Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S, 4th edn. Springer, New York (2002). http://www.stats.ox.ac.uk/pub/MASS4
  179. 179.
    Victor, J.: Analyzing receptive fields, classification images and functional images: Challenges with opportunities for synergy. Nat. Neurosci. 8, 1651–1656 (2005)Google Scholar
  180. 180.
    Warnes, G.R.: gmodels: Various R programming tools for model fitting (2011). R package version 2.15.1. http://CRAN.R-project.org/package=gmodels. Accessed date on 2nd August 2012
  181. 181.
    Warnes, G.R., et al.: gdata: Various R programming tools for data manipulation (2010). R package version 2.8.1. http://CRAN.R-project.org/package=gdata. Accessed date on 2nd August 2012
  182. 182.
    Watson, A.: The spatial standard observer: A human vision model for display inspection. In: 353 SID Symposium Digest of Technical Papers, 37, pp. 1312–1315 (2006)Google Scholar
  183. 183.
    Watson, A.B., Ahumada, A.J.: A standard model for foveal detection of spatial contrast. J. Vis. 5, 717–740 (2005)Google Scholar
  184. 184.
    Watson, A.B., Pelli, D.G.: QUEST: A Bayesian adaptive psychometric method. Percept. Psychophys. 33, 113–120 (1983)Google Scholar
  185. 185.
    Watson, G.A.: Approximation Theory and Numerical Methods. Wiley, New York (1980)MATHGoogle Scholar
  186. 186.
    Westheimer, G.: The spatial grain of the perifoveal visual field. Vis. Res. 22(1), 157–162 (1982)Google Scholar
  187. 187.
    Wichmann, F.A., Graf, A.B.A., Simoncelli, E.P., Bülthoff, H.H., Schölkopf, B.: Machine learning applied to perception: Decision-images for gender classification. In: Saul, L.K., Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, pp. 1489–1496. MIT, Cambridge (2005)Google Scholar
  188. 188.
    Wichmann, F.A., Hill, N.J.: The psychometric function: I. fitting, sampling and goodness of fit. Percept. Psychophys. 63, 1293–1313 (2001)Google Scholar
  189. 189.
    Wickens, T.D.: Elementary Signal Detection Theory. Oxford University Press, New York (2002)Google Scholar
  190. 190.
    Wickham, H.: ggplot2: Elegant Graphics for Data Analysis. Springer, New York (2009). http://had.co.nz/ggplot2/book
  191. 191.
    Wilkinson, G.N., Rogers, C.E.: Symbolic description of factorial models for analysis of variance. Appl. Stat. 22, 392–399 (1973)Google Scholar
  192. 192.
    Wilkinson, L.: The Grammar of Graphics. Springer, New York (2005)MATHGoogle Scholar
  193. 193.
    Wilks, S.S.: The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9, 60–62 (1938)MATHGoogle Scholar
  194. 194.
    Williams, J., Ramaswamy, D., Oulhaj, A.: 10 Hz flicker improves recognition memory in older people. BMC Neurosci. 7, 21 (2006)Google Scholar
  195. 195.
    Winer, B.J.: Statistical Principles in Experimental Design, 2nd edn. McGraw-Hill, New York (1971)Google Scholar
  196. 196.
    Winship, C., Mare, R.D.: Regression models with ordinal variables. Am. Soc. Rev. 49, 512–525 (1984)Google Scholar
  197. 197.
    Wood, S.: gamm4: Generalized additive mixed models using mgcv and lme4 (2011). R package version 0.1-3. http://CRAN.R-project.org/package=gamm4. Accessed date on 2nd August 2012
  198. 198.
    Wood, S.N.: Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC, Boca Raton (2006)MATHGoogle Scholar
  199. 199.
    Xie, Y., Griffin, L.D.: A ‘portholes’ experiment for probing perception of small patches of natural images. Perception 36, 315 (2007)Google Scholar
  200. 200.
    Yang, J.N., Szeverenyi, N.M., Ts’o, D.: Neural resources associated with perceptual judgment across sensory modalities. Cerebr. Cortex 18, 38–45 (2008)Google Scholar
  201. 201.
    Yee, T.W.: The vgam package for categorical data analysis. J. Stat. Software 32(10), 1–34 (2010). http://www.jstatsoft.org/v32/i10 Google Scholar
  202. 202.
    Yeshurun, Y., Carrasco, M., Maloney, L.T.: Bias and sensitivity in two-interval forced choice procedures: Tests of the difference model. Vis. Res. 48, 1837–1851 (2008)Google Scholar
  203. 203.
    Yovel, Y., Franz, M.O., Stilz, P., Schnitzler, H.U.: Plant classification from bat-like echolocation signals. PLoS Comput. Biol. 4, e1000032 (2008)MathSciNetGoogle Scholar
  204. 204.
    Yssaad-Fesselier, R., Knoblauch, K.: Modeling psychometric functions in R. Behav. Res. Meth. Instrum. Comp. 38, 28–41 (2006)Google Scholar
  205. 205.
    Zhaoping, L., Jingling, L.: Filling-in and suppression of visual perception from context: A Bayesian account of perceptual biases by contextual influences. PLoS Comput. Biol. 4, e14 (2008)Google Scholar
  206. 206.
    Zucchini, W.: An introduction to model selection. J. Math. Psychol. 44, 41–61 (2000)MATHGoogle Scholar
  207. 207.
    Zuur, A., Ieno, E.N., Walker, N., Saveiliev, A.A., Smith, G.M.: Mixed Effects Lodels and Extensions in Ecology with R. Springer, New York (2009)Google Scholar
  208. 208.
    Żychaluk, K., Foster, D.H.: Model-free estimation of the psychometric function. Attention Percept. Psychophys. 71, 1414–1425 (2009)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Kenneth Knoblauch
    • 1
  • Laurence T. Maloney
    • 2
  1. 1.Department of Integrative NeurosciencesStem-cell and Brain Research Institute INSERM U846BronFrance
  2. 2.Department of Psychology Center for Neural ScienceNew York UniversityNew YorkUSA

Personalised recommendations